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Abstract

Many papers used the algebraic polynomials to approximate functions in L, space for 0 < p < 1. Few
are introduced for the convex algebraic polynomials best approximation. But no one proves direct
Theorems for constrained convex approximation using smooth interpolatory piecewise polynomials
for functions in L,, 0 < p < 1. That is what we shall introduce here.
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1. Introduction and Notation

Define L, (I)={F: =R : f €L,}, where [ is closed interval between -1,1 and Lj (I) = {F :
I—R :F'elL,} with H]:HLp:(f_ll |F(x)[")?. For k € N and interval I,

AT T 0, otherwise.

Then w, (F, 4, 1) == supoeyei|AF(F, 5I)|, is @ measure of the smoothness modulus of f on I.
wy, (F,t) = w, (F, 4, 1), Ly=L;(I), for any interval I, we write w,, (F,d, ). We use ¥ () =v/1+2% and
Q, () =0 (x)n ' +n~2, neN,Qy=1. II, symbolizes the space of algebraic polynomial of degree<n.
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A function F : [a,b] =R is said to be xk-monotone,x>1 on [a,b] if and only if for all choices of
k+1 distinct points g, x1, . .. ,x1€ [a, b] the inequality F [zg, x1,...,xr] > 0 holds, where

K F (2.
F[l’o,l’l,...,%k]z ﬂ
= ()
L =i =g, w5l hy = hyn = [l =250 -
max{%,5}
]i,j = U ]n: [xmax{i,j} y Tmin{i,5} —l} y ]-Slajgn
k=min{4,j }

(the shortest interval containing both [; and [;), x; := z;,; = cos (%) ,0<5<n, 1, for j< 0 and —1
forj> n (Chebyshev knots)
max {%,j }
hi j:= Ui,j’ = Z hn::l;min{i,j} —17ZLmax{s,j}
k=min{i,j}
|51
(=5l + 1))
P = {TGC[0,00”TT,T (0) =0 and tgiKT(tg)StlinT (tl) for Ogtlgtg}

Note: If FeLt, then I (t) :=t"w, (F®, t), is equivalent to a function from @~ 37 = 37

T, =T (z):= , On () := min {1,n¥ (z)}

K
denoted the x;, 1<j<n—1 piecewise polynomials of degree not exceeding x — 1 that are continuous.

ZS) :ZS& denote the set of all z;, 1 < j < n — 1 piecewise polynomials that have continu-
ous derivatives. P; := P;(s) := S|I;, 1<j<n (S is a piecewise polynomial of pieces P; (x), xz€lj,

1<j<n—1, and write S|I;. b, ;(s,I') := ”ﬁi(‘f;ﬂp (:{_)K, where 'e®”, I'#£0 and Se€ ) . b, (s,I', B) :=

maxi<; j<n{0i; (s,I') |[,CB and I;CB }, where an interval BC [—1, 1] contains at least one interval
I,

b (s,I') :=b (s, I)= érll?wg(n b;;(s,I'),

¢ (p) := is an absolute constant depending on p,and is different from one step to others and ¢ (k, p) :=
positive constant that are either absolute or may only depend on the parameters k£ and p.

L _ .

L (F,z ]a,b])=  in A(zfa)%(bfa)mfl/m , x€[a, b]
R o : m

LY (F,x,a,b])=  Jin A(bfz)%(bfa)m_l/m , £€[a, b]

If keN, v €Ny and FeC", then for all n> k+r—1. There is a polynomial P,€]], satisfies

|F () =P (2)] <c(k,0)Q (z) wg (F*, Q, (2)),  xe[—1,1] (1.1)
and, moreover
IF () =Py (2)] <c (v,6) 9% (2) wy, (f,ﬁ% (z)n~ 2 ) Jif 1-n2<|z]<1 (1.2)

Recently, we were able to show [13] that and hold for monotone approximation (¢ = 1)
ifve N, k=2and n > N(F,t). In fact, we follow similar ideas and apply some of the construction
in [I3]. But there are some additional rather significant technical difficulties that we have to overcome
in this case (for example. Proofs in the cases for t = 1 and v > 2 turn out to be completely different).
Also, one of the important tools that we are using is our recent result [14] on convex approximation
of F € C*N AP by convex piecewise polynomials (Theorem (3.1)).
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2. The Auxiliary Lemma

Lemma 2.1. Let T'e€d" keN,FeL,(I) and Se}_, . If we(F,t), < cl®) and
IF = Sl,<c ()T (2 (2)), then
b.(s,I')<c(k,p).

Theorem 2.2. [6] For every t€N there is a constant c=c(p,t) with the following property, for each
convez function F€ Ly |a, b, there is a number H> 0, such that for every partition X={z;}’_, of [a,b]
satisfying x1—a<H and b—x,_1<H.

There is a convex piecewise polynomial s€S (X, t+2) such that
| F (2) —s(z)| <c(z—a)" LY (]—"(t), z;[a, :Ul]) ,2€ [a, 1],
|F (2) —s (z)| <c(b—z) L(FO 25 [x,1,b] ,2€ [1,_1,b], and, for each j= 2,... n—1 and z€ [x; 1, 7]
| F (2) —s(x)| <e(xj—z;_1) A2 (FO), z€ [wjo1, 2] +

Tj—Tj—1

c(z1—a) A2 _, (FO), z€la,z1] +e(b—z,-1)"Af

r1—a b—xpn_1

(F(t)> b_:UTL—l; [mn—b b] .

Lemma 2.3. [0] |F (z) —s(z)| <c(z—a)" Lk (F, z;[a,21]) ,2€ [a, 2] .
Lemma 2.4. [0] |F (z) —s(z)| <c(b—2) 8 (FO, ; [2,-1,b]) , € [2,-1,b].

Lemma 2.5. [16] Let veN, Z,, := (Z;)}",, a=:20<Z1< -+ <Z,,_1<Z,, := b be a partition of [a,b],
let sS€APNY,15(Z,,). Then there exists 5 EAPNYero(Zm)N Lyt a, b] such that, for any 1<j<m-—1,

ls=5ll(z, .z, SC (8,0 (Zi)) wera (s, Zja=Zj-2; (22, Zj42]) |

where Z; := 2y, j< 0 and Z; := Z,,, j>m. Moreover, 3 (a) =s")(a) and 3 (b) =s") (b). v=0, 1.
Lemma 2.6. [10/ (hji1< 3h;).
Theorem 2.7. [17/b,.(s,')<1 and, additionally

1. If dy> 0, then dy || *<minger, S () .

2. Ifd,=0, S (1)= 0, for all 2<i<r—2.

3. Ifd_> 0, then d_|I,_1|" *<minge;, , S'(z).

4. If d_=0, then SV (=1) =0, for all 2<i<k—2.

then there exists a polynomial P € AM N [1c, satisfying, for all x € [—1,1],

[S=Pl,<c(p,x,S) 65 ()T (Q, (), if dy>0 and d_> 0, (2.1)

IS=Pll,<c (pk,8) 6715272} () D (2, (x)),  if min {d+,d—}= 0. (2.2)
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3. Main theorems

Theorem 3.1. Let F be a convex function in L,[-1,1], then t€N, there is a constant ¢ (p,t), there
exist N'(F,t) and a convex piecewise polynomials S € ZHM NA® of degree t+1, and has Chebyshev
partition knots T, :

IF (2) -S(@)l|, e (1) (ﬁf?)tm (. &) vel-1,1] (3.1)

n

and

vV

17 (@) -S@)y,, , ... < ¢ (p) 0% (2) w, (fw, _> |

Jull—n=21] n L
p[-1,—14n—2]u[1-n—2,1]

€[-1,-1+n | Ul—n"?% 1] (3.2)

and

IF @) =S@)e, ey (p,e) 9% (x)wy (FO 9% (x))
r€[-1, —14+n?|U[l-n"2,1] (3.3)

Lp[71,71+n_2]u[17n_2.1] ’

Proof . By Theorem , if we let « be the Chebyshev partition 7,,={t;} , where n>N := 3/\/H,
then by z1—a<# and b—z,_1<H), the proof holds, because from sinm/2n <m/2n, we have

7T2

_ —oain2 [
i+l = 1—t,1= 2sin® (- ><ﬁ—fT/§H
Since @Nﬂn (x) ~t;—t;_q for z€ [t;_1,t;]. From lemmas , and the above discussion, we
get
IF () =s(2)]l,< == (p.a)’ SL(JT Bila 21 o ey 5

|1F () =s(@)[l,<c(p,b)"|| €3 (F, o]
Thus, (3.1)),(3.2) and(3.3)) are satisfied. O

Theorem 3.2. If F be a convex function in Ly[—1,1], for t€N, there is a number N (F,t) sat-
isfies for any n>N, we can find a continuous and differentiable convex piecewise polynomials S
of degree v+1 with Chebyshev partition knots T,,, satisfying , and . Let Y. (Z,,) de-
noted the space of all piecewise polynomial function (ppf) of degree v—1 (order t) with the knots
Zy = (Z))iry , a=120<Z1< -+ <Z,_1<Z,, :=b. Also, the scale of the partition Z,, is denoted by

Ln—1; b] HLp[Z'n*lvb} ’

7
O (Zm) = MaTo<j<m—1 ’ |f]:t|1| ,U)he?"er: [ZJ7 ZjJrl], (34)
J
where |J;| is the length of the interval J;.
Proof . For a large number n and let Sy be a convex in ) ., ﬂA (2) and also a piecewise poly-

nomial using Theorem - 1| for which estlmates. . hold. Let @ = Top—12n , b 1= 219, and let
Zn=(2;);_, be such that 2, :=a, Z, :=b and Z; := z,_;, 1<i<n—1 (note that Z,CT5,).
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Obviously, So€Ver2 (Z,), O(Z,) ~ 1, and by Lemma [2.5 implies that

HSO_gO iy Se @R wes(So.hy, Jy)y s where I := [;N[a, b] and J; := [, ;2] N [a, B],
(3.5)
and
S8 (@) =8 (@) and 81 (6) =S{", v=0,1. (3.6)
Let

) So(x), if ze[~1,1]\[a,b],
S(z) = {§0 (x), if z€]a,b].

Then Se 2522,271 NA®) so inequalities (3.2) and(3.3) are satisfied, if we put instead of 2n,n and
(3.1)) also satisfied. Since 19(:‘”)Nhj, for any xzeJ; , 1<j<n, for a:ef;-, 1<j<n, we get

n

IF = Sl ) I (2) =0 (@)1l ;) +|[So (2) 8o ()

(1)
<c(p) IF = Sollygs,y ¢ 1) wesa(F, hyid)

el 1) <) L 0, U))

O

Theorem 3.3. Let F be a convex function in L,[—1,1],then for t€N, there exist a constant c(p,r)
and N (F,t), such that for every n>N, there is a P,€ll,NA?) satisfying

9 ‘ )
17 @) Pl <ea) (22 ) w70, 22) aelorn 57)
p
The following strong estimates are valid:
v (x)

I @) =P (@)l 1122y < cp0)9 (@)wa(F, (3.8)

N Lpl-1,-14+n-2]U[l-n-2,1]
and

IF (@) =Pu(@)l 1, o1, rsn2o—n-2.) < @O0 @wn (FO 0% (@), ) oopnzg) - (39)
for ze -1, —1+n"?JU[1-n"21].

Proof . In the case t>2, let S be the piecewise polynomial satisfies Theorem Let us assume
that S has no knots at x; and x,_; (we shall treat S as a piecewise polynomial with knots at the
chebyshev partition T5,). Then

! (v)
£ @)= 8@Inon = () + D oy s T Wy, eF) 1)

and

F (=1 FO (-1
(1! )($+1)+---+—t(! )

L, (x) = S(2)|[,Ul,_1 = F (—1) + (z41) +a_(n;F)(z+1)",
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where ay(n,F) and a_(n,F) are constants depending on n and F- show that

n~?max {|as (n, F)|,|a_ (n, F)|} =0 as n—oo (3.10)

From Theorem (or Lemma 3.4), for all x€l;Uls,

£1 z)— F(x
lay (n, F)(1—2)]|, <c(p)! <(>1—x)r( My
c(p) F (1) FO (1) t
+ m f(l') — ]:(1) — T (ZE—l) . B N (:L'—l) p
<c(p) wy (}“(t), 1—33)p+W1(1_x)t /z (FO (1) —FW (1) )(f—x)t_ldt p

SC (p) wn (‘F(t)a 1_3:)177

and, in particular, n=2[|a (n, F)|,<c(p)wi (F,n"?) =0 as n—oco. Similarly for [la_(n, F)|.
For FE€L,, t>2, let i, >2 is the small integer 2<i<t, If it exists, such that F® (1) #0, and let

D, (e, F) = (2e) | FE(D)] it iy egists,
0 otherwise.
Similarly, let i_>2, be the smallest integer 2<i<t, if it exists, such that F® (—1) 0, and denote
D (0. F) = (2e) ™| FE(1)]if i,exi.sts,
0 otherwise
Hence, if n is sufficiently large, then
S"(2)>Dy (v, F)(1—2) 2, z€ (22, 1], (3.11)
and
S"(x)>D_ (¢, F)(z+1)"" | 2€[—1,2,_a). (3.12)

In the case t>2, let t€ N, t>2, and a convex FeL;, let T €d? be such that w, (]-"(t), t) ~T (1),
let T'(t) := t*T (t), and note that T€®**2. For a large number N'€N and any n>A, we suppose

that the piecewise polynomial S€ ) ., ,n of Theorem satisfying , and satisfies
Wepo (F, ) <Bwy (FO 1) ~T(1).
So then by Lemma [2.1] with k=t+2, we conclude that
beio(S,I')<ec.

There using (3.5)) and Lemma [2.6|
minS’ (2)>D (¢, F)|L|>>372D, (v, F)|L| >

xels

Similarly, (3.6)) yields
minS’ (2)>3"2D_ (¢, F)|[L,_1|" .

x€ly
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Then by Theorem[2.7]if k=t+2, d; := 372D, (v, F),d_ := 37?D_(v, F) and S= 2x—2 = 2v+2 ,
so that there exists a polynomial P€Il,,,NA®such that:

IS (z) =P(2)|,<c (p) 657 () 2, (2) T (2 (2)), w€[-1,1]. (3.13)
So for xeLUI, , z#—1,1, by Q,(z) ~n"2for these z, and t 27 (t) is non-increasing we have

IS () =P(2)]|,<c(p) (nd (), ()T (2 (x) )
nQy, (z) 2. 0 (x)

<elphnt " 2o () TR (314
<ep)* (a7, 1))
In turn, this implies for x€UI, , that
15 @) =PI, <e) () wa 79,22 oel-r1) (3,19

Now , (3.15]) together with (3.1)) yield

17 @) Pl e ) (1) wa (79, 2 aeln)

and ((3.14) together with (3.8]) yield

IF () =Pu(2)||,<c (p,r) 9% () wy (.7-"(‘), 19(95)) , v€[—1,1].

n

Now to prove ||F () =P ()|, <c(p,e)0* (2)wi (FO, 9 (z))
increasing we have, for xe LU, x#—1,1,

using that t~!w;(F® t) is non-

p7

IS (2) =P(@)]l,<c(p)(nd (2))* 0 (@)w (F, 2, ()
&2, (z)
02 (x)

p

<c(p)n*9* 3 (z) w (F9, 9% (z))

p

IS () =P(@)ll,<e (p) ¥ (2) wi (FV,9* (2)),

p

In case t=1, let us define a convex polynomial P,, the approximates the quadratic spline S from
Theorem (with t=1) so that

IS (z) =Pu(2) |, <c(p)ws(F, 2 (2) ),
and

P, (£1)=S(£1) and p, (£1)=S'(£1). (3.16)

To construct the above polynomial, we shall use away similar to that in [2] by replacing F by S
and n by 2n. [
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