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Abstract

In this article, we introduce a new class of multi-cubic mappings and then unify a system of cubic functional equations
defining a multi-cubic mapping to an equation, as the multi-cubic functional equation. Moreover, we show that the
mentioned equation describes the multi-cubic mappings. Furthermore, we prove the Hyers-Ulam stability of multi-
cubic mappings in non-Archimedean normed spaces by applying a known fixed point theorem.
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1 Introduction

Let V and W be linear spaces, and n ≥ 2 be a natural number. A mapping f : V n −→ W is called multi-additive
if it is additive (satisfies Cauchy’s functional equation A(x + y) = A(x) + A(y)) in each variable; see [13] and [15].
Some facts on such mappings can be found in [24] and many other sources. Moreover, f is said to be multi-quadratic
if it is quadratic in each variable [26], namely, it satisfies quadratic functional equation

Q(x+ y) +Q(x− y) = 2Q(x) + 2Q(y) (1.1)

in each variable; refer to [3], [8], [10], [28], [29] and [33] more details about some forms of multi-quadratic mappings.

J. M. Rassias was the first author who defined cubic functional equations in [27] as follows:

C(x+ 2y) = 3C(x+ y) + C(x− y)− 3C(x) + 6C(y). (1.2)

After that, Jun and Kim introduced the cubic equation

C(2x+ y) + C(2x− y) = 2C(x+ y) + 2C(x− y) + 12C(x) (1.3)

in [21] and then different form of cubic functional equation defined by them in [22] is

C(x+ 2y) + C(x− 2y) = 4C(x+ y) + 4C(x− y)− 6C(x). (1.4)

Equations (1.3) and (1.4) were generalized by Bodaghi in [4] as follows:

f(rx+ sy) + f(rx− sy) = rs2[f(x+ y) + f(x− y)] + 2r(r2 − s2)f(x) (1.5)
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where r, s are integer numbers with r ± s ̸= 0; see also [7].

Ghaemi et al., in [19] introduced the multi-cubic mappings for the first time. In fact, they considered a mapping
f : V n −→W which satisfies (1.5) in each variable. Next, a special case of such mappings is studied in [11]. In fact, a
mapping f : V n −→ W is called multi-cubic if it is cubic in each variable, i.e., satisfies (1.3) in each variable. In [11],
the authors unified the system of functional equations defining a multi-cubic mapping to a single equation, namely,
multi-cubic functional equation. Furthermore, the general system of cubic functional equations which was defined in
[19], characterized as a single equation in [18].

In two last decades, the stability problem for functional equations which was initiated by Ulam [30] for group
homomorphisms, answered and studied for several variables mappings. Indeed, a functional equation Γ is said to be
stable if any function f satisfying the equation Γ approximately must be near to an exact solution.

The Hyers-Ulam stability of multi-quadratic mappings in various Banach spaces have been studied in [8], [9], [14],
[16], [17] and [33]. In [11], it is shown that every multi-cubic functional equation is stable; for the miscellaneous versions
of multi-cubic mappings and their stabilities in modular spaces, we refer to [25]), respectively. For the structure and
stability of multi-additive-quadratic and multi-quadratic-cubic, we refer to [1] and [6], respectively.

Using equation (1.2), in this paper, we define a new form of multi-cubic mappings which are different from [11]
and [18] and then present a characterization of such mappings. In other words, we reduce the system of n equations
defining the multi-cubic mappings to obtain a single functional equation. We also prove the Hyers-Ulam stability and
hyperstabilty for multi-cubic functional equations in non-Archimedean normed spaces by applying a known fixed point
theorem which has been introduced and studied in [12]; for more applications of this technique see [2], [31] and [32].

2 Characterization of multi-cubic mappings

Throughout this paper, N, Z and Q are the set of all positive integers, integers and rational numbers, respectively,
N0 := N ∪ {0},R+ := [0,∞). For any l ∈ N0, n ∈ N, t = (t1, . . . , tn) ∈ {−1, 1}n and x = (x1, . . . , xn) ∈ V n we write
lx := (lx1, . . . , lxn) and tx := (t1x1, . . . , tnxn), where lx stands, as usual, for the scaler product of l on x in the linear
space V .

Definition 2.1. Let V and W be vector spaces over Q, n ∈ N. A several variables mapping f : V n −→ W is called
n-cubic or multi-cubic if f satisfies (1.2) in each variable.

Let n ∈ N with n ≥ 2 and xni = (xi1, xi2, . . . , xin) ∈ V n, where i ∈ {1, 2}. We shall denote xni by xi if there is no
risk of mistake. For x1, x2 ∈ V n and pl ∈ N0 with 0 ≤ pl ≤ n, where l ∈ {1, 2, 3}. Set

An = {An = (A1, . . . , An)| Aj ∈ {x1j ± x2j , x1j , x2j}} ,

for all j ∈ {1, . . . , n}. The subset An
(p1,p2,p3)

of An is considered as follows:

An
(p1,p2,p3)

: = {An ∈ An| Card{Aj : Aj = x1j} = p1,

Card{Aj : Aj = x2j} = p2,Card{Aj : Aj = x1j + x2j} = p3, }.

The following notations can be used for the multi-cubic mappings.

f
(
An

(p1,p2,p3)

)
:=

∑
An∈An

(p1,p2,p3)

f (An) , (2.1)

and
f
(
An

(p1,p2,p3)
, z
)
:=

∑
An∈An

(p1,p2,p3)

f (An, z) (z ∈ V ).

The notation

(
n
k

)
is the binomial coefficient which is defined for all n, k ∈ N0 with n ≥ k by n!

k!(n−k)! .

Definition 2.2. Consider a mapping f : V n −→W . Then, it



Characterization and stability of multi-cubic mappings 2495

(i) satisfies zero condition if f(x) = 0 for any x ∈ V n with at least one component which is equal to zero.

(ii) is odd in the jth variable if

f(z1, . . . , zj−1,−zj , zj+1, . . . , zn) = −f(z1, . . . , zj−1, zj , zj+1, . . . , zn).

Here, we bring the following lemma, presented in [5].

Lemma 2.3. Let n, k, pl ∈ N0, such that k +
∑m

l=1 pl ≤ n, where l ∈ {1, . . . ,m}. Then(
n− k

n− k −
∑m

l=1 pl

)( ∑m
l=1 pl∑m−1
l=1 pl

)
· · ·

(
p1 + p2
p1

)
=

(
n− k
p1

)(
n− k − p1

p2

)
· · ·

(
n− k −

∑m−1
l=1 pl

pm

)
.

Let 0 ≤ k ≤ n− 1. Put n := {1, . . . , n}, n ∈ N. For a subset T = {j1, . . . , ji} of n with 1 ≤ j1 < · · · < ji ≤ n and
x = (x1, . . . , xn) ∈ V n,

Tx := (0, . . . , 0, xj1 , 0, . . . , 0, xji , 0, . . . , 0) ∈ V n

denotes the vector which coincides with x in exactly those components, which are indexed by the elements of T and
whose other components are set equal zero. Note that 0x = 0, nx = x. We use these notations in the proof of upcoming
lemma.

We need the next lemma in reaching our goal in this section. The idea of proof is taken form [6, Lemma 2.3].

Lemma 2.4. Suppose that a mapping f : V n −→W satisfies the equation

f(x1 + 2x2) =

n∑
p1=0

n−p1∑
p2=0

n−p1−p2∑
p3=0

(−3)p16p23p3f
(
An

(p1,p2,p3)

)
, (2.2)

for all x1, x2 ∈ V n, where f
(
An

(p1,p2,p3)

)
is defined in (2.1). Then, it has zero condition.

Proof . Given an arbitrary and fixed x ∈ V n. We argue by induction on k that for each kx, f(kx) = 0 when
0 ≤ k ≤ n− 1. Putting x1 = x2 =0x in (2.2), we have

f(0x)

=

[
n∑

p1=0

n−p1∑
p2=0

n−p1−p2∑
p3=0

(
n

n− p1 − p2 − p3

)(
p1 + p2 + p3
p1 + p2

)(
p1 + p2
p1

)
(−3)p16p23p3

]
f(0x). (2.3)

Using Lemma 2.3 for k = 0, we have

n∑
p1=0

(
n

n− p1 − p2 − p3

)(
p1 + p2 + p3
p1 + p2

)(
p1 + p2
p1

)
(−3)p16p23p3

=

n∑
p1=0

(
n
p1

)
(−3)p1

n−p1∑
p2=0

(
n− p1
p2

)
6p2

n−p1−p2∑
p3=0

(
n− p1 − p2

p3

)
1n−p1−p2−p3 × 3p3

=

n∑
p1=0

(
n
p1

)
(−3)p1

n−p1∑
p2=0

(
n− p1
p2

)
6p2 × 4n−p1−p2

=

n∑
p1=0

(
n
p1

)
(−3)p110n−p1 = 7n.

(2.4)

It follows from relations (2.3) and (2.4) that f(0x) = 7nf(0x), and so f(0x) = 0. Assume that for each k−1x,
f(k−1x) = 0. We show that f(kx) = 0. Without loss of generality, we assume that the first k variables are non-zero.
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By our assumption, replacing (x1, x2) by (kx1, 0) in equation (2.2), we have

f(kx)

=

[
n∑

p1=0

n−k−p1∑
p2=0

n−k−p1−p2∑
p3=0

(
n− k

n− k − p1 − p2 − p3

)(
p1 + p2 + p3
p1 + p2

)(
p1 + p2
p1

)
(−3)p16p23p3

]
f(kx).

Similar the above and by using Lemma 2.3, we can obtain f(kx) = 7n−kf(kx) and this implies that f(kx) = 0 and so
the proof is now finished. □

In the following result which is our aim in this section, we unify the general system of cubic functional equations
defining a multi-cubic mapping to a equation and indeed this functional equation describes a multi-cubic mapping.

Proposition 2.5. A mapping f : V n −→W is multi-cubic if and only if it satisfies equation (2.2).

Proof . First, suppose that f is a multi-cubic mapping. We obtain this implication by induction on n. For n = 1, it
is trivial that f satisfies equation (1.2). If (2.2) is true for some positive integer n > 1, then,

f
(
xn+1
1 + 2xn+1

2

)
= f (xn1 + 2xn2 , x1,n+1 + 2x2,n+1)

= 3f (xn1 + 2xn2 , x1,n+1 + x2,n+1) + f (xn1 + 2xn2 , x1,n+1 − x2,n+1)

− 3f (xn1 + 2xn2 , x1,n+1) + 6f (xn1 + 2xn2 , x2,n+1)

= 3

n∑
p1=0

n−p1∑
p2=0

n−p1−p2∑
p3=0

(−3)p16p23p3f
(
An

(p1,p2,p3)
, x1,n+1 + x2,n+1

)

+

n∑
p1=0

n−p1∑
p2=0

n−p1−p2∑
p3=0

(−3)p16p23p3f
(
An

(p1,p2,p3)
, x1,n+1 − x2,n+1

)

− 3

n∑
p1=0

n−p1∑
p2=0

n−p1−p2∑
p3=0

(−3)p16p23p3f
(
An

(p1,p2,p3)
, x1,n+1

)

+ 6

n∑
p1=0

n−p1∑
p2=0

n−p1−p2∑
p3=0

(−3)p16p23p3f
(
An

(p1,p2,p3)
, x2,n+1

)

=

n+1∑
p1=0

n+1−p1∑
p2=0

n+1−p1−p2∑
p3=0

(−3)p16p23p3f
(
An+1

(p1,p2,p3)

)
.

This means that (2.2) holds for n+ 1.

Conversely, let j ∈ {1, . . . , n} be arbitrary and fixed. Set

f∗j (z) : = f (z1, . . . , zj−1, z, zj+1, . . . , zn) .

Putting x2k = 0 for all k ∈ {1, . . . , n}\{j}, x2j = w and x1 = (z1, . . . , zj−1, z, zj+1, . . . , zn) in (2.2), using Lemma 2.4,
we get

f∗j (z + 2w) =

[
n−1∑
p1=0

n−p1∑
p3=1

(
n− 1
p1

)(
n− 1− p1
p3 − 1

)
(−3)p13p3

]
f∗j (z + w)

+

[
n−1∑
p1=0

n−1−p1∑
p3=0

(
n− 1
p1

)(
n− 1− p1

p3

)
(−3)p13p3

]
f∗j (z − w)

+

[
n∑

p1=1

n−p1∑
p3=0

(
n− 1
p1 − 1

)(
n− p1
p3

)
(−3)p13p3

]
f∗j (z)

+ 6

[
n−1∑
p1=0

n−1−p1∑
p3=0

(
n− 1
p1

)(
n− 1− p1

p3

)
(−3)p13p3

]
f∗j (w)
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=

[
n−1∑
p1=0

(
n− 1
p1

)
(−3)p1

n−1−p1∑
p3=0

(
n− 1− p1

p3

)
3p3+1 × 1n−1−p3

]
f∗j (z + w)

+

[
n−1∑
p1=0

(
n− 1
p1

)
(−3)p1

n−1−p1∑
p3=0

(
n− 1− p1

p3

)
3p3 × 1n−1−p3

]
f∗j (z − w)

+

[
n−1∑
p1=0

(
n− 1
p1

)
(−3)p1+1

n−1−p1∑
p3=0

(
n− 1− p1

p3

)
3p3 × 1n−1−p3

]
f∗j (z)

+ 6

[
n−1∑
p1=0

(
n− 1
p1

)
(−3)p1

n−1−p1∑
p3=0

(
n− 1− p1

p3

)
3p3 × 1n−1−p3

]
f∗j (w)

= 3

[
n−1∑
p1=0

(
n− 1
p1

)
(−3)p14n−1−p1

]
f∗j (z + w)

+

[
n−1∑
p1=0

(
n− 1
p1

)
(−3)p13p34n−1−p1

]
f∗j (z − w)

− 3

[
n−1∑
p1=0

(
n− 1
p1

)
(−3)p1+14n−1−p1

]
f∗j (z)

+ 6

[
n−1∑
p1=0

(
n− 1
p1

)
(−3)p13p34n−1−p1

]
f∗j (w)

= 3(4− 3)n−1f∗j (z + w) + (4− 3)n−1f∗j (z − w)− 3(4− 3)n−1f∗j (z) + 6(4− 3)n−1f∗j (w)

= 3f∗j (z + w) + f∗j (z − w)− 3f∗j (z) + 6f∗j (w).

This finishes the proof. □

3 Stability of multi-cubic mappings

In this section, we prove the Hyers-Ulam stability of equation (2.2) in non-Archimedean normed spaces. The
proof is based on a fixed point result that can be derived from [12, Theorem 1]. Before that, we bring some basic
facts concerning non-Archimedean spaces and some preliminary results. Recall that a metric d on a nonempty set
X is said to be non-Archimedean (or an ultrametric) provided d(x, z) ≤max{d(x, y), d(y, z)} for x, y, z ∈ X. By a
non-Archimedean field we mean a field K equipped with a function (valuation) | · | from K into [0,∞) such that

(i) |a| = 0 if and only if a = 0;

(ii) |ab| = |a||b| for all a, b ∈ K;

(iii) |a+ b| ≤ max{|a|, |b|} for all a, b ∈ K.

It is clear that |1| = | − 1| = 1 and |n| ≤ 1 for all n ∈ Z. A trivial valuation on any field K is defined by the following
for a ∈ K

|a| :=

{
0 a = 0,

1 a ̸= 0.

For a nontrivial non-Archimedean valuation on Q, assume that p is prime number. It is known that any non-zero
rational number r can be uniquely written as r = m

n p
s, where m,n, s ∈ Z in which m and n are integers not divisible

by p. It easily verified that the function | · |p : Q −→ [0,∞) given through

|r|p :=

{
0 a = 0,

p−s a ̸= 0,

is a nontrivial non-Archimedean valuation on Q.

Let V be a vector space over a scalar field K with a non-Archimedean non-trivial valuation | · |. A function
∥ · ∥ : V −→ R is a non-Archimedean norm (valuation) if it satisfies the following conditions:



2498 Neisi, Asgari

(i) ∥x∥ = 0 if and only if x = 0;

(ii) ∥ax∥ = |a|∥x∥, (x ∈ V, a ∈ K);

(iii) the strong triangle inequality (ultrametric); namely,

∥x+ y∥ ≤ max{∥x∥, ∥y∥} (x, y ∈ V ).

Then, (V, ∥ · ∥) is said to be a non-Archimedean normed space.

A sequence {xn} is Cauchy if and only if {xn+1 − xn} converges to zero in a non-Archimedean normed space X .
Indeed, the above definition is taken from the fact that

∥xn − xm∥ ≤ max{∥xj+1 − xj∥;m ≤ j ≤ n− 1} (n ≥ m).

A non-Archimedean normed space is complete if every Cauchy sequence is convergent. If (V, ∥·∥) is a non-Archimedean
normed space, then it is easy to check that the function dV : V × V −→ R+, defined via dV (x, y) := ∥x − y∥, is a
non-Archimedean metric on V that is invariant (i.e., dV (x+ z, y+ z) = dV (x, y) for x, y, z ∈ X). In other words, every
non-Archimedean normed space is a special case of a metric space with invariant metrics.

The most interesting example of non-Archimedean normed spaces is p-adic numbers which have gained the interest
of physicists because of their connections with some problems coming from quantum physics, p-adic strings and
superstrings [23]. A key property of p-adic numbers is that they do not satisfy the Archimedean axiom: for all
x, y > 0, there exists an integer n such that x < ny; for more details we refer to [20].

We recall that for a field K with multiplicative identity 1, the characteristic of K is the smallest positive number

n such that

n−times︷ ︸︸ ︷
1 + · · ·+ 1 = 0.

Throughout, for two sets A and B, the set of all mappings from A to B is denoted by BA. Here, we indicate the
next theorem which is a fundamental result in fixed point theory [12, Theorem 1]. This result plays a key tool in
obtaining our purpose in this paper.

Theorem 3.1. Let the following hypotheses hold.

(H1) E is a nonempty set, Y is a complete non-Archimedean normed space over a non-Archimedean field of the
characteristic different from 2, j ∈ N, g1, . . . , gj : E −→ E and L1, . . . , Lj : E −→ R+,

(H2) T : Y E −→ Y E is an operator satisfying the inequality

∥T λ(x)− T µ(x)∥ ≤ maxi∈{1,...,j}Li(x) ∥λ(gi(x))− µ(gi(x))∥ ,

for all λ, µ ∈ Y E , x ∈ E,

(H3) Λ : RE
+ −→ RE

+ is an operator defined through

Λδ(x) := maxi∈{1,...,j}Li(x)δ(gi(x)) δ ∈ RE
+, x ∈ E.

Suppose that the function θ : E −→ R+ and the mapping φ : E −→ Y fulfill the following two conditions:

∥T φ(x)− φ(x)∥ ≤ θ(x), lim
l→∞

Λlθ(x) = 0 (x ∈ E).

Then, for every x ∈ E, the limit liml→∞ T lφ(x) =: ψ(x) exists and the mapping ψ ∈ Y E , defined in this way, is a
fixed point of T with

∥φ(x)− ψ(x)∥ ≤ supl∈N0
Λlθ(x) (x ∈ E).

From now on, for the mapping f : V n −→W , we consider the difference operator Df : V n × V n −→W by

Df(x1, x2) := f(x1 + 2x2)−
n∑

p1=0

n−p1∑
p2=0

n−p1−p2∑
p3=0

(−3)p16p23p3f
(
An

(p1,p2,p3)

)
where f

(
An

(p1,p2,p3)

)
is defined in (2.1).

In the sequel, all mappings f : V n −→W are assumed that satisfy zero condition. With this assumption, we have
the next stability result for functional equation (2.2).
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Theorem 3.2. Let β ∈ {−1, 1} be fixed. Let also V be a linear space andW be a complete non-Archimedean normed
space over a non-Archimedean field of the characteristic different from 2. Suppose that φ : V n × V n −→ R+ is a
mapping satisfying the equality

lim
l→∞

(
1

|8|nβ

)l

φ(2lβx1, 2
lβx2) = 0, (3.1)

for all x1, x2 ∈ V n. Assume also f : V n −→W is an odd mapping in each variable and satisfies the inequality

∥Df(x1, x2)∥ ≤ φ(x1, x2), (3.2)

for all x1, x2 ∈ V n. Then, there exists a unique multi-cubic mapping C : V n −→W such that

∥f(x)− C(x)∥ ≤ supl∈N0

1

|8|n β+1
2

(
1

|8|nβ

)l

φ
(
0, 2lβ+

β−1
2 x

)
, (3.3)

for all x ∈ V n.

Proof . Putting x = 0 and x2 = x1 = x in (3.2), we have∥∥∥∥∥f(2x)−
[

n∑
p2=0

n−p2∑
p3=0

(
n
p2

)(
n− p2
p3

)
6p23p3(−1)n−p2−p3

]
f(x)

∥∥∥∥∥ ≤ φ(0, x) (3.4)

for all x ∈ V n (here and the rest of proof). A calculation shows that

n∑
p2=0

n−p2∑
p3=0

(
n
p2

)(
n− p2
p3

)
6p23p3(−1)n−p2−p3

=

n∑
p2=0

(
n
p2

)
6p2

n−p2∑
p3=0

(
n− p2
p3

)
3p3(−1)n−p2−p3

=

n∑
p2=0

(
n
p2

)
6p2(3− 1)n−p2 = (6 + 2)n = 8n. (3.5)

Relations (3.4) and (3.5) imply that

∥f(2x)− 8nf(x)∥ ≤ φ(0, x). (3.6)

Set

θ(x) :=
1

|8|n β+1
2

φ
(
0, 2

β−1
2 x

)
, T ξ(x) := 1

8nβ
ξ(2βx),

for all ξ ∈WV n

. Here, we rewrite (3.6) as follows:

∥f(x)− T f(x)∥ ≤ θ(x). (3.7)

For each η ∈ RV n

+ , we define Λη(x) := 1
|8|nβ η(r

βx). It is easy to check that Λ has the form described in (H3) with

E = V n, g1(x) := 2βx and L1(x) =
1

|8|nβ . Furthermore, for each λ, µ ∈WV n

, we obtain

∥T λ(x)− T µ(x)∥ =

∥∥∥∥ 1

8nβ
λ(2βx)− 1

8nβ
µ(2βx)

∥∥∥∥ ≤ L1(x) ∥λ(g1(x))− µ(g1(x))∥ .

It follows the above relation that the hypothesis (H2) hold. One can argue by induction on l ∈ N that

Λlθ(x) :=

(
1

|8|nβ

)l

θ(2lβx) =
1

|8|n β+1
2

(
1

|8|nβ

)l

φ
(
0, 2lβ+

β−1
2

)
. (3.8)
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Now, (3.7) and (3.8) necessitate that all assumptions of Theorem 3.1 hold and so there exists a unique mapping
C : V n −→ W such that C(x) = liml→∞(T lf)(x) and (3.3) is valid as well. In addition, by induction on l, we can
prove that

∥D(T lf)(x1, x2)∥ ≤
(

1

|8|nβ

)l

φ(2lβx1, 2
lβx2) (3.9)

for all x1, x2 ∈ V n. Letting l → ∞ in (3.9) and applying (3.1), we achieve DC(x1, x2) = 0 for all x1, x2 ∈ V n. This
means that the mapping satisfies equation (2.2) and the proof is now completed. □

In what follows, it is assumed that the non-Archimedean field has the characteristic different from 2 and |2| < 1.
In the next corollaries which are some direct applications of Theorem 3.2, V is a non-Archimedean normed space and
W is a complete non-Archimedean normed space.

Corollary 3.3. Let δ > 0. Suppose that f : V n −→W is an odd mapping in each variable and satisfies the inequality

∥Df(x1, x2)∥ ≤ δ,

for all x1, x2 ∈ V n. Then, there exists a unique multi-cubic mapping C : V n −→W such that

∥f(x)− C(x)∥ ≤ δ,

for all x ∈ V n.

Proof . We firstly note that |8| < 1. Given φ(x1, x2) = δ in the case β = −1 of Theorem 3.2, we get liml→∞ |8|nlδ = 0.
Therefore, one can obtain the desired result. □

Corollary 3.4. Let α ∈ R fulfills α ̸= 3n. Suppose that f : V n −→ W is an odd mapping in each variable and
satisfies the inequality

∥Df(x1, x2)∥ ≤
2∑

k=1

n∑
j=1

∥xkj∥α,

for all x1, x2 ∈ V n. Then, there exists a unique multi-cubic mapping C : V n −→W such that

∥f(x)− C(x)∥ ≤


1

|8|n
∑n

j=1 ∥x1j∥α, α > 3n,

1
|2|α

∑n
j=1 ∥x1j∥α, α < 3n,

for all x = x1 ∈ V n.

Proof . Letting φ(x1, x2) =
∑2

k=1

∑n
j=1 ∥xkj∥α, we have φ(2lx1, 2

lx2) = |8|lpφ(x1, x2). It now follows from Theorem
3.2 the first and second inequalities in the cases β = 1 and β = −1, respectively. □

Recall that a functional equation F is hyperstable if any mapping f satisfying the equation F approximately is a
true solution of F . Under some conditions the functional equation (2.2) can be hyperstable as follows.

Corollary 3.5. Suppose that αkj > 0 for k ∈ {1, 2} and j ∈ {1, . . . , n} fulfill
∑2

k=1

∑n
j=1 αkj ̸= 3n. If f : V n −→W

is an odd mapping in each variable and satisfies the inequality

∥Df(x1, x2)∥ ≤
2∏

k=1

n∏
j=1

∥xkj∥αkj ,

for all x1, x2 ∈ V n, then f is multi-cubic.
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