
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,026 |
تعداد مشاهده مقاله | 67,082,757 |
تعداد دریافت فایل اصل مقاله | 7,656,169 |
The largest size of the arc of degree three in a projective plane of order sixteen | ||
International Journal of Nonlinear Analysis and Applications | ||
دوره 13، شماره 1، خرداد 2022، صفحه 3897-3916 اصل مقاله (445.54 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2022.6190 | ||
نویسندگان | ||
Najm Abdulzahra Makhrib Al-Seraji* ؛ Dunia Alawi Jarwan | ||
Department of Mathematics, College of Science, Mustansiriyah University, Baghdad, Iraq | ||
تاریخ دریافت: 23 تیر 1400، تاریخ بازنگری: 11 شهریور 1400، تاریخ پذیرش: 25 مهر 1400 | ||
چکیده | ||
An $(n;3)$-arc $ K $ in projective plane $ PG(2,q) $ of size n and degree three is a set of $ n $ points satisfies that every line meets it in less than or equal three points, also it is complete if it is not contained in $ (n+1;3) $-arc. The goals of this paper are to construct the projectively inequivalent $(n;3) $-arcs in $ PG(2,16) $, determined the largest complete arc in $ PG(2,16) $, the stabilizer group of these arcs and we have identified the group with which its isomorph. | ||
کلیدواژهها | ||
Projective Plane؛ Complete Arc | ||
مراجع | ||
[1] N.A.M. Al-Seraji, The group action on the finite projective planes of orders 53,61,64, J. Discrete Math. Sci. Crypt. 23(8) (2020) 1573–1582. [2] N.A.M. Al-Seraji, A. Bahkeet and Z. Sadiq, Study of Orbits on the finite projective plane, J. Interdiscip. Math. 23(6) (2020) 1187–1195. [3] S. Ball and J.W.P. Hirschfeld, Bounds on (n; r)-Arcs and Their Application to Linear Codes, Department of Math., University of Sussex, Brighton BNI 9RF. UK., 2005. [4] D. Barlotti, S. Marvugini and F. Pambianco, The non-existence of some NMDS codes and the extremal size of complete(r;3)-arcs in PG (2, 16), Des. Codes Cryptogr. 72 (2014) 129–134. [5] G.R. Cook, Arcs in a Finite Projective Plane, PhD, Thesis, University of Sussex, United Kingdom, 2011. [6] Gap Group, GAP. 2021, Reference manual URL, http://www.gap-system.org. [7] J.W.P. Hircshfield, Finite Projective Space of Three Dimensions, Oxford University Press, Oxford, 1985. [8] J.W.P. Hirschfeld, Projective Geometries Over Finite Feilds, 2nd Edition, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1998. [9] J.W.P. Hirschfeld and J.A. Thas, General Galois Gemetries, Oxford University Press, Oxford, 1991. [10] J.W.P. Hirschfeld and J.A. Thas, Hermitian varieties, Gen.l Galois Geom. (2016) 57–97. [11] J.W.P. Hirschfield and J.F. Voloch, Group-arcs of prime order on cubic curves, Finite Geom. Combin. 191(2015) 177–185. [12] S. Marcugini, A. Milani and F. Pambianco, Maximal (n;3)-arcs in PG(2,13), Discrete Math. 228 (1999) 421–426. [13] S. Marcugini, A. Milani and F. Pambianco, Classification of the (n; 3)-arcs in PG(2,13), J. Discrete Math. 294 (2005) 139–145. [14] E.V.D. Pichanick and J.W.P. Hirschfeld, Bounded for arcs of arbitrary degree in finite Desarguesian Planes, J. Combin. Designs 24(4) (2016) 184–196. [15] H. Sticker, Classification of Arcs in small Desarguesian Projective Panes, University Gent, 2012. | ||
آمار تعداد مشاهده مقاله: 15,580 تعداد دریافت فایل اصل مقاله: 276 |