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Abstract

In this paper, the intuitionistic fuzzy set and the triangular intuitionistic fuzzy number were displayed,
as well as the intuitionistic fuzzy semi-parametric logistic regression model when the parameters and
the dependent variable are fuzzy and the independent variables are crisp. Two methods were used
to estimate the model on fuzzy data representing Coronavirus data, which are the suggested method
and The Wang et al method, through the mean square error and the measure of goodness-of-fit, the
suggested estimation method was the best.

Keywords: intuitionistic fuzzy set, the triangular intuitionistic fuzzy number, fuzzy data, mean
square error, goodness-of-fit

1. Introduction

Fuzzy data is one of the forms of fuzzy logic. This logic originated in 1965 by Lotfi Zadeh
in the University of California through the increase in complexity in engineering systems increases
uncertainty. Fuzzy logic based on the theory of fuzzy sets is the best solution to complex systems; the
fuzzy set defined as the set of elements that have the membership function, which are real numbers
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within the belong to membership function [0, 1]. The variable X have membership function for any
element in a set A as follow[1]:

MA (X) : X → [0, 1] (1.1)

The fuzzy set used in linear regression is called fuzzy linear regression, researcher Tanaka was the
first studied the model of fuzzy linear regression in year 1980, which aims to model an inaccurate or
ambiguous phenomenon using fuzzy parameters; this is developed in year 1982 from Tanaka, uejima
and Asai [2].

Researchers Cheng & Lee study the nonparametric fuzzy regression model in year 1999 through
proposed model to nonparametric fuzzy regression consisting of an independent variable (explana-
tory) crisp and a fuzzy dependent variable, it was called the non-parametric fuzzy regression model
because of the lack of conditions for the parametric model from error distribution and others [3].

One of the regression models is Intuitionistic fuzzy semi-parametric logistic regression model
consists of two parts. first the parameterize part and the other the non-parameterize part which
representing smoothing function, this model has become more applied and interesting in recent years
on the fuzzy data set; and in this model the parameters and the dependent variable y are fuzziness
but the explanatory variables are crisp.

Sometimes the dependent variable cannot be defined in two cases only, response, non-response or
success, and failure, or more than two responses, especially in medical studies; like to measure the
severity of the disease or pain in patients, the terms (low, very low, medium, high, very high) are
also used.

In this case, the dependent variable represent the intuitive triangular fuzzy number, this leads the
Intuitionistic fuzzy semi-parametric logistic regression model will be used to deal with the conditions
of uncertainty.

Many researchers have studied fuzzy data with logistic regression model. [15] proposed an al-
gorithm to estimate the parameters of the logistic regression model of the fuzzy category, Where
described the effects of explanatory variables on response variables. [14] researchers proposed a new
hybrid approach based on fuzzy logic and logistic regression analysis.

[10] studied the comparison between the fuzzy logistic regression model and the ordinal logistic
regression. [4] studied the fuzzy logistic regression model through the effect of fuzzy inputs (ex-
planatory variables) and fuzzy outputs described by linguistic variables. Researcher (Ahmadini) [1]
proposed a new model for intuitive fuzzy logistic regression to deal with inaccurate parameters that
contain degrees of vagueness and hesitation at the same time.

2. Intuitionistic Fuzzy Set

Let X be a universal set, that fuzzy set Á in X is defined as a set of ordered pairs, as each pair
represents the element and the degree of membership of its according to the following equation [6]

Á = {(x, µÁ (x)) ; x ∈ X} . (2.1)

We can express intuitionistic fuzzy set A in X through a group arranged in three ranks, as the
three ranks are represented (the element, the belong degree of element to the intuitionistic fuzzy set,
the non-belong degree of element to intuitionistic fuzzy set) according to the following equation [12]:

A = {(x, µA (x) , νA (x)) ;x ∈ X} (2.2)

In addition, the belonging degree falls between zero and oneµA : X → [0, 1], the non-belonging
degree is νA : X → [0, 1].
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Definition 2.1. Let (́la > la > 0; ŕa > ra > 0), the triangular intuitionistic fuzzy number TIFN is

A = (a; la, ra; ĺa, ŕa) ; when the membership functionµA (xi), non-membership function νA (xi) to the
triangular intuitionistic fuzzy number TIFN as in the following formulas [5]:

µA (xi) =


xi−a+la

la
if a− la ≤ xi < a

1 if xi = a
a+ra−xi

ra
if a < xi ≤ a+ ra

0 Otherwise

νA (xi) =


1− xi−a+ĺa

ĺa
if a− ĺa ≤ xi < a

0 if xi = a

1− a+ŕa−xi

ŕa
if a < xi ≤ a+ ŕa

1 Otherwise

(2.3)

Figure 1: Represents membership function, non-membership function to TIFN [6]

Lemma 2.2. If there are two numbers, the triangular intuitionistic fuzzy number A = (a; la, ra; ĺa, ŕa)
and B = (b; lb, rb; ĺb, ŕb) have the following properties, then some arithmetic operations on the two
numbers are as follows [7]:

1. A
⊕

B =
(
a+ b; la + lb, ra + rb; ĺa + ĺb, ŕa + ŕb

)
2. A⊖B =

(
a− b; la + rb, ra + lb; ĺa + ŕb, ŕa + ĺb

)
3. A⊗B ≈

(
a.b; alb + bla, arb + bra; ´alb+b́la, a

´
rb + ´bra

)
4. A⊘B ≈

(
a/b; arb+bla

b2
, alb+bra

b2
; ´arb+ ´bla

b2
, álb+bŕa

b2

)
5. λ⊗ A =

(
λa;λla, λra; λĺa, λ́ra

)
for all λ > 0

λ⊗ A =
(
λa;−λla,−λra; −λĺa, ´−λra

)
for all λ < 0
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3. Intuitionistic Fuzzy Semi Parametric Logistic Regression Model

The semi-parametric logistic regression model consists of the effect of non-linear variables and
on the binary- response dependent variable y, when the dependent variable y and the parameter
(β0, β1 . . . . . . βk) are triangular intuitionistic fuzzy number, explanatory variables (X1, X2, . . . , XK)
and the smooth function variable g (ti) are crisp variables, the response function to intuitionistic
fuzzy semi parametric logistic regression model is [8].

pi = pr

(
yi =

1
=, t

)
=

eβ0+β1Xi1+...+βkXk+g(ti)

1 + eβ0+β1Xi1+...+βkXk+g(ti)
(3.1)

Berkson find a logarithmic relationship to convert the response function pi into a linear function
as follow [4]:

Vi = logit (pi) = ln
pi

1− pi
(3.2)

It will become, the intuitionistic fuzzy semi parametric logistic regression model IFSPLRM as
follows [7]:

Vi = ⊕k
j=1 (⊗xij)⊕ g (ti)⊕ ϵi, (3.3)

where i = 1, 2, . . . , n. The observation, j = 1, 2, . . . . . . k the number of explanatory variables xij. A
vector of unknown parameters which representing the triangular intuitionistic fuzzy parametersβj =

(bj; lbj , rbj ; ĺbj , ŕbj), that is estimated by using ordinary least squares method [11] g (ti) smooth func-

tion when estimate it represents ĝ (ti) = ((ti) ; lti , rti ; ĺti , ŕti). ϵi Error term.

When we estimate g (ti), we use Nadaraya Watson estimator it can be expressed as follows [9]:

ĝ (t) =
n∑

i=1

[
kh (t− Ti)∑n
j=1 kh (t− Tj)

]
Vi =

n∑
i=1

W (tj)Vi (3.4)

where W (tj) are the Weights to Nadaraya Watson estimator and the sum of a series weights is equal
to one,∑n

i=1 whi (tj) = 1, k(.) Kernel function and we use Gaussian kernel function, h smoothing parameter
(bind width) and we use silverman’s rule of thumb bind width, refined plug bind width [9]. The
fuzzy logit function can be found to the fuzzy output (dependent variable) which represent the tri-
angular intuitionistic fuzzynumber pi = (pi1; lpi , rpi ;

´lpii , ´rpii) depending on point 2, 4 from arithmetic
operations of intuitionistic as follow [7]:

Vi = ln
pi

1− pi
=
(
vi; lvi , rvi ; ĺvi , ŕvi

)
(3.5)
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when

vi = ln

(
pi

1− pi

)
lvi = ln

pi (1 + lpi) + (1− pi) lpi
(1− pi)

2 = ln
pi + lpi
(1− pi)

2

rvi = ln
pi (1 + rpi) + (1− pi) rpi

(1− pi)
2 = ln

pii + rpi
(1− pi)

2

ĺvi = ln
pi

(
1 + ĺpi

)
+ (1− pi) ĺpi

(1− pi)
2 = ln

pii + ĺpi
(1− pi)

2

ŕvi = ln
pi (1 + ŕpi) + (1− pii) ŕpi

(1− pi)
2 = ln

pi + ŕpi
(1− pi)

2 .

This leads the logit function to the Intuitionistic fuzzy semi-parametric logistic regression model
as follows:

Vi = ln
pi

1− pi
= (ln

(
pi

1− pi

)
; ln

pi + lpi
(1− pi)

2 , ln
pi + rpi
(1− pi)

2 ; ln
pi + ĺpi
(1− pi)

2 , ln
pi + ŕpi
(1− pii)

2 . (3.6)

We can estimate the Intuitionistic fuzzy semi-parametric logistic regression model through two
methods.

4. The suggest method

In this method, the fuzzy semi-parametric logistic regression model is estimated in two stages, the
first stage is to estimate the parameter part and the second stage is to estimate the non-parametric
portion through the smoothing function according to the following formula:

ĝ (t) =
n∑

i=1

wi (tj)⊗ Vi (4.1)

wi (tj) matrix of estimator weights to Kernel smoothing, thus the Intuitionistic fuzzy logistic regres-
sion model estimator is.

V̂i =
(
⊕p

j=1 ⊗ xij

)
+

n∑
i=1

wi (tj)⊗ Vi (4.2)

When the dependent variable represent the fuzzy intuitionistic triangular number

( Vi =
(
vi; lvi , rvi ; ĺvi , ŕvi

)
,
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the estimated outputs as follows:

v̂i =
(
⊕p

j=1 bj ⊗ xij

)
+ (

n∑
i=1

wi (tj)⊗ vi)

lv̂i = (⊕p
j=1 lbj ⊗ xij) + (

n∑
i=1

wi (tj)⊗ lvi)

rv̂i = (⊕p
j=1 rbj ⊗ xij) + (

n∑
i=1

wi (tj)⊗ rvi)

ĺv̂i = (⊕p
j=1 ĺbj ⊗ xij) + (

n∑
i=1

wi (tj)⊗ ĺvi)

ŕv̂i = (⊕p
j=1 ŕbj ⊗ xij) + (

n∑
i=1

wi (tj)⊗ ŕvi).

(4.3)

By using matrices, we can write the estimated outputs as follows:

V̂ =
(
Xβ̂ +WV ;XL+WLV , XR +WRV ;XRĹ+ WĹV , XŔ + WŔV

)
(4.4)

where

X =


x11 x12 .
x21 x22 .
. . .

. . x1p

. . x2p

. . .
. . .
. . .

xn1 xn2 .

. . .

. . .

. . xnp

 W =


w11 w12 .
w21 w22 .
. . .

. . w1n

. . w2n

. . .
. . .
. . .

wn1 wn2 .

. . .

. . .

. . wnn



β̃β =


b1
b2
.
.
.
bj

 , L =


lb1
lb2
.
.
.
lbn

 , R =


rP1

rP2

.

.
.
rPn

 , Ĺ =



´lP1

´lP2

.

.
.
´lPn

 , Ŕ =


´rP1

´rP2

.

.
.
´rPn



V =


v1
v2
.
.
.
vn

 , LV =


lv1
lv2
.
.
.
lvn

 , RV =


rv1
rv2
.
.
.
rvn

 , ĹV =



´lv1
´lv2
.
.
.
´lvn

 , ŔV =


ŕv1
ŕv2
.
.
.
´rvn


5. The Wang et al method

Wang et al 2007 presented a method to estimate The Intuitionistic fuzzy logistic regression model,
in this method the nonparametric portion can be estimated through the smoothing function according
to the following formula [13, 7]:

ĝ (t) =
n∑

i=1

wi (tj)⊗
(
Vi −⊕k

j=1(⊗xij)
)

(5.1)
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Depending on the nonparametric portion of equation (4.4), the Intuitionistic fuzzy logistic regression
model estimator will be as follows:

V̂i =

(
n∑

i=1

wi(tj)⊗ Vi

)
⊕
(
⊕k

j=1 ⊗ xij
∗) (5.2)

When xij
∗ = xij −

∑n
i=1wi (tj)xij. Thus, the estimated fuzzy output (dependent variable) can found

as follow:

v̂i = (
n∑

i=1

wi (tj)⊗ vi)⊕ (⊕k
j=1 bj ⊗ xij

∗)

lv̂i = (
n∑

i=1

wi (tj)⊗ lvi)⊕ (⊕k
j=1 lbj ⊗ sjixij

∗)⊖ (⊕k
j=1 rbj ⊗ (1− sji)xij

∗)

rv̂i = (
n∑

i=1

wi (tj)⊗ rvi)⊕ (⊕k
j=1 rbj ⊗ sjixij

∗))⊖ (⊕k
j=1 lbj ⊗ (1− sji)xij

∗)

ĺv̂i = (
n∑

i=1

wi (tj)⊗ ĺvi)⊕ (⊕k
j=1 ĺbj ⊗ sjixij

∗)⊖ (⊕k
j=1 ŕbj ⊗ (1− sji)xij

∗)

ŕv̂i = (
n∑

i=1

wi (tj)⊗ ŕvi)⊕ (⊕k
j=1 ŕbj ⊗ sjixij

∗)⊖ (⊕k
j=1 ĺbj ⊗ (1− sji)xij

∗)

(5.3)

where sji =

{
1 xij

∗ ≥ 1

0 xij
∗ < 0

.

The estimated fuzzy output (dependent variable) which represents the fuzzy intuitionistic trian-
gular number as follow:

V̂ =
(
WV +X∗β̂;WLV +X∗

sL−X∗
1−sR,WRV +X∗

sR−X∗
1−sL;WĹV +X∗

s Ĺ−X∗
1−sŔ,WŔV

+X∗
s Ŕ−X∗

1−sĹ
)

(5.4)

where

X∗ =


x∗
11 x∗

12 .
x∗
21 x∗

22 .
. . .

. . x∗
1k

. . x∗
2k

. . .
. . .
. . .

x∗
n1 x∗

n2 .

. . .

. . .

. . x∗
nk

 , X∗
s =


s11x

∗
11 s12x

∗
12 .

s21x
∗
21 s22x

∗
22 .

. . .

. . s1kx
∗
1k

. . s2kx
∗
2k

. . .
. . .
. . .

sn1x
∗
n1 sn2x

∗
n2 .

. . .

. . .

. . snkx
∗
nk



X∗
(1−s) =


(1− s11)x

∗
11 (1− s12)x

∗
12 .

(1− s21)x
∗
21 s22x

∗
22 .

. . .

. . (1− s1k)x
∗
1k

. . s2kx
∗
2k

. . .
. . .
. . .

(1− sn1)x
∗
n1 (1− sn2)x

∗
n2 .

. . .

. . .

. . (1− snk)x
∗
nk


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6. Mean Square Error And Goodness of Fit

The comparison between the estimation methods of the intuitionistic fuzzy semi-parametric lo-
gistic regression model is made through mean squares error MSE and the measure goodness of fit

S
(
V̂ , V

)
based on Euclidean distance according to the following formulas [16]:

S
(
V̂ , V

)
=

1

n

n∑
i=1

s∗
(
V̂,V

)
=

1

n

n∑
i=1

1

1 + d2
(
V̂,V

) (6.1)

MSE (V ) =
1

n

n∑
i=1

d2
(
V̂,V

)
(6.2)

When d2
(
V̂,V

)
represents the Euclidean distance between V and V̂ , the relationship between

the mean square error and the measure goodness of fit is inverse [16].

7. Application

Covid-19 one from the set of viruses that cause infections in the respiratory system of humans,
which include colds and are usually fatal, such as severe acute respiratory syndrome and the Middle
East respiratory syndrome. Coronaviruses belong to the straight coronavirus family within the
Coronavirus family within the order of nest viruses.

We application the Intuitionistic fuzzy semi-parametric logistic regression model on the data
Covid-19, where The fuzzy dependent variable represented the incidence ratio of Covid-19 virus,
as the percentage of infection was divided into five cases by the doctors, which are (very low, low,
medium, high, very high) as follow :

Table 1: Triangular Intuitionistic Fuzzy Number

Cases Triangular Intuitionistic Fuzzy Number

Very low (0.00,0.05,0.173,0.2,0.25)

Low (0.2,0.25,0.313,0.4,0.45)

Medium (0.4,0.45,0.497,0.55,0.60)

High (0.55,0.60,0.667,0.75,0.80)

Very high (0.75,0.80,0.824,0.95,1)

A sample was taken from 30 people infected with the Coronavirus, and the most important
factors identified by the infected people, which represent the independent variables, are (X1 sex of
the patient where male X1=2 and female X1=1 , X2 patient’s age, X3 white blood cells, X4 Urea,
and X5 D-dimer represent non parametric variable), as in the following table:

After estimating the Intuitionistic fuzzy semi-parametric logistic regression model on the real
data, in the case of the dependent variable, it represents a triangular intuitionistic fuzzy number
through two methods of estimation the suggested method and the second method is the Wang et al
method; the mean squares error and the measure goodness of fit for the model estimation methods
were according to the following table 3:
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Table 2: the data set of covid-19

P̄i X1 X2 X3 X4 X5

LOW 1.0 70.0 5.6 137.0 784.0

Medium 2.0 49.0 7.9 45.0 7274.0

High 1.0 55.0 20.5 47.0 2230.0

Very High 2.0 92.0 9.2 164.0 3864.0

Very High 2.0 75.0 12.8 46.0 1744.0

LOW 2.0 76.0 13.8 155.0 2197.0

Low 2.0 85.0 7.4 55.0 1218.0

Very LOW 2.0 33.0 6.2 45.0 450.0

High 2.0 57.0 22.0 43.0 13076.0

Medium 2.0 70.0 11.7 80.0 8000.0

High 2.0 67.0 9.2 45.0 1100.0

High 1.0 75.0 12.8 46.0 1744.0

Low 1.0 55.0 7.2 39.0 260.0

Low 1.0 65.0 9.3 45.0 500.0

Medium 1.0 60.0 9.6 18.0 482.0

Very LOW 1.0 70.0 7.4 51.0 1900.0

High 1.0 63.0 7.6 69.0 10700.0

High 2.0 65.0 8.3 58.0 403.0

Very LOW 2.0 27.0 8.6 23.0 554.0

Low 1.0 50.0 11.1 139.0 502.0

Low 1.0 43.0 5.2 45.0 2203.0

Medium 1.0 45.0 10.4 65.0 2000.0

Very LOW 1.0 70.0 10.9 103.0 945.0

Medium 1.0 33.0 8.9 40.0 430.0

Low 1.0 38.0 17.5 72.0 445.0

High 1.0 56.0 11.9 60.0 1685.0

Very LOW 1.0 57.0 11.0 70.0 2805.0

High 1.0 20.0 15.7 44.0 454.0

Very High 1.0 60.0 8.3 72.0 1084.0

Very LOW 1.0 30.0 5.0 15.0 1316.0

Table 3: Mean Square Error & Goodness of Fit

Estimation Methods
Nadaraya Watson MSE(V ) S(V̂ , V )

Kernel Function Bind Width

The Suggest Method Gaussian
Silverman’s Rule h=681.524 0.9406777 0.5734781

Refined Plug h=44.616 0.9257968 0.5766637

The Wang Et Al Method Gaussian
Silverman’s Rule h=681.524 3.017323 0.2677759

Refined Plug h=44.616 3.012533 0.2698827

8. Conclusion

By applying the Intuitionistic fuzzy semi-parametric logistic regression model to the Coronavirus
data, the suggested method for estimating the model was better than the Wang et al method. In
addition, the smoothing parameter that was calculated through refined plug bind width a better
method than Silverman’s rule bandwidth, and from Table No. 2, the value of the independent
variable D-dimer had a significant impact on infection with the Coronavirus.
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