
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,027 |
تعداد مشاهده مقاله | 67,082,786 |
تعداد دریافت فایل اصل مقاله | 7,656,233 |
The smallest size of the arc of degree three in a projective plane of order sixteen | ||
International Journal of Nonlinear Analysis and Applications | ||
دوره 13، شماره 1، خرداد 2022، صفحه 3749-3764 اصل مقاله (438.13 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2022.6151 | ||
نویسندگان | ||
Najm Abdulzahra Makhrib Al-Seraji* ؛ Dunia Alawi Jarwan | ||
Department of Mathematics, College of Science, Mustansiriyah University, Baghdad, Iraq | ||
تاریخ دریافت: 20 خرداد 1400، تاریخ بازنگری: 02 مهر 1400، تاریخ پذیرش: 19 مهر 1400 | ||
چکیده | ||
An $(n;3)$-arc in projective plane $PG(2,q)$ of size n and degree three is a set of n points such that no four of them collinear but some three of them are collinear.An $(n;r)$-arc is said to be complete if it is not contained in $(n+1;r)$-arc. The aim of this paper is to construct the projectively distinct$(n;3)$-arcs in $PG(2,16)$, determined the smallest complete arc in $PG(2,16)$ then the stabilizer group of these arcs are established and we have identified the group with which it's isomorphic. | ||
کلیدواژهها | ||
Projective Plane؛ Complete Arc | ||
مراجع | ||
[1] S. Alabdulla and J.W.P. Hirschfeld, A new bound for the smallest complete (k, n)-arc in PG(2, q), Des. Codes Crypt. 87(2-3) (2019) 679–683. [2] N.A.M. Al-Seraji, The group action on the finite projective planes of orders 53,61,64, J. Discrete Math. Sci. Crypt. 23(8) (2020) 1573–1582. [3] N.A.M. Al-Seraji, A. Bahkeet and Z. Sadiq, Study of Orbits on the finite projective plane, J. Interdiscip. Math. 23(6) (2020) 1187–1195. [4] S. Ball and J.W.P. Hirschfeld, Bounds on (n; r)-arcs and Their Application to Linear Codes, Department of Mathematics, University of Sussex, Brighton BNI 9RF.UK., 2005. [5] A. Barlotti, Sui (K; n)-archi di un piao linear finite, Boll. Un. Mat. Ttal. 11(3) (1956) 553–556. [6] K. Coolsaet, The complete arcs of PG(2,31), J. Combin. Des. 23 (2015) 522–533. [7] M. Dillon, Geometry Through History, Springer, 2018. [8] Gap Group, GAP, Reference manual URL, 2021, http//www.gap-system.org. [9] Z.S. Hamed and J.W. Hirschfeld, A Complete (48,4) in the Projective Plane Over the Field of Order Seventeen, Department of Mathematics, School of Mathematical and Physical Science, Brighton, UK., 2018. [10] J.W.P. Hirschfeld, Finite Projective Space Of Three Dimensions, Oxford University Press, Oxford, 1985. [11] J.W.P. Hirschfeld, Projective Geometries Over Finite Feilds, 2nd Edition, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1998. [12] J.W.P. Hirschfeld and J.A. Thas, General Galois Gemetries, Oxford University Press, Oxford, 1991. [13] J.W.P. Hirschfeld and J.A.Thas, Hermitian varieties, General Galois Geometries. Springer, London, 2016. [14] J.W.P. Hirschfield and J.F. Voloch, Group-arcs of prime order on cubic curves, Finite Geom. Comb. 191 (2015) 177–185. [16] S. Marcugini, A. Milani and F. Pambianco, Classification of the (n; 3)-arcs in PG(2,7), J. Geom. 80(2004) 197–184. [17] E.V.D. Pichanick and J.W.P. Hirschfeld, Bounded for arcs of arbitrary degree in finite Desarguesian planes, J. Comb. Des. 24(4) (2016) 184–196. | ||
آمار تعداد مشاهده مقاله: 15,698 تعداد دریافت فایل اصل مقاله: 272 |