
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,027 |
تعداد مشاهده مقاله | 67,082,778 |
تعداد دریافت فایل اصل مقاله | 7,656,173 |
Numerical simulation of a power-law inelastic fluid in axisymmetric contraction by using a Taylor Galerkin-pressure correction finite element method | ||
International Journal of Nonlinear Analysis and Applications | ||
دوره 12، Special Issue، اسفند 2021، صفحه 2211-2222 اصل مقاله (1.75 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2021.6113 | ||
نویسندگان | ||
Alaa A. Sharhanl* ؛ Alaa Al-Muslimawi | ||
Department of Mathematics, College of Science, University of Basrah, Basrah, Iraq | ||
تاریخ دریافت: 22 مهر 1400، تاریخ بازنگری: 10 آبان 1400، تاریخ پذیرش: 18 آذر 1400 | ||
چکیده | ||
In this investigation, shear-thinning and shear-thickening inelastic fluids through a contraction channel are presented based on a power-law inelastic model. In this regard, Navier–Stokes partial differential equations are used to describe the motion of fluids. These equations include a time-dependent continuity equation for the conservation of mass and time-dependent equations for the conservation of momentum. Numerically, a time-stepping Taylor Galerkin-pressure correction finite element method is used to treat the governing equations. A start-up of Poiseuille flow through axisymmetric 4:1 contraction channel for inelastic fluid are taken into consideration as instances to satisfy the method analysis. Here, the impacts of different parameters, such as Reynolds number (Re), the consistency parameter (k), and the power-law index (n), are examined. Mainly, the effect of these parameters on the convergence levels of solution components considering it the most important point of view. The findings demonstrate that the inelastic parameters have a significant influence on the rates of velocity and pressure temporal convergence, and this effect is observed significantly. Fundamentally, the rate of convergence for shear-thickening flow is found to be greater than the convergence for shear-thinning flow. In addition, the critical level of Reynolds number is also determined for shear-thinning and shear-thickening situations. In this context, we captured that the critical level of Re for a shear-thickening case is much higher than that found for the shear-thinning case. | ||
کلیدواژهها | ||
Taylor Galerkin-pressure correction finite element method؛ Inelastic fluid؛ Viscosity؛ Power-law model | ||
مراجع | ||
[1] M. Aboubacar, H. Matallah and M.F. Webster, Highly elastic solutions for Oldroyd-B and Phan-Thien/Tanner fluids with a finite volume/element method: Planar contraction flows, J. Non-Newtonian Fluid Mech. 103(1) (2002) 65–103. [2] A. Al-Muslimawi, Taylor Galerkin pressure correction (TGPC) finite element method for incompressible Newtonian cable-coating flows, J. Kufa Math. Comput. 5(2) (2018) 14–22. [3] A. Al-Muslimawi, H.R. Tamaddon-Jahromi and M.F. Webster, Numerical simulation of tube-tooling cable-coating with polymer melts, Korea-Aust. Rheol. J. 25(4) (2013) 197–216. [4] F. Belblidia, T. Haroon and M.F. Webster, The dynamics of compressible Herschel—Bulkley fluids in die-swell flows, Boukharouba, M. Elboujdaini and G. Pluvinage (eds) Damage and Fracture Mechanics, Springer, Dordrecht, (2009) 425–434. [5] C.-E. Br´ehier, Introduction to Numerical Methods for Ordinary Differential Equations, Pristina, Kosovo, Serbia, 2016. [6] P.M. Coelho and F.T. Pinho, Vortex shedding in cylinder flow of shear-thinning fluids, J. Non-Newtonian Fluid Mech. 110(2-3) (2003) 143–176. [7] P.M. Coelho and F.T. Pinho, Vortex shedding in cylinder flow of shear-thinning fluids III, J. Non–Newtonian Fluid Mech. 121(1) (2004) 55–68. [8] J. Crank and P. Nicolson, A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type, Math. Proc. Camb. Phil.Soc. 43(1) (1947) 50–67. [9] A.J. Davies, The Finite Element Method: An Introduction With Partial Differential Equations, OUP Oxford, 2011. [10] J. Donea, A Taylor-Galerkin method for convective transport problems, Int. J. Numer. Meth. Eng. 20(1) (1984) 101–119. [11] D.M. Hawken, H.R. Tamaddon-Jahromi, P. Townsend and M.F. Webster, A Taylor-Galerkin-based algorithm for viscous incompressible flow, Int. J. Numer. Meth. Fluids 10(3) (1990) 327–351.[12] D.M. Hawken, P. Townsend and M.F. Webster, Numerical simulation of viscous flows in channels with a step, Comput. Fluids 20(1) (1991) 59–75. [13] Y. Liu and G. Glass, Effects of mesh density on finite element analysis, SAE Tech. Paper 2013(1) (2013) 1375. [14] R. Loehner, K. Morgan, J. Peraire and O. Zienkiewicz, Finite element methods for high speed flows, 7th Comput. Phys. Conf. 1985, pp. 1531. [15] J.E. L´opez-Aguilar, M.F. Webster, A.H.A. Al-Muslimawi, H.R. Tamaddon-Jahromi, R. Williams, K. Hawkins, C. Askill, C.L. Ch’ng, G. Davies, P. Ebden and K. Lewis, A computational extensional rheology study of two biofluid systems, Rheol. Acta 54(4) (2014) 287–305. [16] G. Lukaszewicz and P. Kalita, Navier–Stokes Equations An Introduction with Applications, Springer International Publishing, 2018. [17] P. Sivakumar, R.P. Bharti and R.P. Chhabra, Effect of power-law index on critical parameters for power-law flow across an unconfined circular cylinder, Chem. Eng. Sci. 61(18) (2006) 6035–6046. [18] H.R. Tamaddon Jahromi, M.F. Webster and P.R. Williams, Excess pressure drop and drag calculations for strainhardening fluids with mild shear-thinning: Contraction and falling sphere problems, J. Non-Newtonian Fluid Mech. 166(16) (2011) 939–950. [19] P. Townsend and M.F. Webster, An algorithm for the three-dimensional transient simulation of non-Newtonian fluid flows, Proc. Int. Conf. Num. Meth. Eng.: Theory and Applications, NUMETA, Nijhoff, Dordrecht, 12 (1987) 123–133. [20] R.Y. Yasir, Al.H. Al-Muslimawi and B.K. Jassim, Numerical simulation of non-Newtonian inelastic flows in channel based on artificial compressibility method, J. Appl. Comput. Mech. 6(2) (2020) 271–283. | ||
آمار تعداد مشاهده مقاله: 44,341 تعداد دریافت فایل اصل مقاله: 426 |