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Abstract

Many papers used the algebraic polynomials to approximate functions in Lp space for 0 < p < 1. Few
are introduced for the convex algebraic polynomials best approximation. But no one proves direct
Theorems for constrained convex approximation using smooth interpolatory piecewise polynomials
for functions in Lp, 0 < p < 1. That is what we shall introduce here.
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1. Introduction and Notation

Define Lp (I)= {F : I→R : f ∈Lp} , where I is closed interval between -1,1 and Lr
p (I) = {F :

I→R :F r∈Lp} with ∥F∥Lp=(
∫ 1

−1
|F(x)|p)

1
p . For κ ∈ N and interval I,

∆κ
u (F , x, I) :=

{ ∑κ
i=0 (−1)i

(
κ
i

)
F
(
x+

(
κ
2
−i

)
u
)
, x∓κu

2
∈I

0, otherwise.

Then wκ (F , t, I) := sup0<u<t∥∆κ
u(F , .;I)∥p is a measure of the smoothness modulus of f on I.

wκ (F , t) := wκ (F , t, I) , Lr
p=Lr

p(I), for any interval I, we write wκ (F ,δ, I). We use ϑ (x)=
√
1+x2 and

Ωn (x)=ϑ (x)n−1+n−2, n∈N,Ω0≡1. Πn symbolizes the space of algebraic polynomial of degree≤n.
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A function F : [a, b]→R is said to be κ-monotone,κ≥1 on [a, b] if and only if for all choices of
κ+1 distinct points x0, x1, . . . ,xk∈ [a, b] the inequality F [x0, x1, . . . ,xk]> 0 holds, where

F [x0, x1, . . . ,xk] =
κ∑

j=0

F (xj)

w′ (xj)

Ij := Ij,n := [xj, xj−1] , hj := hj,n := |Ij,n|=xj−1−xj

Ii,j :=

max{i,j}⋃
κ=min{i,j}

Iκ=
[
xmax{i,j} , xmin{i,j} −1

}
, 1≤i, j≤n

(the shortest interval containing both Ii and Ij), xj := xj,i := cos
(
jπ
n

)
, 0≤j≤n, 1, for j< 0 and −1

forj> n (Chebyshev knots)

hi,j:= |Ii,j|=
max {i,j}∑

κ=min{i,j}

hκ=xmin{i,j} −1−xmax{i,j}

Tj := T (x) :=
|Ij|

( |x−xj|+ |Ij| )
, δn (x) := min {1,nϑ (x)}

Φκ := {T ∈c[0,∞]|T ↑,T (0)= 0 and t2
−κT (t2)≤t1

−κT (t1) for 0≤t1≤t2}.
Note: If F∈Lr

p, then Γ (t) :=trwκ(F (r), t)p is equivalent to a function from Φκ+r.
∑

κ :=
∑

κ,n

denoted the xj, 1≤j≤n−1 piecewise polynomials of degree not exceeding κ− 1 that are continuous.∑(1)
κ =

∑(1)
κ,n denote the set of all xj, 1 ≤ j ≤ n − 1 piecewise polynomials that have continu-

ous derivatives. Pj := Pj (s) := S|Ij, 1≤j≤n (S is a piecewise polynomial of pieces Pj (x) , x∈Ij,
1≤j≤n−1, and write S|Ij. bi,j(s,Γ) :=

∥Pi−Pj∥p
Γ(hj)

(
hj

hi,j

)κ

, where Γ∈Φκ,Γ ̸≡0 and S∈
∑

κ. bκ (s,Γ, B) :=

max1≤i,j≤n{bi,j (s,Γ) |Ii⊂B and Ij⊂B }, where an interval B⊆ [−1, 1] contains at least one interval
Iv

bκ (s,Γ) := b (s,Γ, I)= max
1≤i,j≤n

bi,j (s,Γ) ,

c (p) := is an absolute constant depending on p,and is different from one step to others and c (κ, p) :=
positive constant that are either absolute or may only depend on the parameters k and p.

LL
κ (F , x, [a, b]) = min

1≤m≤κ
∆m

(x−a)
1
m (b−a)m−1/m

, x∈[a, b]

LR
κ (F , x, [a, b]) = min

1≤m≤κ
∆m

(b−x)
1
m (b−a)m−1/m

, x∈[a, b]

If κ∈N , r ∈N0 and F∈Cr, then for all n≥ κ+r−1. There is a polynomial Pn∈
∏

n satisfies

|F (x)−Pn (x)| ≤c(κ,r)Ωr
n (x)wk (F r,Ωn (x)) , xϵ[−1, 1] (1.1)

and, moreover

|F (x)−Pn (x)| ≤c (r,κ)ϑ2r (x)wk

(
F , ϑ

2
k (x)n− 2(κ−1)

κ

)
, if 1−n−2≤|x|≤1 (1.2)

Recently, we were able to show [13] that (1.1) and (1.2) hold for monotone approximation (q = 1)
if r ∈ N, κ = 2 and n ≥ N (F , r). In fact, we follow similar ideas and apply some of the construction
in [13]. But there are some additional rather significant technical difficulties that we have to overcome
in this case (for example. Proofs in the cases for r = 1 and r ≥ 2 turn out to be completely different).
Also, one of the important tools that we are using is our recent result [14] on convex approximation
of F ∈ Cr ∩∆(2), by convex piecewise polynomials (Theorem 3.1).
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2. The Auxiliary Lemma

Lemma 2.1. Let Γ∈Φκ, κ∈N,F∈Lp(I) and S∈
∑

κ,n. If wκ (F , t)p ≤ c (p) Γ (t) and
∥F − S∥p≤c (p) Γ (Ωn (x)), then

bκ(s,Γ)≤c(κ, p).

Theorem 2.2. [6] For every r∈N there is a constant c=c(p,r) with the following property, for each
convex function F∈Lpr [a, b], there is a number H> 0, such that for every partition X={xj}nj=0 of [a, b]
satisfying x1−a≤H and b−xn−1≤H.

There is a convex piecewise polynomial s∈S (X , r+2) such that

|F (x)−s(x)| ≤c(x−a)rLL
2

(
F (r), x; [a, x1]

)
, x∈ [a, x1] ,

|F (x)−s (x)| ≤c(b−x)rLR
2 (F (r), x; [xn−1, b] , x∈ [xn−1, b] , and, for each j= 2, . . . ,n−1 and x∈ [xj−1, xj]

|F (x)−s(x)| ≤c(xj−xj−1)
r∆2

xj−xj−1

(
F (r)

)
, x∈ [xj−1, xj] +

c(x1−a)r∆2
x1−a

(
F (r)

)
, x∈[a, x1] +c(b−xn−1)

r∆2
b−xn−1

(F (r), b−xn−1; [xn−1, b] .

Lemma 2.3. [6] |F (x)−s(x)| ≤c(x−a)rLL
2

(
F (r), x; [a, x1]

)
, x∈ [a, x1] .

Lemma 2.4. [6] |F (x)−s(x)| ≤c(b−x)rLR
2

(
F (r), x; [xn−1, b]

)
, x∈ [xn−1, b] .

Lemma 2.5. [16] Let r∈N, Zm := (Zi)
m
i=0, a=:Z0<Z1< · · · <Zm−1<Zm := b be a partition of [a, b],

let s∈∆(2)∩Yr+2(Zm). Then there exists s̃ ∈∆(2)∩Yr+2(Zm)∩Lp1 [a, b] such that, for any 1≤j≤m−1,

∥s−s̃∥[Zj−1,Zj+1]
≤c (r,O (Zm))wr+2 (s,Zj+2−Zj−2; [Zj−2,Zj+2]) ,

where Zj := Z0, j< 0 and Zj := Zm, j>m. Moreover, s̃(v) (a)=s(v)(a) and s̃(v) (b)=s(v) (b) . v= 0, 1.

Lemma 2.6. [16] (hj±1< 3hj).

Theorem 2.7. [14]bκ(s,Γ)≤1 and, additionally

1. If d+> 0, then d+|I2|r−2≤minx∈I2 S
′
(x) .

2. If d+= 0, S(i) (1)= 0, for all 2≤i≤κ−2.

3. If d−> 0, then d−|In−1|r−2≤minx∈In−1 S′(x).

4. If d−= 0, then S(i) (−1)= 0, for all 2≤i≤κ−2.

then there exists a polynomial P ∈ ∆(1) ∩
∏

Cn satisfying, for all x ∈ [−1, 1],

∥S−P∥p≤c (p,κ,S) δSn (x) Γ (Ωn (x)) , if d+> 0 and d−> 0, (2.1)

∥S−P∥p≤c (p,κ,S) δmin{S,2κ−2}
n (x) Γ (Ωn (x)) , if min {d+,d−}= 0. (2.2)
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3. Main theorems

Theorem 3.1. Let F be a convex function in Lp[-1,1], then r∈N , there is a constant c (p, r) , there
exist N (F , r) and a convex piecewise polynomials S ∈

∑
r+2,n ∩∆(2) of degree r+1, and has Chebyshev

partition knots Tn:

∥F (x)−S(x)∥p≤c (p,r)

(
ϑ (x)

n

)r

w2

(
F (r),

ϑ (x)

n

)
p

, x∈[−1, 1] (3.1)

and

∥F (x)−S(x)∥Lp[−1.−1+n−2]∪[1−n−2,1]
≤ c (p,r)ϑ2r (x)w2

(
F (r),

ϑ

n

)
Lp[−1,−1+n−2]∪[1−n−2,1]

,

x∈
[
−1,−1+n−2

]
∪[1−n−2, 1] (3.2)

and

∥F (x)−S(x)∥Lp[−1,−1+n−2]∪[1−n−2,1]
≤ c(p,r)ϑ2r(x)w1(F (r), ϑ2 (x) )Lp[−1,−1+n−2]∪[1−n−2.1]

,

x∈[−1,−1+n−2]∪[1−n−2, 1] (3.3)

Proof . By Theorem 2.2, if we let x be the Chebyshev partition Tn= {tj} , where n≥N := 3/
√
H,

then by x1−a≤H and b−xn−1≤H), the proof holds, because from sinπ/2n ≤π/2n, we have

t1+1 = 1−tn−1= 2sin2
( π

2n

)
≤ π2

2n2
≤ 5

N
≤H.

Since ϑ(x)
n

∼Ωn (x)∼tj−tj−1,for x∈ [tj−1, tj]. From lemmas 2.3, 2.4 and the above discussion, we
get

∥F (x)−s(x)∥p≤ := (p,a)rLL
2 (F (r), x;[a, x1]Lp[a,x1]

,

∥F (x)−s(x)∥p≤c(p,b)r
∥∥LR

2 (F (r), x;[xn−1, b]
∥∥
Lp[xn−1,b]

.

Thus, (3.1),(3.2) and(3.3) are satisfied. □

Theorem 3.2. If F be a convex function in Lp[−1, 1], for r∈N , there is a number N (F , r) sat-
isfies for any n≥N , we can find a continuous and differentiable convex piecewise polynomials S
of degree r+1 with Chebyshev partition knots Tn, satisfying (3.1),(3.2) and (3.3). Let Yr (Zm) de-
noted the space of all piecewise polynomial function (ppf) of degree r−1 (order r) with the knots
Zm := (Zi)

m
i=0 , a=:Z0<Z1< · · · <Zn−1<Zm := b. Also, the scale of the partition Zm is denoted by

O (Zm) := max0≤j≤m−1
|Jj±1|
|Jj|

,whereJj= [Zj,Zj+1], (3.4)

where |Jj| is the length of the interval Jj.

Proof . For a large number n and let S0 be a convex in
∑

r+2,n ∩∆(2) and also a piecewise poly-
nomial using Theorem 3.1 for which estimates(3.1)-(3.3) hold. Let a := x2n−1,2n , b := x1,2n and let
Zn=(Zi)

n
i=0 be such that Z0 := a, Zn := b and Zi := xn−i, 1≤i≤n−1 (note that Zn⊂T2n).
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Obviously, S0∈Yr+2 (Zn) , O(Zn) ∼ 1, and by Lemma 2.5 implies that∥∥∥S0−S̃0

∥∥∥
Lp(Ĩj)

≤c (p,r)wr+2(S0, hj, Jj)L
p(Ĩj)

, where Ĩj := Ij∩[a, b] and Jj := [xj+2, xj−2]∩ [a, b] ,

(3.5)

and

S̃(v)
0 (a)=S̃(v)

0 (a) and S̃(v)
0 (b)=S̃(v)

0 , v= 0, 1. (3.6)

Let

S (x) :=

{
S0 (x) , if x∈ [−1, 1] \[a, b],
S̃0 (x) , if x∈ [a, b] .

Then S∈
∑(1)

r+2,2n ∩∆(2), so inequalities (3.2) and(3.3) are satisfied, if we put instead of 2n, n and

(3.1) also satisfied. Since ϑ(x)
n

∼hj, ,for any x∈Jj , 1≤j≤n, for x∈Ĩj, 1≤j≤n, we get

∥F − S∥Lp(Ĩj)
≤∥F (x)−S0 (x)∥Lp(Ĩj)

+
∥∥∥S0 (x)−S̃0 (x)

∥∥∥
p(Ĩj)

≤c (p) ∥F − S0∥p(Jj)+c (p)wr+2(F , hj;Jj)p(Jj)

≤c(p)hr
jw2

(
F (r), hj

)
p
≤c(p)(

ϑ (x)

n
)
r

w2(F (r),
ϑ (x)

n
)
p
.

□

Theorem 3.3. Let F be a convex function in Lp [−1, 1],then for r∈N , there exist a constant c(p,r)
and N (F , r), such that for every n≥N , there is a Pn∈Πn∩∆(2) satisfying

∥F (x)−Pn(x)∥p≤c (p,r)

(
ϑ (x)

n

)r

w2

(
F (r),

ϑ (x)

n

)
p

, x∈[−1, 1]. (3.7)

The following strong estimates are valid:

∥F (x)−Pn(x)∥Lp[−1,−1+n−2]∪[1−n−2,1] ≤ c(p,r)ϑ2r(x)w2(F (r),
ϑ (x)

n
)
Lp[−1,−1+n−2]∪[1−n−2,1]

, (3.8)

and

∥F (x)−Pn(x)∥Lp[−1,−1+n−2]∪[1−n−2,1] ≤ c(p,r)ϑ2r(x)w1

(
F (r), ϑ2 (x)

)
Lp[−1,−1+n−2]∪[1−n−2,1]

) , (3.9)

for x∈ [−1,−1+n−2]∪[1−n−2, 1].

Proof . In the case r≥2, let S be the piecewise polynomial satisfies Theorem 3.2 Let us assume
that S has no knots at x1 and xn−1 (we shall treat S as a piecewise polynomial with knots at the
chebyshev partition T2n). Then

L1 (x) := S(x)|I1∪I2 = F (1)+
F ′

(1)

1!
(x−1)+ · · ·+F (r) (1)

r!
(x−1)r+a+(n;F)(x−1)r+1

and

Ln (x) := S(x)|In∪In−1 = F (−1)+
F ′

(−1)

1!
(x+1)+ · · ·+F (r) (−1)

r!
(x+1)r+a−(n;F)(x+1)r+1,
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where a+(n,F) and a−(n,F) are constants depending on n and F . show that

n−2max {|a+ (n,F)| , |a− (n,F)|}→0 as n→∞ (3.10)

.
From Theorem 3.1 (or Lemma 3.4), for all x∈I1∪I2,

∥a+(n,F)(1−x)∥p ≤c(p)
∥L1 (x)−F (x)∥p

(1−x)r

+
c(p)

(1−x)r

∥∥∥∥F (x)−F (1)−F ′
(1)

1!
(x−1)− · · ·−F (r) (1)

r!
(x−1)r

∥∥∥∥
p

≤c (p)w1

(
F (r), 1−x

)
p
+

1

(r−1) !(1−x)r

∥∥∥∥∫ 1

x

(F (r) (t)−F (r) (1) )(t−x)r−1dt

∥∥∥∥
p

≤c (p)w1

(
F (r), 1−x

)
p
,

and, in particular, n−2∥a+(n,F)∥p≤c(p)w1(F (r), n−2)p→0 as n→∞. Similarly for ∥a−(n,F)∥p.
For F∈Lpr , r≥2, let i+≥2 is the small integer 2≤i≤r, If it exists, such that F (i) (1) ̸=0, and let

D+ (r,F) =

{
(2r!)−1

∣∣F (i+)(1)
∣∣ if i+ exists,

0 otherwise.

Similarly, let i−≥2, be the smallest integer 2≤i≤r, if it exists, such that F (i) (−1) ̸=0, and denote

D− (r,F) =

{
(2r!)−1

∣∣F (i−)(1)
∣∣ if i−exists,

0 otherwise

Hence, if n is sufficiently large, then

S′′
(x)≥D+(r,F)(1−x)r−2, x∈ (x2, 1] , (3.11)

and
S′′

(x)≥D−(r,F)(x+1)r−2 , x∈[−1,xn−2]. (3.12)

In the case r≥2, let r∈N, r≥2, and a convex F∈Lr
p, let T ∈Φ2 be such that w2

(
F (r), t

)
∼T (t) ,

let Γ (t) := trT (t) , and note that Γ∈Φr+2. For a large number N∈N and any n≥N , we suppose
that the piecewise polynomial S∈

∑
r+2 , n of Theorem 3.2 satisfying (3.11),(3.12) and satisfies

wr+2(F , t)≤t2w2(F (r), t) ∼Γ(t).

So then by Lemma 2.1 with κ=r+2, we conclude that

br+2(S,Γ)≤c.

There using (3.5) and Lemma 2.6

min
x∈I2

S′′
(x)≥D+(r,F)|I1|r−2≥3−r+2D+(r,F)|I2|r−2.

Similarly, (3.6) yields
min
x∈I2

S′′
(x)≥3−r+2D−(r,F)|In−1|r−2.
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Then by Theorem 2.7 if κ=r+2, d+ := 3−r+2D+ (r,F) , d− := 3−r+2D−(r,F) and S= 2κ−2 = 2r+2 ,
so that there exists a polynomial P∈Πcn∩∆(2)such that:

∥S (x)−P(x)∥p≤c (p) δ2r+2
n (x) Ωr

n (x) T (Ωn (x)) , x∈[−1, 1]. (3.13)

So for x∈I1∪In , x ̸=−1, 1, by Ωn(x) ∼n−2for these x, and t−2T (t) is non-increasing we have

∥S (x)−P(x)∥p≤c(p)(nϑ (x))2r+2Ωr
n(x)T (Ωn (x) )

≤c(p)n2ϑ2r+2(x)(
nΩn (x)

ϑ (x)
)
2

T (
ϑ (x)

n
) (3.14)

≤c(p)ϑ2r(x)w2(F (r),
ϑ (x)

n
)
p
.

In turn, this implies for x∈I1∪In , that

∥S (x)−P(x)∥p ≤c (p)

(
ϑ

n

)r

w2

(
F (r),

ϑ (x)

n

)
p

, x∈[−1, 1]. (3.15)

Now , (3.15) together with (3.1) yield

∥F (x)−Pn(x)∥p≤c (p,r)

(
ϑ (x)

n

)r

w2

(
F (r),

ϑ (x)

n

)
p

, x∈[−1, 1].

and (3.14) together with (3.8) yield

∥F (x)−Pn(x)∥p≤c (p,r)ϑ2r(x)w2

(
F (r),

ϑ (x)

n

)
p

, x∈[−1, 1].

Now to prove ∥F (x)−Pn(x)∥p≤c(p,r)ϑ2r(x)w1(F (r), ϑ2 (x) )p, using that t−1w1(F (r), t) is non-
increasing we have, for x∈I1∪In, x ̸=−1, 1,

∥S (x)−P(x)∥p≤c(p)(nϑ (x))2r+2Ωr
n(x)w1(F (r),Ωn (x) )p

≤c(p)n2ϑ2r+2(x)
Ωn (x)

ϑ2 (x)
w1(F (r), ϑ2 (x) )p

∥S (x)−P(x)∥p≤c (p)ϑ2r (x)w1

(
F (r), ϑ2 (x)

)
p
.

In case r=1, let us define a convex polynomial Pn the approximates the quadratic spline S from
Theorem 3.1 (with r= 1) so that

∥S (x)−Pn(x)∥p≤c(p)w3(F ,Ωn (x) ),

and

Pn (±1)=S(±1) and p
′

n (±1)=S′
(±1). (3.16)

.
To construct the above polynomial, we shall use away similar to that in [2] by replacing F by S

and n by 2n. □
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