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Abstract

This paper aims to highlight existence and uniqueness results for a coupled system of nonlinear
fractional q-difference subject to nonlinear more general four-point boundary conditions are treated.
Our analysis relies on two approaches, the topological degree for condensing maps via a priori estimate
method and the Banach contraction principle fixed point theorem. Finally, Two examples illustrating
the effectiveness of the theoretical results are presented.
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1. Introduction

Fractional calculus and q-calculus is a branch of mathematics, witch deals with the generalization
of integration and differentiation of integer order to any order. It is known that fractional calculus
is used for a better description of phenomena having both discrete and continuous behaviors, and
applying in different sciences and engineering such as mechanics, electricity, biology, control theory,
signal and image processing. Fractional q-difference equations initiated at the beginning of the nine-
teenth century [2, 19] has received significant attention in recent years [10, 23]. In addition, propose
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more general results that involve initial and boundary value problems of q-difference and fractional q-
difference equations, has also been gaining prominence [19, 9, 22, 23, 10, 3, 26, 39, 14, 21, 40, 8, 41, 42].

The topological methods proved to be a powerful tool in the study of various problems which
appear in nonlinear analysis. Particularly, the a priori estimate method (or the method of a priori
bounds) has been often used in order to prove the existence of solutions for some boundary value
problems for nonlinear differential equations or nonlinear partial differential equations, for details
about usefulness of coincidence degree theory approach for condensing maps in the study for the
existence of solutions of certain integral equations, the reader can be referred to [11, 12, 15, 27, 36,
37, 38, 43, 45].

In this paper, we show existence of solutions for nonlinear fractional difference equations by
applying a fixed point theorem due to Isaia [27], which was obtained via coincidence degree theory
for condensing maps.

So we are mainly concerned with the existence results for the following fractional q-difference
system of the form 

Dq1
q u1(τ) = F1(τ, u1(τ), u2(τ)),

, τ ∈ J := [0, 1],
Dq2

q u2(τ) = F2(τ, u1(τ), u2(τ)),
(1.1)

with the fractional boundary conditions
u1(0) = a1Iβ1

q u(η1), 0 < η1 < 1, β1 > 0,

u1(1) = b1Iα2
q u(σ1), 0 < σ1 < 1, α1 > 0,

u2(0) = a2Iβ2
q u(η2), 0 < η2 < 1, β2 > 0,

u2(1) = b2Iα2
q u(σ2), 0 < σ2 < 1, α2 > 0.

(1.2)

For all i = 1, 2, Dqi
q is the fractional q-derivative of the Caputo type of order 1 < qi ≤ 2, and

F : J× R2 −→ R is a given continuous function, ai, bi, i = 1, 2 are suitably chosen real constants.
The rest of the article is organized as follows. In Sect. 2, we introduce some important notions

about fractional difference operators and topological degree theory, while Sect. 3 contains our main
existence results for problem (1.1). Finally, we provide an example to illustrate the applicability of
the developed results.

2. Preliminaries

In this section, we introduce notations, definitions and preliminary facts which are used through-
out the paper.

Let U = C([0, 1],R) be the Banach space of all continuous functions endowed with the norm

∥u∥∞ = sup{∥u(τ)∥ : τ ∈ J}.

Then the product space C := U × V defined by C = {(u, v) : u ∈ U , v ∈ V} is also a Banach space
under the norm

∥(u, v)∥C = ∥u∥∞ + ∥v∥∞.

Let MU represents the class of all bounded mappings in U .

In what follow, we recall some elementary definitions and properties related to fractional q-
calculus. For a ∈ R, we put
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[a]q =
1− qa

1− q
.

The q-analogue of the power (a− b)n is expressed by

(a− b)(0) = 1, (a− b)(n) =
n−1∏
k=0

(
a− bqk

)
, a, b ∈ R, n ∈ N.

In general,

(a− b)(α) = aα
∞∏
k=0

(
a− bqk

a− bqk+α

)
, a, b, α ∈ R.

Definition 2.1. [29] The q-gamma function is given by

Γq(α) =
(1− q)(α−1)

(1− q)α−1
, α ∈ R− {0,−1,−2, . . .}.

The q-gamma function satisfies the classical recurrence relationship

Γq(1 + α) = [α]qΓq(α).

Definition 2.2. [29] For any α, β > 0, the q-beta function is defined by

Bq(α, β) =

∫ 1

0

ω(α−1)(1− qω)(β−1)dqω, q ∈ (0, 1),

where the expression of q-beta function in terms of the q-gamma function is

Bq(α, β) =
Γq(α)Γq(β)

Γq(α + β)
.

Definition 2.3. [29] Let ω : J → R be a suitable function. We define the q-derivative of order
n ∈ N of the function by D0

qω(τ) = ω(τ),

Dqω(τ) := D1
qω(τ) =

ω(τ)− ω(qt)

(1− q)τ
, τ ̸= 0, Dqω(0) = lim

τ→0
Dqω(τ),

and
Dn

q ω(τ) = DqDn−1
q ω(τ), τ ∈ I, n ∈ {1, 2, . . .}.

Set Iτ := {tqn : n ∈ N} ∪ {0}.

Definition 2.4. [29] For a given function ω : Iτ → R, the expression defined by

Iqω(τ) =

∫ τ

0

ω(s) dqs =
∞∑
n=0

τ(1− q)qnω
(
tqn
)
,

is called q-integral, provided that the series converges.
We note that DqIqω(τ) = ω(τ), while if ω is continuous at 0, then

IqDqω(τ) = ω(τ)− ω(0).
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Definition 2.5. [3] The integral of a function ω : J → R defined by

I0
qω(τ) = ω(τ),

and

Iα
q ω(τ) =

∫ τ

0

(τ − qs)(α−1)

Γq(α)
ω(s) dqs, τ ∈ J.

is called Riemann-Liouville-fractional q-integral of order α ∈ R+

Lemma 2.6. [34]
Let α ∈ R+ and β ∈ (−1,∞). One has

Iα
q τ

β =
Γq(β + 1)

Γq(α + β + 1)
τα+β, β ∈ (−1,∞), α ≥ 0, τ > 0.

In particular, if ω ≡ 1, then

Iα
q 1(τ) =

1

Γq(1 + α)
τ (α), for all τ > 0.

Definition 2.7. [35] The Riemann-Liouville fractional q-derivative of order α ∈ R+ of a function
ω : J → R is defined by D0

qω(τ) = ω(τ) and

Dα
q ω(τ) = D[α]

q I [α]−α
q ω(τ)

=
1

Γq(n− α)

∫ τ

0

ω(s)

(τ − qs)α−n+1
dqs.

where [α] is the integer part of α.

Lemma 2.8. [25] Let α > 0 and n ∈ N where [α] denotes the integer part of α. Then, the following
fundamental identity holds

RLIα
q RLDn

q ω(τ) = RLDn
q RLIα

q ω(τ)−
α−1∑
k=0

τα−n+k

Γq(α + k − n+ 1)
(Dk

qh)(0).

Definition 2.9. [35] The Caputo fractional q-derivative of order α ∈ R+ of a function ω : J → R
is defined by

CDα
q ω(τ) = I [α]−α

q D[α]
q ω(τ), τ ∈ J.

We put by convention
CD0

qω(τ) = ω(τ).

Lemma 2.10. [35] Let α ∈ R+. Then the following equality holds:

Iα
q
CDα

q ω(τ) = ω(τ)−
[α]−1∑
k=0

τ k

Γq(1 + k)
Dk

qω(0).

In particular, if α ∈ (0, 1), then
Iα
q
CDα

q ω(τ) = ω(τ)− ω(0).
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Lemma 2.11. [34] Let u be a function defined on J and suppose that α, β are two real nonegative
numbers. Then the following hold:

Iα
q Iβ

q ω(τ) =Iα+β
q ω(τ) = Iβ

q Iα
q ω(τ),

Dα
q Iα

q ω(τ) = ω(τ).

We start this section by introducing some necessary definitions and basic results required for
further developments.

We state here the results given below from [4, 20].

Definition 2.12. The mapping κ : MU → [0,∞) for Kuratowski measure of non-compactness is
defined as:

κ(B) = inf
{
ε > 0 : B can be covered by finitely many sets with diameter ≤ ε

}
.

The Kuratowski measure of noncompactness satisfies some properties.

(1) A ⊂ B ⇒ κ(A) ≤ κ(B),
(2) κ(A) = 0 if and only if A is relatively compact,

(3) κ(A) = κ(A) = κ(conv(A)), where A and conv(A) represent the closure and the convex hull of
A respectively,

(4) κ(A+ B) ≤ κ(A) + κ(B),
(5) κ(λA) = |λ|κ(A), λ ∈ R.

Definition 2.13. Let T : A −→ U be a continuous bounded map and A ⊂ U . The operator T is
said to be κ-Lipschitz if we can find a constant ℓ ≥ 0 satisfying the following condition,

κ(T (B)) ≤ ℓκ(B), for every B ⊂ A.

Moreover, T is called strict κ-contraction if ℓ < 1.

Definition 2.14. The function T is called κ-condensing if

κ(T (B)) < κ(B),

for every bounded and nonprecompact subset B of A.
In other words,

κ(T (B)) ≥ κ(B), implies κ(B) = 0.

Further we have T : A −→ U is Lipschitz if we can find ℓ > 0 such that

∥T (u)− T (v)∥ ≤ ℓ∥u− v∥, for all u, v ∈ A,

if ℓ < 1, T is said to be strict contraction.

For the following results, we refer to [27].

Proposition 2.15. If T ,S : A −→ U are κ-Lipschitz mapping with constants ℓ1 and ℓ2 respectively,
then T + S : A −→ U are κ-Lipschitz with constants ℓ1 + ℓ2.

Proposition 2.16. If T : A −→ U is compact, then T is κ-Lipschitz with constant ℓ = 0.
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Proposition 2.17. If T : A −→ U is Lipschitz with constant ℓ, then T is κ-Lipschitz with the same
constant ℓ.

Isaia [27] present the following results using topological degree theory.

Theorem 2.18. Let K : A −→ U be κ-condensing and

Θ = {u ∈ U : there exist ξ ∈ [0, 1] such that x = ξKu} .

If Θ is a bounded set in U , so there exists r > 0 such that Θ ⊂ Br(0), then the degree

deg(I − ξK, Br(0), 0) = 1, for all ξ ∈ [0, 1].

Consequently, K has at least one fixed point and the set of the fixed points of K lies in Br(0).

3. Main results

For the existence of solutions for the problem (1.1)-(4.1), we need the following auxiliary lemmas.

Lemma 3.1. Let Fi : J × R2 → R be a continuous function for each i = 1, 2. Then problem
(1.1)-(4.1) is equivalent to the problem of obtaining the solutions of the integral equation

ui(τ) = Iqi
q Fui

(τ) + (Λ1,i − Λ4,iτ) Iqi+βi
q Fui

(ηi) + (Λ2,i + Λ3i,τ)
(
biIqi+αi

q Fui
(σi)− Iqi

q Fui
(1)
)

(3.1)

if and only if ui, i = 1, 2 is a solution of the fractional boundary-value problem
Dq1

q u1(τ) = Fu1 ,
, τ ∈ J := [1, 1],

Dq2
q u2(τ) = Fu2 ,

(3.2)


u1(0) = a1Iβ1

q u(η1), 0 < η1 < 1, β1 > 0,

u1(1) = b1Iα2
q u(σ1), 0 < σ1 < 1, α1 > 0,

u2(0) = a2Iβ2
q u(η2), 0 < η2 < 1, β2 > 0,

u2(1) = b2Iα2
q u(σ2), 0 < σ2 < 1, α2 > 0,

(3.3)

where

Λ1,i =
ai
Λi

(
1− biσ

αi+1
i

Γ(αi + 2)

)
, Λ2,i =

aiη
βi+1
i

ΛiΓ(βi + 2)
,

Λ3,i =
1

Λi

(
1− aiη

βi

i

Γ(βi + 1)

)
, Λ4,i =

ai
Λi

(
1− biσ

αi
i

Γ(αi + 1)

)
, (3.4)

Λi =

(
1− aiη

βi

i

Γ(βi + 1)

)(
1− biσ

αi+1
i

Γ(αi + 2)

)
+

aiη
βi+1
i

Γ(βi + 2)

(
1− biσ

αi
i

Γ(αi + 1)

)
.

Proof . For some constants c0,i, c1,i ∈ R and 1 < qi ≤ 2, the general solution of Dqi
q ui(τ) = Fui

(τ)
can be written as

ui(τ) = Iqi
q Fui

(τ) + c0,i + c1,i τ. (3.5)
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Using the boundary conditions (3.3) in (3.5) we may obtain(
1− aiη

βi

i

Γ(βi + 1)

)
c0,i −

aiη
βi+1
i

Γ(βi + 2)
c1,i = aiIqi+βi

q Fui
(ηi),(

1− biσ
αi
i

Γ(αi + 1)

)
c0,i +

(
1− biσ

αi+1
i

Γ(αi + 2)

)
c1,i = biIqi+αi

q Fui
(σi)− Iqi

q Fui
(1). (3.6)

which, on solving, yields

c0,i =
1

Λi

{
ai

(
1− biσ

αi+1
i

Γ(αi + 2)

)
Iqi+βi
q Fui

(ηi) +
aiη

βi+1
i

Γ(βi + 2)

(
biIqi+αi

q Fui
(σi)− Iqi

q Fui
(1)
)}

,

and

c1,i =
1

Λi

{
ai

(
biσ

αi
i

Γ(αi + 1)
− 1

)
Iqi+βi
q Fui

(ηi) +

(
1− aiη

βi

i

Γ(βi + 1)

)(
biIqi+αi

q Fui
(σi)− Iqi

q Fui
(1)
)}

.

Substituting the value of c0,i, c1,i in (3.5) we get (3.1), which completes the proof. □ We use the
following sufficient assumptions in the proofs of our main results.

(H1) There exist constants Li > 0, i = 1, 2 such that for τ ∈ J and each ui, vi ∈ C, i = 1, 2.

∥F1(τ, u1, u2)−F(τ, v1, v2)∥ ≤ L1

2∑
i=1

(∥ui − vi∥) ,

∥F2(τ, u1, u2)−F(τ, v1, v2)∥ ≤ L2

2∑
i=1

(∥ui − vi∥) . (3.7)

(H2) For arbitrary τ ∈ J and each u1, u2 ∈ C there exist constants Ki,Mi, Ni > 0, i = 1, 2 , and
p ∈ (0, 1) such that

∥F1(τ, u1(s), u2(s))∥ ≤ K1∥u1∥p +M1∥u2∥p +N1,

∥F2(τ, u1(s), u2(s))∥ ≤ K2∥u1∥p +M2∥u2∥p +N2. (3.8)

In the following, we set an abbreviated notation for the fractional q-integral of the Caputo type of
order qi > 0, for a function with two variables as

Iqi
q Fui

(τ) =
1

Γ(qi)

∫ τ

0

(τ − qs)α−1F(s, u1(s), u2(s))ds.

Moreover, for computational convenience we put

ωi =

{
(|Λ1,i|+ |Λ4,i|)

ηqi+βi

i

Γ(qi + βi + 1)
+ (|Λ2,i|+ |Λ3,i|)

(
|bi|σqi+αi

i

Γ(qi + αi + 1)
+

1

Γ(qi + 1)

)}
, (3.9)

and

ω̄i =

{
|Λ4,i|

ηqi+βi

i

Γ(qi + βi + 1)
+ |Λ3,i|

(
|bi|σqi+αi

i

Γ(qi + αi + 1)
+

1

Γ(qi + 1)

)}
. (3.10)
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By Lemma 3.1, we consider two operators T ,S : C −→ C as follows:

T ui(τ) =Iqi
q Fui

(τ), τ ∈ J,

and

Sui(τ) = (Λ1,i − Λ4,i τ) Iqi+βi
q Fui

(ηi) + (Λ2,i + Λ3,i τ)
(
biIqi+αi

q Fui
(σi)− Iqi

q Fui
(1)
)
, τ ∈ J.

Then the integral equation (3.1) in Lemma 3.1 can be written as an operator equation

Kui(τ) = T ui(τ) + Sui(τ), τ ∈ J.

The continuity of Fi, i=1,2, shows that the operator K : C → C is well define and fixed points of the
operator equation are solutions of the integral equations (3.1) in Lemma 3.1.

Lemma 3.2. The operator T : C → C is Lipschitz with constant
∑2

i=1 ℓFi
=
∑2

i=1
Li

Γ(qi+1)
. Moreover,

T satisfies the growth condition given below

∥T (u1, u2)∥ ≤
2∑

i=1

1

Γ(α + 1)
(Ki∥u1∥p +Mi∥u2∥p +Ni),

for every ui ∈ C.

Proof .
To show that the operator T is Lipschitz. Let ui, vi ∈ C ,i=1,2, then we have

|T ui(τ)− T vi(τ)| =
∣∣Iqi

q Fi,ui
−Iqi

q Fi,vi

∣∣
≤Iqi

q |Fi,ui
−Fi,vi |(τ)

≤Iqi
q (1) Li

2∑
i=1

(∥ui − vi∥)

=
Li

Γ(qi + 1)

2∑
i=1

(∥ui − vi∥) .

For all τ ∈ J, we obtain

∥T ui − T vi∥ ≤ Li

Γ(qi + 1)

2∑
i=1

(∥ui − vi∥) .

Hence, T : C −→ C is a Lipschitzian on C with Lipschitz constant ℓFi
= Li

Γ(qi+1)
. By Proposition 2.17,

T is κ–Lipschitz with constant ℓFi
. Moreover, for growth condition, we have

|T ui(τ)| ≤Iqi
q |Fui

|(τ)
≤ (Ki∥u1∥p +Mi∥u2∥p +Ni)Iα

q (1)

=
1

Γ(qi + 1)
(Ki∥u1∥p +Mi∥u2∥p +Ni).

Hence it follows that

∥T ui∥ ≤ 1

Γ(qi + 1)
(Ki∥u1∥p +Mi∥u2∥p +Ni),
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which implies that

∥T (u1, u2)∥ ≤
2∑

i=1

1

Γ(α + 1)
(Ki∥u1∥p +Mi∥u2∥p +Ni).

□

Lemma 3.3. S is continuous and satisfies the growth condition given as below,

∥Sui∥ ≤ (Ki∥u1∥p +Mi∥u2∥p +Ni)ωi, for every ui ∈ C,

where ωi is given by (3.9).

Proof . Choose a bounded subset Dr = {(u1, u2) ∈ C : ∥(u1, u2)∥ ≤ r} ⊂ C and consider a sequence
{zn = (u1,n, u2,n)} ∈ Dr such that zn → z = (u1, u2) as n → ∞ in Dr. We need to show that
∥Szn − Sz| → 0, n → ∞. From the continuity of Fi,u, it follows that Fi,un → Fi,u, as n → ∞. In
view of (H2) , we obtain the following relations:

(τ − sq)qi−1 ∥Fi,un −Fi,u∥ ≤ (Ki∥u1∥p +Mi∥u2∥p +Ni) (τ − sq)qi−1 , i = 1, 2.

(ηi − sq)qi+βi−1 7→ (Ki∥u1∥p +Mi∥u2∥p +Ni) (ηi − sq)qi+βi−1 , i = 1, 2,

(σi − sq)qi+αi−1 7→ (Ki∥u1∥p +Mi∥u2∥p +Ni) (σi − sq)qi+αi−1 , i = 1, 2,

(1− sq)qi−1 7→ (Ki∥u1∥p +Mi∥u2∥p +Ni) (1− sq)qi−1 , i = 1, 2,

which implies that each term on the left is integrable. By Lebesgue Dominated convergent theorem,
we obtain

Iqi+βi
q |Fi,un −Fi,u|(ηi) → 0 as n → +∞,

Iqi+αi
q |Fi,un −Fi,u|(σi) → 0 as n → +∞,

Iqi
q |Fi,un −Fi,u|(1) → 0 as n → +∞.

It follows that ∥Szn − Sz∥ → 0 as n → +∞. Which implies the continuity of the operator S.
For the growth condition, using the assumption (H2) we have

|Sui(τ)| ≤ (|Λ1,i|+ |Λ4i |) Iqi+βi
q Fui

(ηi) + (|Λ2,i|+ |Λ3,i|)
(
|b|Iqi+αi

q Fui
(σi) + Iqi

q Fui
(1)
)
,

≤ (Ki∥u1∥p +Mi∥u2∥p +Ni) (|Λ1,i|+ |Λ4i |) Iqi+βi
q (1)(ηi)

+ (Ki∥u1∥p +Mi∥u2∥p +Ni) (|Λ2,i|+ |Λ3,i|)
(
|bi|Iqi+αi

q (1)(σi) + Iqi
q (1)

)
≤ (Ki∥u1∥p +Mi∥u2∥p +Ni)

{
(|Λ1,i|+ |Λ4i |)

ηqi+βi

i

Γ(qi + βi + 1)

+ (|Λ2,i|+ |Λ3,i|)
(
|bi|

σqi+αi

i

Γ(qi + αi + 1)
+

1

Γ(qi + 1)

)}
= (Ki∥u1∥p +Mi∥u2∥p +Ni)ωi.

Which implies that,

∥S(u1, u2)∥ ≤
2∑

i=1

(Ki∥u1∥p +Mi∥u2∥p +Ni)ωi, i = 1, 2. (3.11)

where ωi, i=1,2 is given by (3.9). This completes the proof of Lemma 3.3. □
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Lemma 3.4. The operator S : C −→ C is compact. Consequently, S is κ-Lipschitz with zero con-
stant.

Proof . In order to show that S is compact. Let us take a bounded set Ω ⊂ Br, i=1,2. We are
required to show that S(Ω) is relatively compact in C. For arbitrary ui ∈ Ω ⊂ Br, then with the help
of the estimates (3.11) we can obtain

∥Su∥ ≤ (Kir
p +Mir

p +Ni)ωi,

where ωi is given by (3.9), which shows that S(Ω) is uniformly bounded.
Now, for equi-continuity of S take τ1, τ2 ∈ J with τ1 < τ2, and let ui ∈ Ω. Thus, we get

|Sui(τ2)− Sui(τ1)| ≤ |Λ4,i| (τ2 − τ1) Iqi+βi
q Fui

(ηi)

+ |Λ3,i| (τ2 − τ1)
(
biIqi+αi

q Fui
(σi)− Iqi

q Fui
(1)
)

≤ ω̄i (Ki∥ui∥p +Mi∥vi∥p +Ni) (τ2 − τ1).

Which implies that,

|S(u1, u2)(τ2)− S(u1, u2)(τ1)| ≤
2∑

i=1

ω̄i (Ki∥ui∥p +Mi∥vi∥p +Ni) (τ2 − τ1).

where ω̄i is given by (3.10). From the last estimate, we deduce that ∥S(u1, u2)(τ2)−S(u1, u2)(τ1)∥ → 0
when τ2 → τ1. Therefore, S is equicontinuous. Thus, by Ascoli–Arzelà theorem, the operator S is
compact and hence by Proposition 2.16. S is κ–Lipschitz with zero constant. □

Theorem 3.5. Suppose that (H1)–(H2) are satisfied, then the BVP (1.1) has at least one solution
(u1, u2) ∈ C, provided that

∑2
i=1 ℓFi

< 1, i = 1, 2, and the set of the solutions is bounded in C.

Proof . Let T ,S,K are the operators defined in the start of this section. These operators are
continuous and bounded. Moreover, by Lemma 3.2, T is κ–Lipschitz and by Lemma 3.4, S is κ–
Lipschitz with constant 0. Thus, K is κ–Lipschitz with constant ℓFi

. Hence K is strict κ–contraction
with constant ℓFi

. Since
∑2

i=1 ℓFi
< 1, so K is κ-condensing.

Now consider the following set

Θ = {(u1, u2) ∈ C : there exist ξ ∈ [0, 1] such that ui = ξKui, i = 1, 2} .

We will show that the set Θ is bounded. For ui ∈ Θ, we have ui = ξKui = ξ(T (ui) + S(ui)), which
implies that

∥ui∥ ≤ ξ(∥T ui∥+ ∥Sui∥)

≤
[

1

Γ(qi + 1)
+ ωi

]
(Ki∥u1∥p +Mi∥u2∥p +Ni) ,

hence we get

∥(u1, u2)∥ ≤ ξ(∥T (u1, u2)∥+ ∥S(u1, u2)∥)

≤
2∑

i=1

[
1

Γ(qi + 1)
+ ωi

]
(Ki∥u1∥p +Mi∥u2∥p +Ni) ,
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where ωi is given by (3.9). From the above inequalities, we conclude that Θ is bounded in C. If it is
not bounded, then dividing the above inequality by a := ∥ui∥ and letting a → ∞, we arrive at

1 ≤
2∑

i=1

[
1

Γ(qi + 1)
+ ωi

]
lim
a→∞

Kia
p +Mia

p +Ni

a
= 0,

which is a contradiction. Thus the set Θ is bounded in C and the operator K has at least one fixed
point which represent the solution of BVP (1.1). □ To end this section, we give an existence and
uniqueness result.

Theorem 3.6. Under assumption (H1) the BVP (1.1) has a unique solution if

2∑
i=1

[
1

Γ(qi + 1)
+ ωi

]
Li < 1. (3.12)

Proof . Let ui, vi ∈ C and τ ∈ J, then we have

|Kui(τ)−Kvi(τ)| ≤ HIqi
q |Fui

−Fvi |(τ) + (|Λ1,i|+ |Λ4,i|) Iqi+βi
q |Fui

−Fvi |(ηi)
+ (|Λ2,i|+ |Λ3,i|) |bi|Iqi+αi

q |Fui
−Fvi |(σi) + (|Λ2,i|+ |Λ3,i|T ) Iqi

q |Fui
−Fvi|(1)

≤ Li

2∑
i=1

(∥ui − vi∥)
{
Iqi
q (1)(1) + (|Λ1,i|+ |Λ4,i|) Iqi+βi

q (1)(ηi)

+ (|Λ2,i|+ |Λ3,i|) |bi|Iqi+αi
q (1)(σi) + (|Λ2,i|+ |Λ3,i|T ) Iqi

q (1)
}

≤ Li

2∑
i=1

(∥ui − vi∥)

(
1

Γ(qi + 1)
+

{
(|Λ1,i|+ |Λ4,i|)

ηqi+βi

i

Γ(qi + βi + 1)

+ (|Λ2,i|+ |Λ3,i|)
(
|bi|

σqi+αi

i

Γ(qi + αi + 1)
+

1

Γ(qi + 1)

)})
=

[
1

Γ(qi + 1)
+ ωi

]
Li

2∑
i=1

(∥ui − vi∥).

Hence K is contraction as
∑2

i=1

[
1

Γ(qi+1)
+ ωi

]
Li < 1 and by Banach contraction principle K has

a unique fixed point which is a unique solution of problem (1.1). This completes the proof. □

Remark 3.7. If the growth condition (H2) is formulated for p = 1, then the conclusions of Theorem
3.5 remain valid provided that

2∑
i=1

[
1

Γ(qi + 1)
+ ωi

]
(Ki +Mi) < 1.

4. Examples

In this section, in order to illustrate the main result, we consider two examples.
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Example 4.1. Consider the following boundary value problem of a fractional differential equation:

D
4
3
1
4

u1(t) =
1

e(t)+9

(
|u1(t)|

1+|u1(t)|

)
+

√
3+t2|u1(t)|

20
+ t, t ∈ J := [0, 1],

Dq2
1
4

u2(t) =
sin

(√
|u2(t)|

)
16

+
(

e−πt|u2(t)|
16+|u2(t)|

)
+ (1 + t2),

u1(0) = a1I
5
2
1
4

u(1
4
), u1(1) = b1I

1
4
1
4

u(1
5
),

u2(0) = a2I
4
5
1
4

u(2
5
), u2(1) = b2I

4
5
1
4

u(2
5
).

(4.1)

Note that, this problem is a particular case of BVP (1.1), where

q1 =
4

3
, q2 =

7

5
, q =

1

4
, T = 1,

a1 = b2 =
1

2
; a2 = b1 =

1

5
; η2 = σ2 =

2

5
, β1 =

5

2
, (4.2)

α1 = η1 =
1

4
, β2 =

1

3
, α2 =

4

5
, σ1 =

1

5
.

Using the given values of the parameters in (3.4) and (3.9), by the Matlab program, we find that

2∑
i=1

[
T qi

Γ(qi + 1)
+ ωi

]
= 2.332,

In order to illustrate Theorem 3.5, we take

f1(t, u1(t), u2(t)) =
1

e(t−1) + 9

(
|u1(t)|

1 + |u1(t)|

)
+

√
3 + t2|u2(t)|

20
+ t,

f2(t, u1(t), u2(t)) =
sin
(√

|u1(t)|
)

16
+

(
e−πt|u2(t)|
16 + |u2(t)|

)
+ (1 + t2).

(4.3)

We can easily show that

∥f1(t, u1, u2)− f(t, v1, v2)∥ ≤ 1

10

2∑
i=1

[∥ui − vi∥],

∥f2(t, u1, u2)− g(t, v1, v2)∥ ≤ 1

16

2∑
i=1

[∥ui − vi∥].
(4.4)

Hence the condition (H1) holds with L1 =
1
10
, L2 =

1
16
. Further from the above given data it is easy

to calculate
2∑

i=1

ℓfi =
2∑

i=1

[
1

Γ(qi + 1)

]
Li = 1.8703,

On the other hand, for any t ∈ J, u ∈ R we have

|f(t, u1, u2)| ≤
1

10
|u1|+

1

10
|u2|+ 1,

|f(t, u1, u2)| ≤
1

16
|u1|+

1

16
|u2|+ 2,
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Condition (H2) holds with M1 = K1 = 1
10
, M2 = K2 = 1

16
, p = N1 = 1 and N2 = 2. In view of

Theorem 3.5

Θ = {(u1, u2) ∈ C : there exist ξ ∈ [0, 1] such that ui = ξKui, i = 1, 2} ,

is the solution set; then

∥ (u1, u2) ∥ ≤ ξ(∥T (u1, u2) ∥+ ∥S (u1, u2) ∥)

≤
2∑

i=1

[
1

Γ(qi + 1)
+ ωi

]
((Ki +Mi) (∥u1∥+ ∥u2∥) +Ni).

From which, we have

∥ (u1, u2) ∥ ≤

∑2
i=1

[
1

Γ(qi+1)
+ ωi

]
Ni

1−
∑2

i=1

[
1

Γ(qi+1)
+ ωi

]
(Mi +Ki)

= 19.8124.

By Theorem 3.5, the BVP (1.1) with the data (4.5) and (4.3) has at least a solution u in C(J×R,R).
Furthermore

∑2
i=1

[
1

Γ(qi+1)
+ ωi

]
Li = 0.1854, < 1. Hence by Theorem 3.6 the boundary value problem

(1.1) with the data (4.5) and (4.3) has a unique solution.

Example 4.2. Let us consider coupled system (1.1) with specific data:

q1 =
3

2
, q2 =

5

4
, q =

1

2
, T = 1,

a1 = b1 = a2 = b2 = 1; β1 = η2 = σ2 =
1

2
, (4.5)

α1 = η1 =
3

4
, β2 =

2

3
, α2 =

2

5
, σ1 =

1

3
.

In order to illustrate Theorem 3.5, we take

f1(t, u1, u2) =
1
4
+

e−πt
√

|u1(t)|

16+
√

|u1(t)|
+

cos
√

|u2(t)|
16

,

f2(t, u1, u2) =
1
8
+

sin
√

|u1(t)|
24

+

√
|u2(t)|
24

.

(4.6)

One has

∥f1(t, u1, u2)− f(t, v1, v2)∥ ≤ 1

16

2∑
i=1

[∥ui − vi∥],

∥f2(t, u1, u2)− g(t, v1, v2)∥ ≤ 1

24

2∑
i=1

[∥ui − vi∥].
(4.7)

The condition (H1) holds with L1 =
1
16

and L1 =
1
24
. Further from the above given data it is easy to

calculate
2∑

i=1

ℓfi =
2∑

i=1

LiT
α

Γ(α + 1)
= 0.1446.
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Using the given values of the parameters in (3.4) and (3.9), by the Matlab program, we find that

2∑
i=1

T qi

Γ(qi + 1)
+ ωi = 4.6588. (4.8)

Hence condition (H1) holds with L1 = 1
16
, L2 = 1

24
. We shall check that condition (3.12) is

satisfied. Indeed using the Matlab program, we can find

2∑
i=1

[
T qi

Γ(qi + 1)
+ ωi

]
Li = 0.2332 < 1.

By Theorem 3.6 the boundary value problem (1.1)-(4.1) has a unique solution.
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