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Abstract

In this paper, we obtain some applications of fourth-order differential subordination and superordi-
nation results involving multiplier transformation H,(7,), for p-valent functions. Also, we obtain
several sandwich-type results.

Keywords: Hadamard Product, The Multiplier Transformations, Differential Subordination,
Differential Superordination, Fourth-Order.
2010 MSC: 30C45

1. Introduction

Denote by C' be a complex plane and J = J(U) be the class of functions which are analytic in
the open unit disk U = {z : z € C and |z| < 1}. For a positive integer number n and a € C, we
suppose that J[a,n] be the subclass of J consisting of functions of the form

f(2)=a+a2"+apn 12"+ ..., (z€U),

and J; = [1,1]. Let f and F' be members of J. The function f is said to be subordinate to F,
written f < F, or f(z) < F(z), if there exists a Schwarz function w(z), analytic in U with w(0) = 0
and |w(z)| < 1 such that f(z) = F(w(z)), (2 € U).
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Furthermore, if the function F' is univalent in U, then we have the following equivalence (see
[16], 17]):

F(2) = F(2) (2 € U) ¢ £(0) = F(0) and f(U) C F(U).

Assume that B, denote the class of functions of the form:

fR) =274 ana", (1.1)
n=0

let f € B, given by (1.1) and g € B,, defined by

g(z) =2+ anz”,
n=0

the Hadamard product (or convolution) of f(z) and g(z) is defined as follows:

(Fr9)(z) =27+ anbaz" = (9% )(2).
n=0
For any 7 € Ny = N U{0}, Cho and Yoon introduced the multiplier transformations H,(7, ), of
functions f € By, by: (see [15])

H,(t,)f(2) =277+ Z (W)T%z", (>0, zeU,).
n=0

Obviously, we have

Hy (v, ) (Hy(7,9) f(2)) = Hp(v +7,9) f(2),

for all nonnegative integers v and 7. The operators H;(7,v) and H;(7, 1) are the multiplier trans-
formation introduced and studied by Sarangi and Uralegaddi [18], and Uralegaddi and Somanatha
[19], 20], respectively. Now, we define the multiplier transformation H,(7,) of functions f, g € B,,
by

n+p+Y

> )Tanbnz", (v >0, z€U). (1.2)

B 0 o)) ==+ 3
n=2
It is easily verified from ([1.2)), that

2 (Hy(1,9)(f + 9)(2))" = b (Hp(m + 1,9)(f * 9)(2) — (¥ + p) Hy(7, ) (f * 9)(2). (1.3)

In recent years, there are many authors presented and dealing with the theory of second-order
differential subordination and superordination for example ([1} 2}, B} [5, [7, [0, [TT], 12} T3], 14, 16]). Also,
many authors discussed the theory of the third-order differential subordination and superordination
for example [4, [§]. In 2011, Antonino and Miller [4] presented basic concepts and extended the
theory of the second-order differential subordination in the open unit disk introduced by Miller and
Mocanu [16] to the third case. Atshan et al. [9] 6] extended the third-order case to fourth-order
differential subordination and determined properties of functions g that satisfy the following fourth-
order differential subordination:
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#(g9(2),29'(2), 2°9"(2), 2°9"(2),2%9""(2); 2) < h(2),
where h be analytic univalent function in U, ¢ is analytic function and ¢ : C° x U — C. Now, we

extended the third-order case to fourth-order differential superordination and determined properties
of the function g that satisfy the following fourth-order differential superordination

h(z) = ¢(g(2), 29'(2), 2°9"(2), 2°9"(2),2"g""(2); 2),

where h be analytic univalent function in U, g is analytic function ¢ : C° x U — C. To prove
our main result, we need the basic concepts in the theory of fourth-order.

Definition 1.1. [/ Let Q be the set of all analytic and univalent functions q on the set U\E(q),
where E(q) = {¢( € 0U : q(z) = oo}, such that, |¢'(z)| = p > 0 for ¢ € U\E(q). Further, let the
subclass of Q for which q(0) = a, be denoted by Q(a) with Q(0) = Qo and Q(1) = @1, Q1 = {q €
Q:q(0) = 1}.

Definition 1.2. [9,[6] Let ¢ : C° x U — C and suppose h(z) be univalent function in U. If g(z) is
analytic function in U and satisfies the following fourth-order differential subordination:

0(9(2),29'(2), 29" (2), 29" (2),2%g"" (2); 2) < h(2), (1.4)

then g(z) is called a solution of the differential subordination (1.4). A univalent function q(z) is
called a dominant of the solutions of (1.4), or, more simply, a dominant q(z) if g(z) < q(2) for all

g(z) satisfying (1.4). A dominant §(z) which satisfies § < q(z) for all dominants q(z) of (1.4) is
said to be the best dominant.

Definition 1.3. [6] Let ¢ : C° x U — C' and suppose that h(z) be analytic function in U. If g(z)
and

0(9(2), 29 (2), 29" (2), 2°g"(2),2"g"" (2); 2),

are univalent functions in U and satisfies the following fourth-order differential superordination

h(z) < 6(9(2), 29'(2), 2°9"(2), 2°g"(2),2"¢""(2); 2), (1.5)

then g(z) is called a solution of the differential superordination (L.5)). An analytic function q(z)
is called a subordinant of the solution of (1.5)), or, more simply, a subordinant, if q(z) < g(z) for all
9(z) satisfying (L.5)). A univalent subordinant §(z) which satisfies q(z) < G(z) for all subordinants of

(1.5)) is said to be the best subordinant. We note that the best subordinant is unique up to rotation of
U.

Definition 1.4. [9,[6] Let Q be a set in C, g € Q andn € N\{2}. The class ¥,[Q2, q] of admissible
functions consists of those functions ¢ : C° xU — C' that satisfy the following admissibility condition:

o(u,v,2,y,9:¢) ¢ Q,

whenever

w=q(¢), v=k(d (), Re{%—l—l}zk}%e{i][’;g)—kl},
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and

y ) C2q/// (C) g 5 ng”” (C)
re(thzem S re {2 om SR
where z € U, ¢ € OU\E(q) and k = n.

Definition 1.5. [6] Let Q2 be a set in C, q(z) € J[a,n| with ¢'(z) # 0. The class V[, q] of
admissible functions consists of those functions ¢ : C° xU — C that satisfy the following admissibility
condition:

o(u,v,2,y,9:¢) ¢ Q,

whenever

and
ref2} 2 L[S0 ()2 Lo {200,

where z € U, ¢ € OU and m = n = 3.

The next lemma is the foundation result in theory of fourth-order differential subordination.

Lemma 1.6. [9] Let g € J[a,n] withn € N\{2}, and ¢ € Q(a) and satisfy the following conditions:

o) Q)| < o
RS 20w [ 20

where z € U, ( € OU\E(q) and k =2 n. If Q is a set in C, ¢ € V,[Q,¢q] and

2 1 3 m 4 1

¢(9(2),29'(2), 2°9"(2), 2°9"(2),2°g"(2);2) € Q
then
9(z) < q(z), (z€U)
The next lemma is the foundation result in the theory of fourth-order differential superordination.
Lemma 1.7. [6] Let g(z) € J[a,n] with ¢ € V! [Q, q]. if
#9(2),29'(2), 2°9"(2), 2°9"(2),2"g"" (2): 2),
is univalent in U and g(z) € Q(a) satisfy the following admissibility conditions:

ZQq///(z>}> z2p”(z) <i
red S} 20 o [ 5

m
where z € U, ( € OU and m = n 2 3, then

Q0 C{o(g9(2),29'(2), 2%¢"(2), 2°9"(2),2"g""(2);2) : 2 € U},
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implies that

q(z) < g(2), (z€U)
In this paper, we present some results for differential subordination and superordination for
analytic functions defined by a multiplier transformation H,(7,¢)(f * g)(2).
2. Fourth-Order Differential Subordination Results Using H,(7,v)(f * g)(2)

First, we define the following class of admissible functions, which are needed in proving the

differential theorems associated with H,(7,)(f * ¢g)(z) defined by (L.2).

Definition 2.1. Let Q be a set in C, and ¢ € Qo N Jo. The class A;[S2, q] of admissible functions
consists of those functions ¢ : C° x U — C, that satisfy the following admissibility condition:

o(u,v,2,y,9;2) ¢ Q,

whenever

_ kCg'(Q) + (@ +p)ald)

u:q(<>7 v ¢ )

B+ 1) +v) — (206 +p) + D)+ p— D)(u—v) + (& + pJu a0
Re( o+ (0 +p)u ) = ’“Re{ 70 “}’

Yy — (3(¢ +p) + D’z — (Y +p)* (Y (1 +p) + Du
Yu+ (Y + plu

Re( — @ +p)(B3(¥ +p) +5) +2)])

e { S

and

4 3 2 2 2 2 2
Re(w g—4%° (Y+p+1)y+12[6(p+p)° —3(¥+p) —2]z+[(¥+p) (8(+p)+9)+2](u—v)+(¥+p) “ [(¥+p) "+ (P (¥+p)+1)“]u +(+p) [(v+p+1) ((2(+p)+5)+1)])

Ppo+(P+p)u
1.3 34"
=k Re{ 70

where z € U, ¢ € OU\E(q) and k 2 n.

Theorem 2.2. Let ¢ € A;[Q,q|. If f, g € B, and q € Qo and satisfy the following conditions

2 1 H 2
Re (C q/ (C)) 2 0, P(T+ J/w)(f*g)(z) g k2’ (21)
7 (¢) q'(¢)
and
{6(Hp(T9)(fx9) (), Hp(T+1,0)(f*9) (), Hp(T+2,0) (f*9) (), Hp(T+3,9) (f*9) (), Hp (T+4,9) (f*g) (2)) }C€, (2.2)
then

Hy(r,9)(f *9)(2) < q(2) (2 €U).
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Proof . Define the analytic function p(z) in U by

p(z) = Hy(1,¥)(f x g)(2) (2 €U). (2.3)
Then, differentiating (2.3) with respect to z and using (|1.3)), we have

' (2) + (¥ +p)p(z)

Hy(m+ L) (f *g)(2) = v (2.4)
Further computations show that
2,11 2 1 / 2
Ho(r +2,0)(f # g)(2) = 222+ QW +p) +w2)zp (2) + (¥ +p)*p(2) (25)
1 (r3.0) frg) (o) — 2P+ BW D)+ D2E) 4 B fo 3+ p) + 10ep/ () + (6 +)p(2)
(2.6)
and
HP(T+4vw)(f*g)(z):z4p4(z>+4<w+p+1>z3p3<z)+[6<w+p>2+1o<w+p>+3]z2zz;;<z)+[4<<w+p>3+(w+p)2+(w+p>>+uzp’(z>+(w+p)4p<z> (2.7)
We now define the transformation C® to C,
u(r, s, t,w,b) =r,
v(r, s, t,w,b) = W7
x(r,s,t,w,b) = t+ @ +) Z}i)s il Chs p)ZT,
y(r, s, t,w,b) = wt @@ +p)+ i+ B +];)32 t3@ip)tllo b (W +p) (2.8)
and
g<r’ S’ t7 w7 b) =
b+4W+p+ Dw+[6(+p)*+10(+p) +3]t+ [4((W +p)° + @ +p)* + (b +p) +1s+ (W +p)'r
I ’
(2.9)
let
X(ra S, t, w, b7 Z) = ¢(U’7 v,2,Y, 9, Z) =
s+ +p)r t+ Q2@ +p)+1)s+ @ +p)°r
QS /r’ w ) ¢2 )
w+ B +p) + D+ B3 +p)* + 3% +p) +1]s+ (¥ +p)°r
Y3 ’
b+4+p+ 1w+ [6(¥+p)* +10(+p) + 3]t + 4 +p)° + (L +p)* + (W +p)) +1]s + (¥ +p)4r)
(Ch ’

(2.10)
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The proof will make use Lemma [1.6] Using the equations (2.4) to (2.7), we have from (2.8) that

x(p(2), 20 (2), 2°p"(2), 2°p*(2), 2*p* (2); 2) = & (Hp(1,0)(f % 9)(2), Hp(T + L, )(f * 9)(2),
Hy(1+2,9)(f * 9)(2), Hy(T + 3,9)(f * 9)(2), Hy(T + 4,4)(f * 9)(2)) (2.11)

Hence, clearly ([2.2)) becomes
X(p(2), 29'(2), 2°D"(2), 2°P*(2), 2'p* (2); 2) € @
We note that

to vt Dty - Qe+ + D@+ p - D0uw—v) + @+ pu
s Yo+ (¢ +plu ’

w Py — (3 +p) + Dz — (& +p)2 (LW +p) + Du
§ v+ (Y +plu

and

— (W +p)(B(¢ +p) +5) +2)],

4 3 2_
b _ ¥rg—au3 (tpt 1)y +92[6(w+p)2 —3(p+p) — 2]53‘}_(&112)(3(1&-&-10)4-9)-%2](u )+ (@ +p) 2+ (e (w+p)+1)?) 4 (h+p) [(W+p+1) ((2(h+p)+5)+1)].

Therefore, the admissibility condition for ¢ € A;[€, ¢], in Definition is equivalent to admissi-
bility condition for xy € W3[€2, q] as given in Definition with n = 3. Therefore, by using and
Lemma (1.6}, we obtain

p(z) = Hy(1,¥)(f * 9)(2) < q(2).
This completes the proof of Theorem O

Our next corollary, is an extension of Theorem to the case when the behavior of ¢(z) € oU,
is not known.

Corollary 2.3. Let Q C C, and let the function q(z) be univalent in U with q(0) = 1. Let ¢ €
A;[Q,q] for some p € (0,1), where q,(2) = q(pz). If f, g € B, and q, satisfies the following
conditions:

Re <€2q”’(<)) >0, ‘Hp(T 209G <ge ey e aU\B(,) andkZn)  (212)

7€) )~ 7(¢)
and
¢ (Hp(m, ) ([ * 9)(2), Hp(T + L, 0)(f * 9)(2), Hp(T + 2,9)(f * 9)(2),
Hy(1+ 3, 9)(f * 9)(2), Hy(T + 4, ) (f * 9)(2)) < h(z), (2.13)
then

Hy(r, ) (f *9)(2) < q(z) (2 €U).
and q(z) = (122) is the best dominant.

1—z
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Proof . By using Theorem 2.2} yield

Hy(,9)(f % 9)(2) < qp(2) (2 €U).

Then we obtain the result from

90,(2) < q(z) (z€U).
This completes the proof of Corollary 2.3] O

If Q # C' is simply-connected domain, then 2 = h(U) for some conformal mapping h(z) of U on to
(2. In this case, the class A;[h(U), ¢|, is written anA;[h, q|. The following two results are immediate
consequence of Theorem 2.2] and Corollary

Theorem 2.4. Let ¢ € Ajlh,q]. If f, g € B, and q € Qq satisfy the following conditions (2.1)), and

¢ (Hp(T, ) (f * 9)(2), Hp(T + 1, )(f % 9)(2), Hp(T + 2,9)(f * 9)(2),
Hy(7 +3,9)(f + 9)(2), Hy(T + 4, 9)(f x 9)(2)) < h(2), (2.14)

then

Hy(r,9)(f *9)(2) < q(z) (2 €U).

Corollary 2.5. Let Q C C, and let the function q be univalent in U with ¢(0) = 1. Let ¢ € A;[S2, q]
for some p € (0,1), where q,(2) = q(pz). If f, g € B, and q, satisfies the conditions (2.12) and

¢ (Hp(m, 0)(f % 9)(2), Hp(T + L)(f * 9)(2), Hp(T + 2,9)(f * 9)(2),
Hy(7 +3,9)(f * 9)(2), Hy(T + 4, 9)(f x 9)(2)) < h(2), (2.15)

then

Hy(m, ) (f x9)(2) < q(z) (z€U).
The following result yield the best dominant of differential subordination (2.12)).

Theorem 2.6. Let the function h be univalent in U. Also let

¢(q(z) zq’<z>+<w+p)q(z) 24" (@) +QU+IHzd () W+p)?a() 20 () BRI+ () BAR) +3(Utp) 120 (2)+ (w+p) az)
b ) w ) d] k)

et @) a1z () H6(4p) 110 4p) 48]0 ()L A(Wtp) + (p) +(kp)) 120 () + () o) ) —h(2) (2.16)
vt ’ :

has a solution q(z) with q(0) = 1, which satisfies the condition (2.1)). If f, g € B,, satisfies the
condition (2.12) and if

¢ (Hp(T,0)(f % 9)(2), Hp(T + 1, ) (f + 9)(2), Hp(T + 2,9)(f * 9)(2),
H,(7+3,¢)(f x9)(2), Hy(T +4,9)(f * 9)(2)) < h(2), is analytic in U, then

Hy(r,9)(f *9)(2) < q(z) (2 €U).

and q(z) 1is the best dominant.
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Proof . Using Theorem that ¢(z) is a dominant of (2.12). Since ¢(z) satisfies (2.15)), it is also
a solution of (2.12)). Therefore, ¢(z) will be dominated by all dominant. Hence ¢(z) is the best

dominant. [

Definition 2.7. Let Q a set in C and ¢ € Q1 N Ji. The class A;j1[Q, q] of admissible functions
consist of those functions ¢ : C° x U — C, that satisfy the following admissibility conditions:

d(u,v,2,y,9;2) ¢ Q,

whenever
u = q((),
o = FCd'(Q) +¥4(Q)
” :
Y+ (Y +2p)u L")
Re( v—u) w) S { 7 “}’
Re (¢ y—v2y+3)( +(25_+;))(x+u)+¢<w+2p)u +(2wp+3p)> > ’“QRe{qu/@()O}
and

Re(w4g—2w2<3w+7)<w—1>(y+z)+<w+zp)<3<3w+7)<w+1)+w2)u<w2+2)<4w2+2wp+9w+7)(m—u) [P+ — T34 82t 202 +14¢p_3¢_8])

1.3 34"
=k Re( q’'(¢) ’

where z € U, ¢ € OU\E(q) and k = n.

Theorem 2.8. Define ¢ € A;1[Qq]. If f, g € B, and q € Q1, and satisfy the following conditions

¢*q"(¢) ZPHy(1 +2,9)(f * 9)(2)- 2
ne(Se) 20 70 = 247
and
{o (ZPHy(1,9)(f % 9)(2), 2P Hy(T + L, )(f % 9)(2), 2" Hp(T + 2,9)(f * 9)(2),
P Hy (14 3, 9)(f * 9)(2), 2P Hy(T + 4,4)(f * 9)(2))} C Q, (2.18)
then

PHy(T,9)(f +9)(2) <q(2) (2 €U).

Proof . Let p(z) be analytic function in U, defined by

p(2) = 2 Hy(1, 9)(f * g)(2). (2.19)
From equations ((1.3) and ([2.19)), we have
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() + ()

L Hp(T+1L,9)(f*g)(2) = i ” (2.20)
By a similar argument, we get
PH(r+2,9)(f + g)(z) = 2 EF @D = W0+ 2p)p(z) (2.21)

2 ’

23p3(2) + (20 + 3)2%p"(2) + (2% + 2up + 20 + 1)p/(2) + V2(¢ + 2p))p(2)

2P Hy(T+3,9)(f*g)(2) =

Y3 ’
(2.22)
and
2P Hp (T+4,0) (f*g) (2)= 24P4(Z)+(31/J+7)z3p3(z)+(4'¢)4+2w1)+9¢+7)22p;y)+(w3+4w2+2wp+3w+1)zp/(z)7¢3(1/)+2p)p(z) ) (223)
Define the transformation from C® to C' by
u(r, s, t,w,b) =r,
s+ Yr
v(r,s,t,w,b) = ,
( ) "
t 1)s — 2
sty — L s = W0+ 2
Y2
2 3)t 2% + 2 2 1)s — ? 2
and
g(r7 S’ t? w) b)
b+ B+ T w+ (4t + 20p + 99 + TNt + (PP + 4% 4 20p + 3¢ + 1)s — P (Y + 2p)r 5 95
_ = (2.25)
Let

1/} s ¢2 ’ 1/}3
b+ (3¢ + Tw + (4" + 2 + 9% + 1)t + (¥° + 4% + 20p + 3 + 1)s — 3 (¥ + 2p)r z) (2.26)
& ). @

The proof will make use of Lemma . Using the equations ((2.19)) to (2.23) we have from ([2.26]),
that

¢(r s+r t+ (Y +1)s— (Y +2p))r w+ (20 + 3)t + (202 + 2¢p + 29 + 1)s — p* (Y + 2p)r

X(p(2) + 20/ (2), 2°p" (2), 2°p° (2), 2'p*(2); 2) = ¢ (ZPH, (17, 9)(f * 9)(2), 2P Hy(T + 1,4)(f * g)(2),
PHY (T + 2,0)(f * 9)(2), 2" Hy(T 4 3,0)(f % 9)(2), 2P Hp (T + 4,9)(f * g)(2)) (2:27)
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Hence (2.18)) becomes

X(p(2) + 20/ (2), 29" (2), 2°p’(2), 2'p*(2); 2) €
We note that

v+ (Y + 2p)u
(v—u)

(x+u)+ W+ 2p)u

t
-+1= _wv
S

w_ Py — 2 +3)(W+2p+1)
)

s (v—u

+ (2¢p + 3p),

and

b ¥lg=202 BT (V=1 (4 )+ (0+29) BT W+ D) +62)u (w2 42) (402 +20p 90T @) | 15 LA 793 | 802 pt 20024 1405p—30h—8].

s (v—u)

Thus clearly, the admissibility condition for ¢ € A;;[€, ¢], in Definition [2.7] W is equivalent to
admissibility condition for x € W3], ¢ as given in Definition with n = 3. Therefore, by using

(2.17) and Lemma [1.6] we obtain

p(z) = P Hy(1,9)(f * 9)(2) < a(2).
This completes the proof of Theorem O

In the our corollary we obtain an extension of Theorem , to the case when the behavior of ¢(2)
on QU is not known.

Corollary 2.9. Let Q C C and let the function q(z) be univalent in U with q(0) = 1. Let ¢ €
A1, q] for some p(0,1), where q,(z) = q(pz). If f, g € B, and q,, satisfies the following conditions:

n (0) 0

and

Hy (14 2,9)(f * 9)(2).
¢'(¢)

<k (€U €dU\E(q,) and k =n)  (2.28)

¢ (Hy(7,¥)(f * 9)(2), Hy(T + 1, 0)(f * 9)(2), Hy(T + 2,9)(f * 9)(2), Hy(T + 3, ¢)(f * 9)(2),
Hy(1+4,9)(f * 9)(2)) < h(2), (2.29)
then

FHy(1,)(f % 9)(2) < q(z) (2 €U).
Proof . By using Theorem [2.8] yield

H,(r ) (f % 9)(2) < gpl2) (2 € V).

Then we obtain the result from

(=) <az) (z V).

This completes the proof of Corollary 2.9, O

If Q # C is simply-connected domain, then 2 = h(U) for some conformal mapping h(z) of U
on to €. In this case, the class A;[h(U),q], is written an Aj;,[h,q]. The following two results are
immediate consequence of Theorem [2.§ and Corollary [2.9
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Theorem 2.10. Define ¢ € A;1[Q,q]. If f, g € B, and q € Q1, satisfy the conditions (2.17) and

¢ (Hp(1, ) (f * 9)(2), Hy(T + L) (f % 9)(2), Hyp(T + 2,9)(f * 9)(2), Hp(T + 3,9)(f * 9)(2),
Hy(m+4,4)(f % 9)(2)) < h(z), (2.30)

then
PHy(1,9)(f*9)(2) <q(z) (2 €U).

Corollary 2.11. Let Q C C and let the function q(z) be univalent in U with q(0) = 1. Let ¢ €
A; 12, q] for some p(0,1), where q,(2) = q(pz). If f, g € By, and q,, satisfies the conditions (2.17)

(1 + 2;}}/&3]0 *9)(2). <k (€U €dU\E(g) and k=n)  (2.31)

then
FHy(T,0)(f *9)(2) <q(2) (2 €U).
In the following result yield the best dominant of differential subordination ([2.29)).

Theorem 2.12. Let the function h be univalent in U. Also let ¢ : C° x U — C', and suppose that
the following differential equation

2d () +ya(z) 22"+ @D zd (2) - W@ +2p)a(z) 2263 () +(29+3)22¢" (2)+ (29?2 +29p+2e+1)g () w2 (v +2p)q(2)
¢ q(z)v 1/1 bl w2 k) ¢3 )

et ()1 (v D)2 P )+ (v 420wt 0042 (w3 a4 20 )2’ ()= (b 2p)a(2) ‘Z) —h(2)
¥ )

has a solution q(z) with ¢(0) = 1, which satisfies the condition (2.28)). If f, g € By, then

PH(T,9)(f x9)(2) <q(2) (2 €U).

Proof . From Theorem 2.8, then 2P H,(7,¥)(f = g)(2) < q,(2) (2 € U). The result asserted by
Corollary [2.3] is now deduced from the following subordination property ¢,(z) < ¢(z) (z € U). O

Also, here the fourth-order differential superordination thermos for the multiplier transforma-
tion H,(7,v)(f * g)(z) defined in is investigated. For the purpose, we considered the following
admissible functions.

3. Fourth-Order Differential Superordination Results Using H,(7,¢)(f * g)(z)

Definition 3.1. Let Q be a set in C, and g € Qo with ¢'(2) # 0. The class A;[Q, q] of admissible
functions consists of those functions ¢ : C° x U — C, which satisfy the following admissibility
condition

d(u,v,,y,9;¢) € Q,
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whenever
u=q(z),
_ k¢ (2) + (V£ p)a(2)
¢ bl
YWD +o) - +p) + W +p-D(u—v)+ @ +pu) 1, [24'(2)
Re( $v+ @ +D)u ) =mf { ) “}’
Re (w — (3(¢ +p> + 11215—5:&(;{};5) W(iﬁ +p) + 1)“ _ [(w _‘_p)(<3<w +p) + 5) + 2)])

§ LRG{CQQW(Z)}’

¢ (2)

3 2 ——
Re (w g—493 (Y+p+ Dy+02[6(p+p) 2 —3(v+p) =2z +[(wizz)w(§$:p)+9)+2]( )+ (@ +p) 2 [(+p) 2+ (W (P+p)+1)F] -HJJ(TJH-Z))[(¢+p+1)((2(¢+p)+5)+1)])
1 p (B0
mSRe( 70 )

where z € U, ( € OU\E(q) and k = n.

A

Theorem 3.2. Let ¢ € A;[Q,q|. If f, g € B, and H,(7,¢)(f * g)(2) € Qo with ¢'(2) # 0, satisfying
the following conditions:

re(Shey) 2o

¢ (Hy(7, ) (f * 9)(2), Hy(T + L) (f % 9)(2), Hyp(7 + 2,9)(f * 9)(2), Hp(T + 3,9)(f * 9)(2),
H,(t+4,¢)(f xg)(2); 2), is univalent in U

q'(2) m?’

(3.1)

and the function

and

Q C {6 (Hy(r,6)(f * 9)(2), Hyl(r + 1) (f % 9)(2), Hy(r +2,8)(f * 9)(2), Hylr +3,0)(f * 9)(2),
Hy(r +4,9)(f * 9)(2); 2) : = € U} (3.2)

implies that
q(z) = Hy(m, ) (f* g)(2) (2 €U).

Proof . Let the function p(z) be defined by (2.3) and x by (2.10), since ¢ € A,[€2,¢]. Thus from

B11) and (B2) yield

Q C {x(p(z) + 2p'(2), 2°p" (2), 2°p*(2), 2*p*(2); 2) : 2 € U }.
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From (2.8) and (2.9), we see that the admissibility for ¢ € A;[Q, ], in Definition [2.1]is equivalent
to the admissibility condition for x as given in Definition [1.5] with n = 3. Hence x € ¥3[(2,¢], and

by using Lemma and ((3.2)), we have

q(z) < Hp(1,9)(f * 9)(2)-

If 2 # C is simply-connected domain, then Q@ = h(U) for some conformal mapping h(z) of U on
to €2 In this case, the class A;[h(U),q], is written an A;[h, ¢]. O

The next theorem is directly consequence of Theorem [3.2]

Theorem 3.3. Let ¢ € Aj[S2,q| and h be analytic function in U. If f, g € By, H,(1,¢¥)(f *g)(2) €
Qo and q € Jy with ¢'(z) # 0, satisfying the following conditions (3.1)) and satisfying the following
conditions:

¢ (Hp(m,0)(f * 9)(2), Hp(T + 1,9)(f + 9)(2), Hp(T + 2,9)(f % 9)(2), Hp(T + 3,4)(f * 9)(2),
H,(t1+4,¢)(f xg9)(2); 2), ts univalent in U, then

h(z) =< ¢ (Hy(m,0)(f * 9)(2), Hy(T + 1) (f * 9)(2), Hp(T + 2,0)(f % 9)(2), Hp(7 + 3, 0)(f * 9)(2),
Hy(T+4,9)(f * 9)(2); 2) , (3.3)

implies that

q(z) < Hy(m, ) (f * 9)(2) (2 €U).
Theorem 3.4. Let h be analytic function in U, and let ¢ : C° x U — C and x be given by (2.10)).
Suppose that the following differential equation:
X(p(2) + 20'(2), 2°D"(2), 2°0° (2), D" (2); 2) = h(2), (3.4)

has a solution q(z) € Qo.If f, g € By, Hy(T,¥)(f x g)(2) € Qo and q € Jy with ¢'(z) # 0,
satisfying the following conditions (3.1) and

¢ (Hy(1, ) (f + 9)(2), Hy(T + L) (f % 9)(2), Hyp(7 + 2,9)(f * 9)(2), Hp(T + 3,9)(f * 9)(2),
H,(t+4,9)(f *g)(2); 2), is univalent in U, then

h(z) < ¢ (Hy(7, 0)(f * 9)(2), Hy(T + 1,9)(f * 9)(2), Hp(T + 2,9)(f * 9)(2), Hp(T + 3, 0)(f * 9)(2),
Hy(m +4,9)(f * 9)(2); 2),

implies that

q(z) = Hy(1,9)(f *x g)(2) (2 €U).
and q(z) is the best subordinant of (3.3)).
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Proof . In view of Theorems and , we note that ¢ is a subordination of (3.3)). Since q satisfies

(3.4]), that also a solution of (3.3]) and therefore ¢ will be subordinated by all subordinants. Hence ¢
is the best subordinant. [J

Definition 3.5. Let Q be a set in C, and q € Q1 with ¢'(z) # 0. The class A;1[S2,q] of admissible

functions consists of those functions ¢ : C° x U — C, which satisfy the following admissibility
condition

d(u,v,2,y,9;¢) € Q,

whenever
u=q(z),

_ RCA(2) +g(2)

" ;

. Y+ (Y +2pu . 2q"(2)
re (MG ) e
Re (w y =92y +3)(¥ +(25_+i>)<x+u> + W+ 2p)u (2¢p+3p>> > 12Re {25(;)2)}
and

Re(W‘g—zzﬂ(3w+7>(w—1><y+z)+(w+2p)(3(3w+v7z(;p+1>+w2)u+<w2+2)<4w2+2wp+9w+7><zfu>+[ws+w4,7w3+8¢2p+2w2+14wp,3w,8})
3 1
>1.3 279" (2)
:k Re( q,(z) )7
where z € U, ¢ € OU\E(q) and k 2 n.

Theorem 3.6. Let ¢ € A;1[Q,q]. If f, g € B, and 2PH,(1,¢¥)(f * g)(2) € Q1 with ¢'(2) # 0,
satisfying the following conditions:

2 I
Re <L(Z>> >0,

q'(2)

PH, (14 2,9)(f * g)(2).
q'(2)

A

— (3.5)

m2’
and the function

¢ (2P Hy (7, 0)(f % 9)(2), 2" Hy (T + 1, 9)(f * 9)(2), 2P Hp(T + 2,9)(f * 9)(2), 2 Hy(T + 3, ) (f * 9)(2),
PH,(T+4,¢)(f *9)(2); 2), is univalent in U

and

Q CH{o ("Hy(r,9)(f * 9)(2), 2P Hy(T + L) ([ % 9)(2), 2" Hy (T + 2,0)(f * 9)(2), 2P Hy(T + 3, 9) ([ * 9)(2),
PHy(1T+4,9)(f % g)(2);2) : 2 € U}, (3.6)

implies that

q(z) < 2 Hy(m,9)(f x 9)(2) (2 € V).
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Proof . Let the function p(z) be defined by (2.19) and x by (2.26), since ¢ € A;[€2,¢g]. Thus from
£27) and (B5) yield

Q C {x(p(2),20'(2), 2°p"(2), 2°p*(2), 2*p*(2); 2) : z € U}

From (2.24) and (2.25)), we see that the admissibility for ¢ € A;[Q, g], in Definition 2.1is equivalent
to the admissibility condition for x as given in Definition [1.5] with n = 3. Hence x € ¥3[(2,¢|, and

by using Lemma and ((3.6)), we have

q(z) = 2PHy(1,9)(f * g)(2).

U

If Q # C is simply-connected domain, then 2 = h(U) for some conformal mapping h(z) of U
on to Q. In this case, the class A;[h(U),q|, is written an A;[h,q]. The next theorem is directly
consequence of Theorem [3.6]

Theorem 3.7. Let ¢ € A;1[Q2, q] and h be analytic function in U. If f, g € B, and g € Q1 with
q(z) # 0, satisfying the following conditions (3.5 and

¢ (2 Hy(,0)(f % 9)(2), 2" Hp(T + 1, ) (f * 9)(2), 2P Hp(T + 2,0)(f * 9)(2), 2" Hp(T + 3,9) (f * 9)(2),
ZPHy(1+4,9)(f *9)(2); 2)

18 univalent in U, then

h(z) < ¢ (ZPHy (1, ) (f * g)(2), 2P Hyp(T + L) (f * g)(2), 2P Hp(T + 2,0)(f * 9)(2), 2P Hy(T + 3, 0)(f * 9)(2),
szP<T+47¢>(f*g)<Z);Z)7 (37)

implies that
a(2) < PH(r0)(f + 9)(z) (2 € D).
Combining Theorems [2.4 and [3.3] we obtain the following sandwich-type theorem.
Theorem 3.8. Let hy and qy, be univalent in U, hy be univalent function in U, qo € Qo, with

¢1(0) = q2(0) =1 and ¢ € Ajlhy, 1] N Ajlha, qo]. If f,9 € By, Hy(,0)(f xg)(2) € Qo N Jy, and

¢ (Hp(1, ) (f * 9)(2), Hy(T + L) (f % 9)(2), Hyp(T + 2,9)(f * 9)(2), Hp(T + 3,9)(f * 9)(2),
Hy(1 +4,4)(f * 9)(2); 2),

is univalent in U, and the conditions ((2.1) and (3.1)) are satisfied, then

01(2) < Hy(7,9)(f * 9)(2) < 2(2)-
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4. Sandwich Results
Combining Theorems ([2.1)) and ([2.6)), we obtain the following sandwich-type theorem.

Theorem 4.1. Let hy and gy, be univalent in U, hy be univalent function in U, qo € @, with
71(0) = ¢2(0) =1 and ¢ € Ajalha, i) NV Ajalha, g If f,9 € By, 2PHL(7,9)(f * g)(2) € Q1N J1, and

¢ (2" Hy(m,0)(f * 9)(2), 2" Hp(T + 1, 0)(f * g)(2), 2" Hp(T + 2, 0)(f * 9)(2), 2"Hy(T + 3, ¢)(f * 9)(2),
ZHy(T +4,0)(f * 9)(2); 2),
15 univalent in U, and the conditions and are satisfied, then

01(2) < 2PHy(1,9)(f * 9)(2) < g2(2).
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