
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,028 |
تعداد مشاهده مقاله | 67,082,888 |
تعداد دریافت فایل اصل مقاله | 7,656,359 |
Denumerably many positive radial solutions for the iterative system of Minkowski-Curvature equations | ||
International Journal of Nonlinear Analysis and Applications | ||
دوره 13، شماره 1، خرداد 2022، صفحه 3613-3632 اصل مقاله (488.26 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2021.23621.2567 | ||
نویسندگان | ||
Khuddush Mahammad* 1؛ Rajendra Prasad Kapula2؛ Bharathi Botta2، 3 | ||
1Department of Mathematics, Dr. Lankapalli Bullayya College, Resapuvanipalem, Visakhapatnam, 530013, India | ||
2Department of Applied Mathematics, College of Science and Technology, Andhra University, Visakhapatnam, 530003, India | ||
3Department of Mathematics, College of Engineering for Women, Gayatri Vidya Parishad, Madhurawada, Visakhapatnam, 530048, India | ||
تاریخ دریافت: 17 خرداد 1400، تاریخ بازنگری: 09 مرداد 1400، تاریخ پذیرش: 30 مرداد 1400 | ||
چکیده | ||
This paper deals with the existence of denumerably many positive radial solutions to the iterative system of Dirichlet problems $$ div(\frac{\nabla z_j}{\sqrt{1-|\nabla z_j|^2}})+g_j(z_{j+1})=0\ in\ \Omega,$$ $$z_j=0\ on\ \partial\Omega,$$ where $j\in\{1, 2,\cdot\cdot\cdot,n\},$ $z_1=z_{n+1},$ $\Omega$ is a unit ball in $\mathbb{R}^N$ involving the mean curvature operator in Minkowski space by applying Krasnoselskii's fixed point theorem, Avery-Henderson fixed point theorem and a new (Ren-Ge-Ren) fixed point theorem in cones. | ||
کلیدواژهها | ||
Positive radial solution؛ Minkowski-curvature equation؛ fixed point theorem؛ cone | ||
مراجع | ||
[1] R.I. Avery and J. Henderson, Two positive fixed points of nonlinear operators on ordered Banach spaces, Comm. Appl. Nonlinear Anal. 8 (2001) 27–36. [2] A. Azzollini, Ground state solution for a problem with mean curvature operator in Minkowski space, J. Funct. Anal. 266 (2014) 2086–2095. [3] R. Bartnik and L. Simon, Spacelike hypersurfaces with prescribed boundary values and mean curvature, Commun. Math. Phys. 87 (1982) 131–152. [4] C. Bereanu, P. Jebelean and P.J. Torres, Multiple positive radial solutions for a Dirichlet problem involving the mean curvature operator in Minkowski space, J. Funct. Anal. 265 (2013) 644–659. [5] C. Bereanu and J. Mawhin, Existence and multiplicity results for some nonlinear problems with singular ϕLaplacian, J. Differ. Equ. 243 (2007) 536–557. [6] A. Boscaggin, M. Garrione, Pairs of nodal solutions for a Minkowski-curvature boundary value problem in a ball, Commun. Contemp. Math. 21 1850006 (2019) 18 pages. [7] C. Corsato, F. Obersnel, P. Omari and S. Rivetti, Positive solutions of the Dirichlet problem for the prescribed mean curvature equation in Minkowski space, J. Math. Anal. Appl. 405 (2013) 227–239. [8] D. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, San Diego, 1988. [9] S. Hu and H. Wang, Convex solutions of boundary value problems arising from Monge-Ampere equations, Discret. Contin. Dyn. Syst. 16 (2006) 705–720. [10] M. Khuddush and K.R. Prasad, Positive solutions for an iterative system of nonlinear elliptic equations, Bull. Malays. Math. Sci. Soc. 45 (2022) 245–272. [11] M. Khuddush, K.R. Prasad and B. Bharathi, Local existence and blow-up of solutions for a system of viscoelastic wave equations of Kirchhoff type with delay and logarithmic nonlinearity, Int. J. Math. Model. Comp. 11(3) (2021) 1–11. [12] Z.T. Liang, L. Duan and D.D. Ren, Multiplicity of positive radial solutions of singular Minkowski-curvature equations, Arch. Math. 113 (2019) 415–422. [13] J. Mawhin, Radial solution of Neumann problem for periodic perturbations of the mean extrinsic curvature operator, Milan J. Math. 79 (2011) 95–112. [14] M. Pei and L. Wang, Multiplicity of positive radial solutions of a singular mean curvature equations in Minkowski space, Appl. Math. Lett. 60 (2016) 50–55. [15] M. Pei, L. Wang, Positive radial solutions of a mean curvature equation in Minkowski space with strong singularity, Proc. Am. Math. Soc. 145 (2017) 4423–4430. [16] M. Pei and L. Wang, Positive radial solutions of a mean curvature equation in Lorentz-Minkowski space with strong singularity, App. Anal. 99(9) (2020) 1631–1637. [17] K.R. Prasad, M. Khuddush and B. Bharathi, Denumerably many positive radial solutions for the iterative system of elliptic equations in an annulus, Palestine J. Math. 11(1) (2022) 549–559. [18] J.L. Ren, W.G. Ge and B.X. Ren, Existence of positive solutions for quasi-linear boundary value problems, Acta Math. Appl. Sinica, English Ser. 21(3) (2005) 353–358. | ||
آمار تعداد مشاهده مقاله: 16,006 تعداد دریافت فایل اصل مقاله: 410 |