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In this paper, for the first time, the free vibrations of the conical shell with the locally 

attached mass are investigated. The equilibrium equations of the conical shell are written 

based on classical shell theory using the energy method and Hamilton’s principle. 

Boundary conditions are considered to be fully simply supported. According to the 

boundary conditions, the displacement components are written as double Fourier series 

expansions. Relationships of the strain-displacement and curvature-displacement are 

considered based on first Love’s approximation theory. The governing equations of the 

conical shell are solved using the Galerkin method and the natural frequencies are 

obtained. Also, for the first time, the effect of the attached mass using the cone differential 

operator and Heaviside function on equilibrium equations has been considered and its 

effect on the free vibration of the conical shell has been investigated. The results have been 

verified with the literature and ABAQUS finite element software. Finally, the effect of 

different parameters of attached mass including width, height, subtended angle, position, 

density, and elastic modulus on the free vibrations of the composite conical shell are 

investigated. 

1. Introduction 

Shells are one of the most structures widely 
used in the space industry. In order to benefit 
from proper aerodynamic properties, a conical 
shell is used in these industries. For example, the 
conical shell used in satellite carriers in the space 
industry is one of the applications of this type of 
shell. Sometimes, to improve the performance of 
the shell, part of it is reinforced. The 
reinforcement has hardness and mass, which are 
effective parameters on the natural frequency. 
Therefore, in order to prevent the phenomenon 
of resonance and disturbance in the performance 
of the components attached to the shell, it is 
important to know the natural frequencies of the 
conical shell with the attached mass. Extensive 
research has been done on the free vibrations of 
conical shells and the effect of the mass attached 
to the plates and shells. 

Tong [1] has investigated free vibration of 
composite laminated conical shells, with 
orthotropic stretching-bending coupling by using 

a particular coordinate system and a simple and 
exact solution obtained directly. Shu [2] has 
calculated the endeavor to apply the global 
method of generalized differential quadrature to 
the free vibration analysis of composite 
laminated conical shells. Love's first 
approximation thin shell theory is used to 
formulate the governing equations. The 
fundamental frequency parameters for four sets 
of boundary conditions and various shell 
thicknesses and different numbers of layers are 
presented. 

Li et al. [3] have investigated free and forced 
vibration responses of a conical shell. Hamilton’s 
principle with the Rayleigh-Ritz method is used 
to derive the equation of motion of the conical 
shell. Jin et al. [4] have modified the Fourier series 
using auxiliary functions to solve the free 
vibrations of the conical shell in order to solve the 
problem of Fourier series discontinuity in 
individual derivatives and using the Rayleigh-
Ritz method, they showed that conical shells with 
arbitrary boundary conditions including all 
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classical and elastic end restraints can be solved 
in a unified form. Nasiri Rad et al. [5] by using the 
Galerkin method and considering the shape 
functions of the beam modes as weight functions 
analyzed the free and forced vibrations of the 
composite conical shell. Nallim et al [6] have 
investigated the effect of attached mass in the 
center of the isotropic and orthotropic circular 
plate on vibrations, regardless of their stiffness. 
Bambill et al. [7] investigated the effect of 
attached mass at an arbitrary position on the 
transverse vibrations of circular and annular 
plates by analytical and experimental methods. 
They also did not include the effect of mass 
stiffness in the equations and their studies, they 
have investigated the effect of mass distance from 
the center of the circle to the abutment. Amabili 
et al. [8] investigated the effect of concentrated 
masses with rotary inertia on vibrations of 
rectangular plates by experimental and 
numerical methods. Boundary conditions are 
considered  simply supported and fixed. Ciancio 
et al. [9] studied the free vibration analysis of a 
cantilevered rectangular anisotropic plate when 
a concentrated mass is rigidly attached to its 
center point. Based on the classical theory of 
anisotropic plates, the Ritz method is employed 
to perform the analysis. Khalili et al. [10] are 
analyzed free vibrations of a cross-ply composite 
shell with or without a uniformly distributed 
attached mass using higher-order shell theory. 
The stiffness effect of this distributed attached 

mass is also considered. They showed that the 
effect of the stiffness of the distributed attached 
mass is decreased by decreasing the radii of 
curvatures or increasing the thickness of the 
shells. Aksencer and Aydogdu [11] have 
investigated the vibration of a rotating composite 
beam with an attached point mass. The Ritz 
method with algebraic polynomials is used in the 
formulation. The boundary conditions are 
considered clamped-free. Qu et al. [12] 
investigated the free vibration characteristics of 
conical-cylindrical-spherical shells combinations 
with ring stiffeners by using a modified 
variational method. Reissner- Naghdis thin shell 
theory in conjunction with a multilevel partition 
technique is employed to formulate the 
theoretical model. Nekouei et al. [13] studied the 
free vibration analysis of laminated composite 
conical shells reinforced with shape memory 
alloy fibers. Love’s first approximation classical 
shell theory with the von-Kármán type of 
geometrical nonlinearity is used in conjunction 
with Hamilton’s principle for deriving the 
equations of motion. Song et al. [14] studied free 
vibration of truncated conical shells with 
arbitrary boundary conditions, including elastic 
and inertia force constraints. The equations of 
motion with elastic boundary constraints are 

formulated by employing Hamilton’s principle 
and the thin-walled shallow shell theory of the 
Donnell type.  

In this paper, the free vibrations of a 
composite conical shell with a locally attached 
mass are investigated by using classical shell 
theory and finite element software ABAQUS and 
the results are compared. The effect of the 
attached mass on the free vibrations of the 
conical shell is defined using the property of the 
Heaviside function. To satisfy the boundary 
conditions, the displacement components are 
considered as double Fourier series. In addition, 
the effect of the attached mass and geometric 
parameters on the natural frequencies of the 
conical shell are also investigated. The proposed 
method applies to attached circular and sectorial 
circumferential ribs and longitudinal stringers 
with full or partial cone length. The main novelty 
of the present work is the application of the 
Heaviside step function idea for mathematical 
modeling of the mass and stiffness of 
circumferential ribs and longitudinal stringers. 

2. Governing Equation 

Figure 1 shows a conical shell with a small 

radius 1R , large radius 2R , thickness h , and 

semi-vertex angle . 

Figure 2 also shows the conical shell with the 
attached mass. The center point of the attached 
mass on the shell in the form of an arc of 

subtended angle ( ) is located at distance ( )x  

from the vertex. 

 
Fig. 1. Coordinates of the conical shell [4] 

 
Fig. 2. Shell with the attached mass [10] 

https://www.sciencedirect.com/topics/engineering/vibration-analysis
https://www.sciencedirect.com/topics/engineering/anisotropic-plate
https://www.sciencedirect.com/topics/engineering/anisotropic
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The large radius of the shell changes 
according to the length of the edge of the conical 
shell, which is obtained using Equation (1): 

( ) ( )1 sin = + R x R x  (1) 

The u ,v and w are the displacement 

components in the axial, tangential,  and radial 
direction respectively, and the deformations are 
assumed to be small. Based on the classical shell 
theory equilibrium equations are as follows [2, 
4]: 
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where xQ and Q  are defined by the following 

relations: 
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(3) 

In the above equation, 1I is defined as follows: 

2

1

2

h

k

h

I dz

−

=   (4) 

where h is the laminate thickness and k  is the 

density of each layer (The subscript “k” is the 
layer number). Constitutive equations of the 
composite shell are defined by the following 
relations [15]: 
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(5) 

where A, B, and D are extensional, coupling, and 
bending stiffness matrices, respectively, defined 
as follows [15]: 

( ) ( ) ( )
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where 
ijQ is the transformed reduced stiffness 

matrix (and are shown in Appendix A), 0

x , 0

 , 

and 0

x  are the mid-surface engineering strains 

and 0

xK , 0K 
, and 0

xK 
 are curvatures of mid-

surface of the shell. Considering ( ) ( )sinx R x = , 

the strains and curvatures are defined by the 
following relations [16]: 
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3. Boundary Condition 

The boundary conditions for the conical shell 
with fully simply supported (SS) at 𝑥 = 0 and 𝑥 =
𝐿 are considered as: 

0              0

0         0

= =

= =

v w

N M
x x

 (8) 

In order to satisfy the boundary conditions, 
𝑢 , 𝑣 and 𝑤 are defined by the following double 
Fourier series : 
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In the above equations, 𝑓(𝑡) is a periodic 
function of time and based on the type of the 

boundary conditions, 𝑓11، 𝑓21  and 𝑓31 are 
determined as follows [17]: 
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where 𝜙𝑢  ،𝜙𝑣،𝜙𝑤  and 𝜑𝑖  are trigonometric 
functions in the circumferential direction and 
defined by the following relations [15]: 
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where ,i m  and m could be obtained from the 

boundary conditions. Finally, for SS boundary 
conditions, displacement components are 
defined as follows [17]: 

( ) ( )
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where ,mn mnU V  and 
mnW  are the constant 

coefficients of the natural mode shapes 
associated with the free vibration problems, m  is 
the axial half-wave, and m is the circumferential 
wave number. By using Eqs. (4) and (6) and 
substituting them in the equilibrium equations, 
the following equation is obtained: 
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Those ijL are the differential operators and 

are shown in Appendix B. For solving Eq. (13), the 
Galerkin method is used. 

4. Free Vibration Analysis 

To solve the free vibration analysis, the 

function of time is treated as ( ) mni tf t e =  where 

mn  is the natural frequency. By substituting Eq. 

(12) into Eq. (13) and using the Galerkin method 
and after simplification, the following equation is 
obtained: 

 2 0
T

ij mn ij mn mn mnK M U V W    − =      
(14) 

Those [ ]ijK  and [ ]ijM are stiffness and mass 

matrices. By setting determinant of coefficients 
equal to zero, the characteristic frequency 
equation is derived as: 

6 4 2

1 2 3 4 0mn mn mn     + + + =  (15) 

where i are constant coefficients. By solving Eq. 

(15), natural frequencies are calculated, and by 
substituting these frequencies in Eq. (14), the 
constant coefficients of mode shapes are 
obtained. 

5. Attached Mass Analysis 

The assumption of concentrated mass directly 
affects the stiffness and mass matrices of the 
system. Therefore, it should be added to the 
equilibrium equations of the shell in such a way 
that the effect of the mass is distributed at the 
place of its application and not in the whole shell. 
For this purpose, the Heaviside function is used 
[10] as follows: 
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So the equations of motion change as follows: 
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Eq. (17), the index 𝑠 stands for the shell and 

the index 𝑎 stands for the attached mass. 0  and 

0  are coordinates of the position of the center of 

the mass, c and d  are dimensions of the mass. 

Accordingly, H  is Heaviside function and 
defined as follows: 

( ) ( ) ( )0 0 0 0, , , , ,  =  − − − −  H x x c d H x x H x x c  
(18) 

                                  ( ) ( )0 0    − − − −  H H d  

In order to solve Eq. (17), the Galerkin method 
is used and the effect of the Heaviside function on 
the integrals of this method is as follows: 

( ) ( )
0 0

0 00 0

,  ,  

d x ca b

x

H f x dxd f x dxd





   

+ +

 =     (19) 

In the above relation, a  and b  are the size of 

the attached mass (in angular and longitudinal 
directions, respectively). 

6. Modeling and Analysis in ABAQUS 
Software 

To check the accuracy of the results obtained 
from the free vibrations analysis as well as the 
shell with the attached mass, the composite 
conical shell is modeled in ABAQUS software as 
shown in Figure 3. In finite element software, S4R 
type element is used to mesh the shell and the 
attached mass. 

 
Fig. 3. Conical shell model with attached mass in 

ABAQUS software 
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The boundary condition at the two ends of the 
shell is simply supported. Since in this study, the 
free vibration analysis of the structure is 
considered by defining a frequency step, no force 
is defined and only the constraints of the support 
are applied. In finite element software, the shell 
element is used and for this element, six degrees 
of freedom are defined in each node, of which 
three degrees of freedom are transitional and 
three degrees of freedom are related to rotational 
motion. According to the defined coordinate 
system, only constraints are enough to achieve a 
simple boundary condition, U3 and UR2 in 
ABAQUS are free and the others are fixed. Here a 
tie constraint is applied between the surfaces of 
the shell and attached mass that are in contact 
with each other. 

7. Results and Discussions of 
Numerical Analysis 

To verify the accuracy of the results of this 
study, the validity of the results has been done in 
two ways. First, for free vibrations of the conical 
shell (ignoring the attached mass), a comparison 
with the results of the previous researches and 
numerical simulations in ABAQUS software have 
been performed. The present analytical results 
for isotropic conical shell vibrations with 
attached mass obtained from the analytical 
method  are validated with the numerical 
simulation results in ABAQUS software. The 
mechanical properties and geometric 
characteristics of the conical shell in this study 
are given in Tables 1 and 2, respectively. 
Specifications of the attached mass are listed in 
each case. 

Table 1. The mechanical properties of the shell 

𝝆(
𝒌𝒈

𝒎𝟑
) 𝝂𝟏𝟐 

𝑮𝟐𝟑 
(𝑮𝑷𝒂) 

𝑮𝟏𝟐 = 𝑮𝟏𝟑 

(𝑮𝑷𝒂) 
𝑬𝟐𝟐 
(𝑮𝑷𝒂) 

𝑬𝟏𝟏 
(𝑮𝑷𝒂) 

Material 
Number 

7 0.28 2.5 7.12 10.3 181 1 

2710 0.3 26.92 26.92 70 70 2 

Table 2. Geometric characteristics of the shell (mm) 

Layup h L 𝑹𝟏 Geometry 

[90/0/90/0/90/0] 0.002 1 1 1 

isotropic 0.004  - 0.3 2 

7-1- Free Vibration of Conical Shell 

For comparison with references and 
validation, the natural frequencies are presented 

in dimensionless form ( )2

0 2( 1 )F R E  = − . 

In this relation, 
0  

is the natural frequency 

(rad/s),  is the large radius of the conical shell, 

ℎ is the thickness, 𝐿 is the edge length, 𝑚 and 𝑛 

are the axial half-wave and the circumferential 
wave numbers, respectively. The results obtained 
for the isotropic conical shell using the present 
analytical method (using a MATLAB code) have 
been compared with other references in Tables 3 
to 5 with different semi-vertex angles.  

Table 3. Compression of dimensionless frequency material  
no.2, geometry no.2, 𝜑 = 30° , 𝐿 = 0.2 𝑚 , 𝑚 = 1 

n  Ref. [3] Present %Error 

2 0.8420 0.8405 0.17 

3 0.7376 0.7375 0.01 

4 0.6362 0.6368 0.09 

5 0.5528 0.5536 0.14 

6 0.4950 0.4955 0.1 

7 0.4661 0.4661 0 

8 0.4660 0.4653 0.15 

Table 4. Compression of dimensionless frequency material  
2, geometry no. 2, 𝜑 = 45° , 𝐿 = 0.14 𝑚 , 𝑚 = 1 

n  Ref. [3] Present %Error 

2 0.7655 0.7639 0.2 

3 0.7212 0.7205 0.09 

4 0.6739 0.6738 0.01 

5 0.6323 0.6326 0.04 

6 0.6035 0.6038 0.01 

7 0.5921 0.5920 0.01 

8 0.6001 0.5995 0.09 

Table 5. Compression of dimensionless frequency material  
no. 2, geometry no.2, 𝜑 = 60° , 𝐿 = 0.11 𝑚 , 𝑚 = 1  

n  Ref. [3] Present %Error 

2 0.6348 0.6341 0.06 

3 0.6238 0.6243 0.06 

4 0.6145 0.6143 0.03 

5 0.6111 0.6109 0.03 

6 0.6171 0.6168 0.04 

7 0.6350 0.6344 0.09 

8 0.6660 0.6649 0.16 

Also, in Figure 4, the natural frequencies of the 
conical composite shell obtained from the 
present method are compared with ABAQUS 
software. As can be seen from the figure, the 
results are in good agreement. 

 
Fig. 4. Comparison of the frequency of composite conical 

shell for material no. 1, geometry no.1, 𝑚 = 1 
2R
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7-2- Free Vibration of Conical Shell with 
Attached Mass 

To ensure the accuracy of the present method 
for a shell with attached mass, in a special case 
the conical shell with a zero semi-vertex angle 
( 0 = or cylindrical shell ), natural frequencies of 

the shell with the attached mass that obtained 
with the present method was compared with Ref. 
[18]. The geometrical dimensions and material 
properties of the shell model are given in Table 6. 
This model is an externally ring stiffened 
cylindrical shell. Table 7 shows the comparison of 
present analytical results of natural frequencies 
with Ref. [18]. The good agreement between the 
present results and Ref. [18]. 

Table 6. Geometrical and material properties of 
the stiffened shell 

Characteristics 
Physical dimensions 
and values 

Number of rings  19 

Shell radius (m) 0.049759 

Shell thickness (m) 0.001651 

Shell length (m) 0.3945 

Rings height (m) 0.005334 

Rings width (m) 0.003175 

Modulus of elasticity (GPa) 68.95 

Mass density (kg/m3) 2762 

Poisson’s ratio 0.3 

Table 7. Comparison of natural frequencies obtained with 
the present method with Ref. [18]( for the shell 

 with attached mass) 

n 
Frequency [Hz] 

%Error 
Present Ref. [18] 

1 1217.6 1199.58 %1.5 

2 1555.6 1564.47 %0.5 

3 4284.6 4387.59 %2.34 

4 8083.1 8377.75 %3.5 

5 13005.4 13490.7 %3.6 

In this part, the free vibration of the shell 
considering the effect of the attached mass is 
examined without considering its stiffness. 
Figure 5 shows the results of the vibration 
analysis of an isotropic cone of material no. 2 in 
which an attached mass with geometric 
properties 𝜌𝑎 = 10 𝜌𝑠 ,    𝜃𝑎 = 2𝜋 ,    𝐿𝑎 = 0.05 𝑚 

and ℎ𝑎 = 0.002 is located in the center of the 
cone. The subscript (a) stands for the attached 
mass and subscript (s) stands for the shell. 
According to the figure, the addition of the mass 
attached to the conical shell has reduced the 
frequencies in all circumferential modes. In the 
case of the shell with attached mass, the results 
are compared with ABAQUS. The greatest 
discrepancy is related to the zero circumferential 
mode (n=0) and it is 16.3% as indicated in  
Figure 5. 

 
Fig. 5. Comparison of analytical and numerical results of 
isotropic conical shell frequency with attached mass for 

different circumferential modes, material no. 2, 
 geometry no. 2, m=1,  =30

s
 

At this stage of the analysis, a conical 
composite shell is considered and the attached 
mass is placed on the conical shell and the effect 
of various parameters such as width, height, mass 
angular position around the cone, full ring, 
stringer and mass distance from the support to 
the composite conical shell have been 
investigated. 

First, the attached mass is placed at the 
middle of the conical shell as a segment of the 
circle and the effect of changing the angle of the 
attached mass segment on the fundamental 
frequencies is investigated. The property of the 
Heaviside function has been used to investigate 
the effect of the attached mass. 

The Heaviside function affects the integral 
intervals when solving the governing equations 
of the shell with the attached mass. These 
integrals in the longitudinal and circumferential 
directions represent the dimensions of the 
attached mass or the overall dimensions of the 
structure. Stiffness and mass matrices are 
obtained by multiplying these integrals in the 
matrix of material properties and surface unit 
density, respectively. By keeping the position of 
the attached mass constant in the longitudinal 
direction, the only variable in this section is the 
increase in the subtended angle of the coupled 
mass. Increasing the semi-vertex angle causes the 
corresponding integrals to be increased and this 
effect on the shell stiffness is greater than the 
effect of its mass, which has led to an increase in 
the fundamental frequencies of the composite 
cone, according to Table 8. 

Figure 6 investigates the effect of the 
placement of a ring at different longitudinal 
distances on the conical shell on the fundamental 
frequencies for longitudinal wave 1m = . 
Increasing the distance from the small end side of 
the cone to 0.4 of the total length of the shell 
increases the natural frequency and beyond this 
value, it decreases the natural frequency. Because 
by increasing the radius of the cone at different 
longitudinal distances, the size of the ring 
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becomes larger and as a result, the mass 
increases. In fact, up to x/L=0.4, the effect of the 
stiffness matrix is more than the mass matrix, and 
therefore the frequency is increased and beyond 
x/L=0.4, the effect of the mass matrix is greater 
than the stiffness, which causes the natural 
frequencies to be decreased. In this section, in all 
cases, the length, angle, density, and height of the 
attached mass are constant and the effective 
factor in changing the integrals is the radius of the 
cone. In some integrals, increasing the radius, 
increases and in others decreases the value of the 
integral, but in integrals related to the mass 
matrix, it only increases the mass. 

 
Fig 6. Effect of the place of the attached mass on the shells 

natural frequencies; The shell is made of material no. 1 

and geometry no. 1,  = 15 ; The attached mass is made 

of material no. 2, m=1, 0.05
a

L m= , 0.01
a

h m= , 2
a
 =  

 
Fig 7. Effect of thickness of the attached mass on the 

shells natural frequencies; The shell is made of material 

no. 1 and geometry no. 1, 15 =  ; The attached mass is 

made of material no. 2, 0.05
a

L m= , 2
a
 =  

Figure 7 indicates the effect of coupled mass 
thickness on the base frequencies. By increasing 
the thickness, the frequency of the structure is 

increased. In this case, the thickness affects the 
stiffness and mass matrices, so that in the 
stiffness matrix, it has the greatest effect on the 
flexural stiffness section, causing the component 
(𝐷11) to increase 34 times. However, increasing 
the thickness from 0.002m to 0.01m causes the 
mass to be increased by five times. Accordingly, 
the frequency is increased by 1.6, 1.75, and 1.9 
times for n=10, n=11, and n=12, respectively. 

Shells used in different industries may have 
equipment attached inside the shell. If the area of 
the installation of the equipment is stiffened 
enough and the mass of the equipment is 
considered to be distributed over that area, its 
mass effect can be calculated by increasing the 
area density and the result of free vibrations can 
be examined. Table 9 investigates the effect of 
increasing the density of a ring in the middle of 
the cone on the fundamental frequencies of the 
shell. The fundamental frequency occurred when 
no mass was added ( )30 = kg m . Increasing the 

density directly affects the shell mass matrix and 
reduces the fundamental frequencies. In the first 

stage ( 32710kg m = ), mass was added to the 

shell along with stiffness and hence caused the 
fundamental frequencies of the shell to be 
increased. In this study, the mass of the shell is 
22.5 kg. By changing the density of the attached 
mass, the mass of the ring increases from 1.92 to 
19.47 kg. In the next step, by increasing the 

density ( 313550kg m = and 327100kg m = ) the 

fundamental frequency is decreased and for the 

density 313550kg m = , the fundamental 

frequency occurred at n=10.  
Table 10 indicates the effect of increasing the 

modulus of elasticity of a ring in the middle of a 
conical shell. Increasing Young's modulus of the 
attached mass increases the values of the 
stiffness in the tangential direction according to 
Eq. (17) and thus increases the overall stiffness of 
the system. Accordingly, the stiffness matrix Kij in 
Eq. (14) is affected considering the attached 
mass. Hence, the increased overall stiffness also 
increases the fundamental frequencies of the 
system. In this case, the components of the 
material matrix are increased up to four times. 

Table 8. Effect of attached mass subtended angle on the shell's natural frequencies. The shell is made of material no. 1 and geometry 
no. 1, 𝜑 = 45°; The attached mass is made of material no. 2, 𝐿𝑎 = 0.05 𝑚 , ℎ𝑎 = 0.01 𝑚, 𝑚 = 1 

a sM M n=12 n=11 n=10 ( )dega  

0 100.52 97.02 97.68 0 

Present Analytical 

0.03 122.75 110.93 108.14 30 

0.07 138.07 123.99 124.62 60 

0.11 150.05 137.21 129.50 90 

0.21 174.91 157.86 146.39 180 

0.32 190.57 171.05 157.35 270 

0.43 201.42 180.24 165.08 360 

0.43 179.61 177.48 169.77 360 Present ABAQUS 
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Table 9. Effect of the density of the attached mass on the shell's natural frequencies. The shell is made of material no. 1 and 

geometry no. 1,
 
 = 15 ; The attached mass is made of material no. 2, =0.05

a
L m , =0.002

a
h m ,  =2

a  

27100 13550 2710 0 ( )3kg m  

66.86 78.58 104.01 98.11 Present Analytical 

n=10 64.77 81.44 98.30 97.68 Present ABAQUS 

3.22 3.5 5.48 0.46 Discrepancy(%) 

66.13 80.90 102.88 97.49 Present Analytical 

n=11 66.72 80.55 100.81 97.02 Present ABAQUS 

0.88 0.43 2.01 0.48 Discrepancy(%) 

68.33 86.57 106.30 101.07 Present Analytical 

n=12 71.39 83.23 107.39 100.52 Present ABAQUS 

4.28 4.01 1.01 0.54 Discrepancy(%) 

Table 10. Effect of Young’s modulus of the attached mass on the shell's natural frequencies. The shell is made of material no. 1 and 

geometry no. 1,  = 15 ; The attached mass is made of material no. 2, =0.05
a

L m , =0.002
a

h m ,  =2
a  

280 210 140 70 0 ( )E GPa  

134.72 125.49 115.35 104.01 98.11 n=10 

Present Analytical 131.56 123.03 113.57 102.88 97.49 n=11 

134.90 126.28 116.98 106.3 101.07 n=12 

121.74 118.6 114.25 107.39 100.52 n=12 Present ABAQUS 

9.75 6.08 2.33 1.1 0.54  Discrepancy(%) 

 

Figure 8 shows the twelfth mode (n=12) 
obtained from ABAQUS software for 70=E GPa  

and longitudinal wave number m=1. 
Figure 9 presents the effect of increasing the 

width of the ring located in the middle of the 
conical shell. By changing the longitudinal place 
of the attached mass, the amount of integrals in 
the stiffness and mass matrix becomes larger. On 
the other hand, the thickness and properties of 
the material are constant in this case. As a result, 
increasing the length causes the values of the 
stiffness and mass matrices to be increased. The 
effect of this parameter on the stiffness matrix is 
greater and therefore increases the fundamental 
frequencies of the shell. In Figure 10, the effect of 
adding a narrow attached mass in the 
longitudinal direction (stringer) at different 
subtended angles on the natural frequencies of 
the shell is indicated. The geometrical and 
mechanical properties of the shell are 
geometrical No.1 in Table 2 and material No. 1 in 
Table 1, respectively. The mechanical properties 
of the attached mass are material No. 2 in Table 1.  
It can be seen, at small circumferential wave 
number (n), the effect of the angle change is 
insignificant on the natural frequency, but at 
large circumferential wave number (n) and near 
the fundamental frequency, the effect of the cone 
angle change on the natural frequency is 
significant. 

 
Fig. 8. The twelfth mode (n=12) obtained from ABAQUS 

software for longitudinal wave number m=1 and 

70E GPa=  

 
Fig 9. Effect of the length of the attached mass to the cone 
length on the shells natural frequencies; The shell is made 

of material no. 1 and geometry no. 1,
 
 = 15 ; 

 The attached mass is made of material  
no. 2, ℎ𝑎 = 0.002𝑚, 𝜃𝑎 = 2𝜋 
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7-3- Investigation of the Effect of Length and 
Thickness of Shell on the Natural 
Frequencies 

The influence of geometrical parameters 

1( / )h R  and 
1( / )L R  on the natural frequency is 

investigated. That 1R is the small radius and t  

thickness of the conical shell. Fig. 11 Indicated the 
effect of 

1( / )h R  on the natural frequency. It can 

be seen, at small circumferential wave numbers 
( 4n ), the effect of increasing 

1( / )h R  is 

insignificant on the natural frequency, but at 
large circumferential wave number ( 4n ), the 
effect of increasing 

1( / )h R , is significant on the 

natural frequency. 

 
Fig 10. Effect of attached mass subtended angle on the 

natural frequencies of the cone stiffened with a stringer in 
the longitudinal direction (stringer). 

𝐿𝑎 = 𝐿𝑠  ,   ℎ𝑎 = 0.002 𝑚 

 
Fig 11. Effect of the ratio of thickness to small radius 

1( / )h R on the natural frequency; The shell is made of 

material no. 1 and 0

1 1 , 1 , 1 , 15= = = =R m m L m  and 

orientation [90 / 0 / 90 / 0 / 90 / 0]  

 

Fig 12. Effect of the ratio of length to small radius
 

1( / )L R on the natural frequency; The shell is made of 

material no. 1 and 0

1 1 , 1 , 0.02 , 15R m m t m = = = =  

and orientation [90 / 0 / 90 / 0 / 90 / 0]  

Also increasing the ratio of length to small 
radius 

1( / )L R  on the natural frequency of the 

composite conical shell is shown in Figure 12. It 
can be seen, increasing the ratio of length to small 
radius at different circumferential wave numbers 
reduces the natural frequency of the system. 
Given that the length parameter at the integrals 
of the free vibration section of the cone is often 
Located at the denominator of the fraction, this 
decrease in frequency in exchange for an increase 
in length is justified.  Also in the low 
circumferential wave number, with the 
increasing length of the shell (increasing the ratio 
of length to radius) the rate of decrease in natural 
frequency is greater than in the case that the 
number of the circumferential wave is larger. 

8. Conclusion 

In this paper, for the first time, the free 
vibrations of the conical shell with a locally 
attached mass are investigated. The equilibrium 
equations of the composite conical shell are 
obtained based on the classical theory of shells 
and using the energy method and Hamilton’s 
principle. The boundary conditions of the shell 
are considered to be simply supported. The 
displacement components are written in the form 
of double Fourier series according to the 
boundary conditions. The relations of 
displacement-strain and displacement-curvature 
are considered based on Love's first 
approximation. Using Galerkin’s method, the 
governing equations of the free vibrations of the 
conical shell are solved and the natural 
frequencies, the mode shapes, and the effect of 
different parameters on them are investigated. 
Also, the effect of attached mass using the cone 
differential operator and the effect of the 
Heaviside function on the equilibrium equations 
have been considered and its effect on the free 
vibrations of the conical shell has been 
investigated. Validation of the obtained results 
has been done with the aid of references and 
ABAQUS finite element software. In the following, 
the most important results and outcomes of the 
present study are stated as the following:  
1- Increasing the subtended angle of the 

attached mass causes the frequencies to be 
increased. 

2- The effect of placement of a ring in the 
longitudinal direction up to about x/L=0.4 of 
the shell length increases the fundamental 
frequencies and beyond x/L=0.4 causes the 
fundamental frequencies to be decreased. 

3- Increasing the thickness of the attached mass 
in the fundamental modes has increased the 
frequencies. 

4- Increasing the width of the attached mass 
from 5 to 40 percent of the shell length has 
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increased the integrals in the stiffness and 
mass matrices, which has led to an increase 
in the fundamental frequencies of the cone.  

5- Placing the attached mass in the longitudinal 
direction of the shell and at different 
subtended angles has little effect on the first 
circumferential wave number and has a 
decreasing effect on the greater 
circumferential wave numbers as well as the 
fundamental frequencies. 

6- Increasing the ratio of length to radius of 
shell in all circumferential wave numbers 
reduces the natural frequency of the shell   
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(That the subscript “k” is the layer number). 
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