
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,026 |
تعداد مشاهده مقاله | 67,082,728 |
تعداد دریافت فایل اصل مقاله | 7,656,156 |
Calculation reduced transition probabilities (BE2 $ \downarrow $) for two holes in 64Ni within modified surface-delta interaction | ||
International Journal of Nonlinear Analysis and Applications | ||
دوره 12، Special Issue، اسفند 2021، صفحه 2181-2188 اصل مقاله (384.26 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2021.6089 | ||
نویسندگان | ||
Ali Khalaf Hasan؛ Dalal Naji Hameed* | ||
Department of Physics, College of Education for Girls, University of Kufa, Najaf, Iraq | ||
تاریخ دریافت: 10 مهر 1400، تاریخ بازنگری: 15 آبان 1400، تاریخ پذیرش: 17 آذر 1400 | ||
چکیده | ||
Reduced electric quadruple transition probabilities (BE2 $ \downarrow $) in the mixed configuration of $ ^{64}Ni $ with two holes have been calculated within the nuclear shell model. In the present work modified surface delta interaction MSDI within the model space $ (1P_{3/2} 0f_{5/2}) $ has been used for two holes neutrons The closed nuclear core is represented by the Ni- 66 nucleus. We have used a theoretical study to find a relationship between the semi-classical coupling angle $ \theta_{a,b} $ and the energy levels at different orbital within (hole- hole) configuration. we observed good agreement between theoretical energy levels with experimental data, new values have been specified for both the excited energy levels and the reduced electric quadruple transition probabilities (BE2 $ \downarrow $), these values are considered as a proposal, that grows theoretical understanding, of the energy levels and the expected transition probabilities through, this work. | ||
کلیدواژهها | ||
Modified surface delta interaction؛ $ ^{64}Ni $؛ Reduced Transition Probabilities (BE2) $ downarrow $ | ||
مراجع | ||
[1] G. Audi, A.H. Wapstr and C. Thibault, The AME2003 atomic mass evaluation:(II). Tables, graphs and references, Nuclear Phys. A 729 (2003) 337–676. [2] S. Bacca, Complete identification of states in 208Pb below Ex = 6.2 Mev, Eur. Phys. J. Plus. 131 (2016) 107–119. [3] P.J. Brussaard and P.W.M. Glauddemans, Shell-Model Applications in Nuclear Spectroscopy, North-Holland, Amsterdam, 197. [4] E. Caurier, The shell model as a unified view Of nuclear structure, Rev. Mod. Phys. 77 (2005) 427–480. [5] A.S. Changizi and Ch. Qi, Odd–even staggering in neutron drip line nuclei, Nuclear Phys. A 951 (2016) 97–115. [6] L. Coraggioet, A. Covello, A. Gargano and N. Itaco, Proton-neutron multiplets in exotic 134Sb: testing the shell-model effective interaction, Phys. Rev. C. 73(031302) (2006). [7] L. Coraggioet, A. Covello, A. Gargano and N. Itaco, Low-momentum nucleon-nucleon interactions and shell-model calculations, Phys. Rev. C 75(024311) (2007). [8] L. Coraggioet, A.Covello, A. Gargano and N. Itaco, Similarity of nuclear structure in the 132Sn and 208P b regions:proton-neutron multiplets, Phys. Rev. C 80(2) (2009). [9] A. Faessler and A. Plastino, Model applications in spectroscopy, Z. Phys. 203 (1967) 333–443. [10] A. Faessler and A. Plastino, The surface delta interaction in the transuranic nuclei, Z. Phys. 203(4) (1967) 333–345. [11] H.T. Fortune, R. Sherr, 2p3/2 strength in 40,41Sc and the 39Ca(p,b) reaction rate, Phys. Review C 65(067301) (2002). [12] W.M. Glaudemans, Two-body matrix elements from a modified surface delta interaction, Nucl. Phys. A 102 (1967) 593–600. [13] D.N. Hameed and A.K. Hasan, Energy levels Of isobaric nuclei (16N, 16F) within the modified surface deltainteraction model, Ukrain. J. Phys. 63 (2018) 579–590. [14] D.N. Hameed and A.K. Hasan, Determining the excitation energies of 68Ni nucleus a function of the coupling angle by means of modified surface delta, J. Phys. Conf. Ser. 1963 (012062) (2021) 1–9. [15] D.N. Hameed and A.K. Hasan, The relationship between the energy levels And semi-classical coupling angle θ1,2 for48Sc, 54Co nuclei using pandya transformation Indian, Indian J. Phys. 95 (2021) 1833–1836. [16] D.N. Hameed and A.K. Hasan, Energy levels of nuclei 40Sc and 40K as a function of semi-classical coupling angle θ1,2 within the modified surface delta-interaction, Nucl. Phy. At. Energy 20(2) (2019) 146–152. [17] A.K. Hasan, Shell model calculations for 18,19,20 O isotopes by using usda and usdb interactions, Ukr. J. Phys. 63 (2018) 3–9. [18] A.K. Hasan and A.R.H. Subber, Level structure of 210Po by means Of surface delta interaction, Turk. J. Phys. 37 (2013) 348–350. [19] A.K. Hasan and D.N. Hameed, Energy levels of 50Ca nucleus as a function of the classical coupling angle within MSDI, Neuro Quantol. 19(5) (2021) 61–67. [20] A. Heusler, Complete identification of states in 208Pb below Ex = 6.2 MeV, Phys. Rev. C 93(054321) (2016). [21] A. Jasielska and S.Wiktor, Shell model interaction, Acta Phys. Polon. B 7(2) (1976) 333–342. [22] J. Jing Liu, RA beta decay of nuclides 56Fe, 62Ni, 64Ni and 68Ni in the crust of magnetars, RRA. 11 (2016) 174–178. [23] K. Joel and S. Jouni, Spin-multipole nuclear matrix elements in the Pn quasiparticle random-phase approximation:implications for B and B β Half-Lives, Phys. Rev. C 95(014322) (2017). [24] K. Kaki, Neutron density distributions analyzed in terms of relativistic impulse approximation for nickel isotopes, Int. J. Modern Phys. E 24 (2015) 315–515. [25] K. Kaneko, T. Mizusaki, Y. Sun and S. Tazaki, Systematical shell-model calculation in the pairing-plus-multipole Hamiltonian with a monopole interaction for the p f 5/2 g 9/2 shell, Phys. Rev. C 92(044331) (2015) 67–89. [26] R.D. Lawson, Theory of The Nuclear Shell Model, Clarendon Press, Oxford, 1980. [27] F.A. Majeed and S. M. Obaid, Nuclear structure study of 22,24 Ne and 24Mg nuclei, Rev. Mex. F´ıs. 65 (2019) 159–167. [28] N.S. Martorana, G. Cardella, E.G.Lanza , L. Acosta and M.V. Andr´es, On the nature of the Pygmy Dipole Resonance in 68Ni, Il Nuovo Cimento C 41 (2018) 1–4.[29] A. Molinari, M.Johnson, H.A. Bethe and W.M. Alberico, Effective two-body interaction in simple nuclear spectra, Nucl. Phys. A 239 (1975) 45–60. [30] E. Mraheemet, The effects Of core polarisation On some even–even sd-shell nucleiusing michigan three-range yukawa and modified surface delta interactions, Pramana J. Phys. 23 (2019) 345–355. [31] P. Papakonstantinou, A.Panagiota, H. Hergert and R. Roth, Isoscalar and neutron modes in the E 1 spectra Of ni isotopes and The relevance Of shell effects and the continuum, Phys. Rev. C 92(034311) (2015) 234–245. [32] J. Piekarewicz, Nuclear breathing mode in neutron-rich nickel isotopes: sensitivity to the symmetry energy and the role of the continuum, Phys. Rev. C 91(1) (2015). [33] B. Pritychenko, M. Birch, B.Singh and M. Horoi, Tables of E2 transition probabilities from the first 2+ states in even-even nuclei, Atom. Data and Nucl Data Tables 107 (2016) 1–139. [34] J.P. Schiffer, He spectra of near-magic odd-odd nuclei and the effective interaction, Ann. Phys. 66 (1971) 798–800. [35] S. Shim, Excitation energies means Of modified, J. Korean Phys. Soc. 73 (2018) 1631-1641. [36] S. Sharma and A.J. Obaid, Mathematical modelling, analysis and design of fuzzy logic controller for the control of ventilation systems using MATLAB fuzzy logic toolbox, J. Interdiscip. Math., 23(4) (2020) 843–849. [37] B. Singh and C. June, Nuclear data sheets for A = 64, Nucl. Data Sheets 178 (2021) 41–537. [38] P. Van Isacker, Geometry of shell-model matrix elements, EPJ Web Conf. 78(03004) (2014). [39] P. Van Isacker, A geometry for the shell model, EPJ Web Conf. 178(05002) (2018). [40] P. Van Isacker and A.O. Macchiavelli, Geometry of the shears mechanism in nuclei, Phys. Rev. C 87(061301) (2013). [41] D. W´ojcik, A. Trzcinska, E. Piasecki, M. Kisielinski, M. Kowalczyk, W. Cichocka and H. Zhang, Transfer cross sections at near-barrier energy for the 24Mg+ 90, 92Zr systems, Acta Phys. Polon. B. 49(3) (2018) 3–8. | ||
آمار تعداد مشاهده مقاله: 44,324 تعداد دریافت فایل اصل مقاله: 530 |