
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,027 |
تعداد مشاهده مقاله | 67,082,783 |
تعداد دریافت فایل اصل مقاله | 7,656,203 |
Error grid analysis evaluation of noninvasive blood glucose monitoring system of diabetic Covid-19 patients | ||
International Journal of Nonlinear Analysis and Applications | ||
دوره 13، شماره 1، خرداد 2022، صفحه 3697-3706 اصل مقاله (550.94 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2022.6147 | ||
نویسندگان | ||
Lina Nasseer Bachache* ؛ Auns Qusai Al-Neami؛ Jamal A. Hasan | ||
Biomedical Engineering Department, College of Engineering, Al-Nahrain University, Baghdad, Iraq | ||
تاریخ دریافت: 16 آبان 1400، تاریخ بازنگری: 25 آذر 1400، تاریخ پذیرش: 14 دی 1400 | ||
چکیده | ||
Due to the life-threatening dangers of diabetic disease and the rapid spread of the Corona pandemic, the demand for continuous glucose monitoring systems increases, especially that complemented with telemedicine technologies. During and after the corona pandemic, the number of diabetes patients is anticipated to rise rapidly. This study aims to learn the interaction between diabetes and COVID-19 and the health complication, owing to control blood glucose levels to decrease these complications. Careful blood sugar control is essential because the poorer health results are strongly linked with greater blood sugar levels in COVID-19 infection patients. The non-invasive glucose detection system is vital to control diabetic COVID-19 patients' health cases. The non-invasive blood glucose monitoring system is based on acousto-optic Raman-Nath interaction using 2MHz ultrasound and 980nm IR laser. Clark's Error Chart and Parkes Error Grid are used for evaluating the non-invasive blood glucose monitoring system and show a promising evaluation result. | ||
کلیدواژهها | ||
Clark's Error Chart؛ Parkes Error Grid؛ Diabetic؛ COVID-19؛ Blood glucose detection؛ Noninvasive detection؛ Acousto-optic؛ NIR؛ Thin piezoelectric crystal | ||
مراجع | ||
[1] Y. Adu-Agyeiwaah, M.B. Grant and A.G. Obukhov, The potential role of osteopontin and furin in worsening disease outcomes in COVID-19 patients with pre-existing diabetes, Cells 9(11) (2020) 2528. [2] C. Akarsu, M. Karabulut, H. Aydin, N.A. Sahbaz, A.C. Dural, D. Yegul and G.T. Adas, Association between acute pancreatitis and COVID-19: could pancreatitis be the missing piece of the puzzle about increased mortality rates?, J. Invest. Surgery 35 (2020) 1–7. [3] L.N. Bachache, J.A. Hasan and A.Q. Al-Neami, Acousto-optic Design to Measure Glucose Level for Diabetic Patients Non-invasively, In J. Phys. Conf. Ser. 1818(1) (2021) 012147.[4] Z.T. Bloomgarden, Diabetes and COVID-19, J. Diabetes 12(4) (2020) 347–348. [5] M.M. Burlew, E.L. Madsen, J.A. Zagzebski, R.A. Banjavic and S.W. Sum, A new ultrasound tissue-equivalent material, Radiol. Phys. J. 134(2) (1980) 517–520. [6] E.N. Carlsen, Ultrasound physics for the physician a brief review, J. Clinic. Ultrasound 3 (1975) 69–75. [7] Y. Cheng, L. Yue, Z. Wang, J. Zhang and G. Xiang, Hyperglycemia associated with lymphopenia and disease severity of COVID-19 in type 2 diabetes mellitus, J. Diabetes . Compl. 35(2) (2021) 107809. [8] W.L. Clarke, The original Clarke error grid analysis (EGA), Diabetes Technol. Therap. 7(5) (2005) 776–779. [9] D.J. Cox, L.A. Gonder-Frederick, B.P. Kovatchev, D.M. Julian and W.L. Clarke, Understanding error grid analysis, Diabetes Care 20(6) )1997( 911. [10] G. Jin, X. Zhang, W. Fan, Y. Liu and P. He, Design of non-contact infrared thermometer based on the sensor of MLX, Open Autom. Control Syst. J. 7(1) (2015) 8–20. [11] S. Gl¨aser, S. Kr¨uger, M. Merkel, P. Bramlage and F.J. Herth, Chronic obstructive pulmonary disease and diabetes mellitus: a systematic review of the literature, Respiration 89(3) (2015) 253–264. [12] I. Kapoor, H. Prabhakar and C. Mahajan, Introduction: History of Coronavirus Disease Pandemic, Clinical Synopsis of COVID-19, Springer, Singapore, (2020) 1–4. [13] S.A. Lee, M.C. Jobe, A.A. Mathis, J.A. Gibbons, Incremental validity of coronaphobia: Coronavirus anxiety explains depression, J. Anxiety Disord 74 (2020) 102268. [14] J.A. McGrath, R.A.J. Eady and F.M. Pope, Anatomy and organization of human skin, Rook’s Textbook of Dermatology 1 (2016) 2–3. [15] Melexis inspired engineering, Datasheet Single and Dual Zone Infra Red Thermometer in TO-39, MLX90614 family datasheet, 2019. [16] E. Merzon, I. Green, M. Shpigelman, S. Vinker, I. Raz, A. Golan-Cohen and R. Eldor, Haemoglobin A1c is a predictor of COVID-19 severity in patients with diabetes, Diabetes/metabol. Res. Rev. 37(5) (2021) e3398. [17] S. Nazar Haddad and R. Istepanian, A feasibility study of mobile phone text messaging to support education and management of type 2 diabetes in Iraq, Diabetes Technol. Therap. 16(7) (2014) 454–459. [18] F.J. Pasquel and G.E. Umpierrez, Individualizing inpatient diabetes management during the Coronavirus disease 2019 pandemic, J. Diabetes Sci. Technol. 14(4) (2020) 705–707. [19] M.C. Petersen G.I. Shulman, Mechanisms of insulin action and insulin resistance, Physiol. Rev. 98(4) (2018) 2133–2223. [20] A. Pf¨utzner, D.C. Klonoff, S. Pardo and J.L. Parkes, Technical aspects of the Parkes error grid, J. Diabetes Sci. Technol. 7(5) (2013) 1275–1281. [21] B. Shirin, Diabetes mellitus and gestational diabetes mellitus, J. Paediatric Surg. Bangl. 5(1) (2015) 30–35. [22] A.K. Singh, R. Gupta, A. Ghosh and A. Misra, Diabetes in COVID-19: Prevalence, pathophysiology, prognosis and practical considerations, Diabetes Metab Syndr. 14(4) (2020) 303–310. [23] A.K. Singh, R. Gupta, A. Ghosh and A. Misra, Diabetes in COVID-19: Prevalence, pathophysiology, prognosis and practical considerations, Diabetes Metabol. Syndr. Clinical Res. Rev. 14(4) (2020) 303–310. [24] G. Wilcox, Insulin and insulin resistance, Clinical Bioch. Rev. 26(2) (2005) 19. | ||
آمار تعداد مشاهده مقاله: 16,189 تعداد دریافت فایل اصل مقاله: 856 |