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Abstract

The main aim of this work is to find the exact solution in the form of the Mittag-Leller function for the nonlinear
time-fractional reaction-diffusion-convection equation via a new coupling method namely, the Aboodh variational
iteration method (AVIM). The proposed method is a coupling of the Aboodh transform method with the variational
iteration method and the fractional derivative defined with the Liouville-Caputo operator. Three different numerical
applications are given to demonstrate the validity and applicability of the proposed method and compare it to existing
methods. The results shown through figures and tables demonstrate the accuracy of our method. It is concluded here
that the proposed method is very efficient, simple and can be applied to other nonlinear problems arising in science
and engineering.
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1 Introduction

Nonlinear fractional differential equations (NFDEs) have appeared in many physical and engineering processes.
The wide applicability of these equations is the main reason why they have gained so much attention from many
mathematicians and physicists. The study of analytical or numerical solutions of NFDEs plays an important role in
mathematical physics, engineering and other sciences. Therefore, an effective and appropriate methods to solve them
is very important.

Recently, the fractional natural decomposition method (FNDM) [12], Sumudu homotopy perturbation method
(SHPM) [2], homotopy analysis transform method (HATM) [7], optimal homotopy asymptotic method (OHAM) [4],
Elzaki projected differential transform method (EPDTM) [11], fractional residual pawer series method (FPSM) [9],
fractional reduced differential transform method (FRDTM) [3] have been used for solving a wide range of NFDEs.
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In this paper we will suggest a new coupling method namely, the Aboodh variational iteration method (AVIM)
to find the exact solution of nonlinear time-fractional reaction-diffusion-convection equations. The exact solution is
given in terms Mittag-Leffler function.

We consider the nonlinear time-fractional reaction-diffusion-convection equation of the following type

Dα
t u = (a(u)ux)x + b(u)ux + c(u), (1.1)

with the initial condition
u(x, 0) = u0(x), (1.2)

whereDα
t is the Liouville-Caputo time-fractional derivative operator of order α with 0 < α ≤ 1, u = {u(x, t), (x, t) ∈ R× R+}

is an unknown function and the arbitrary smooth functions a(u), b(u) and c(u) denote the diffusion term, the convection
term and the reaction term respectively.

The rest of this paper is arranged as follows. The section 2, is devoted to some basic definitions and theorems of
the fractional calculus theory and Aboodh transform. In section 3, we explain the variational iteration method (VIM).
Section 4 is devoted to applying the proposed method for the nonlinear time-fractional reaction-diffusion-convection
equation (1.1) with the initial conditions (1.2). Moreover, in section 5 the proposed method is applied to three different
numerical applications. In section 6, we give the conclusion of this work. Finally, some research perspectives are given
in section 7.

2 Basical definitions

This section introduces some basic definitions and theorems of the fractional calculus theory and Aboodh transform,
which are useful for our method.

Definition 2.1. [6] A real function f(t), t > 0, is considered to be in the space Cµ, µ ∈ R if there exists a real
number p > µ, so that f(t) = tph(t), where h(t) ∈ C ([0,∞[), and it is said to be in the space Cn

µ if f (n) ∈ Cµ, n ∈ N.

Definition 2.2. [6] The Riemann-Liouville fractional integral operator of order α ≥ 0 of f ∈ Cµ, µ ≥ −1 is defined
as follows

Iαf(t) =


1

Γ(α)

t∫
0

(t− ξ)
α−1

f(ξ)dξ, t > 0, α > 0,

f(t), α = 0,

(2.1)

where Γ(.) is the well-known gamma function.

Definition 2.3. [6] The Liouville-Caputo fractional derivative of order α > 0 of f ∈ Cn
−1, n ∈ N is defined as follows

Dαf(t) =

{
In−αf (n)(t), t > 0, n− 1 < α < n,
f (n)(t), α = n.

(2.2)

Definition 2.4. [6] Let n to be the smallest integer that exceeds α. The Liouville-Caputo time-fractional derivative
operator of order α ∈ R+ is defined as follows

Dα
t u(x, t) =


1

Γ(n− α)

t∫
0

(t− ξ)
n−α−1

u(n)(x, ξ)dξ, n− 1 < α < n,

u(n)(x, t), α = n.

(2.3)

Definition 2.5. [6] The Mittag-Leffler function is defined as follows

Eα (z) =

∞∑
n=0

zn

Γ(nα+ 1)
, α ∈ C, Re(α) > 0. (2.4)

For α = 1, Eα (z) reduces to ez.
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Definition 2.6. [1] The Aboodh transform of the function f(t) of exponential order is defined over the set of functions

A =

{
f(t) | ∃M,k1, k2 > 0, |f(t)| < M exp

(
|t|
kj

)
, if t ∈ (−1)j × [0,∞)

}
,

by the following integral

A [f(t)] = K(v) =
1

v

∫ ∞

0

f(t)e−vtdt, t ≥ 0, k1 < v < k2, (2.5)

where v is the factor of the variable t.

Some basic properties of the Aboodh transform are given as follows:

Property 1: The Aboodh transform is a linear operator. That is, if λ and µ are non-zero constants, then

A [λf(t)± µg(t)] = λA [f(t)]± µA [g(t)] .

Property 2: If f (n)(t) is the n−th derivative of the function f(t) ∈ A with respect to ”t” then its Aboodh
transform is given by

A
[
f (n)(t)

]
= vnK(v)−

n−1∑
k=0

f (k)(0)

v2−n+k
.

Property 3: (Convolution property) Suppose K(v) and G(v) are the Aboodh transforms of f(t) and g(t), respec-
tively, both defined in the set A. Then the Aboodh transform of their convolution is given by

A [(f ∗ g) (t)] = vK(v)G(v),

where the convolution of two functions is defined by

(f ∗ g) (t) =
t∫

0

f(ξ)g(t− ξ)dξ =

t∫
0

f(t− ξ)g(ξ)dξ.

Property 4: Some special Aboodh transforms

A(1) =
1

v2
,

A(t) =
1

v3
,

A(tn) =
n!

vn+2
, n = 0, 1, 2, ...

Property 5: The Aboodh transform of tα is given by

A [tα] =
Γ (α+ 1)

vα+2
, α ≥ 0.

Theorem 2.7. If K(v) is the Aboodh transform of f(t), then the Aboodh transform of the Riemann-Liouville frac-
tional integral for the function f(t) of order α, is given by

A [Iαy(t)] =
1

vα
K(v). (2.6)

Proof . The Riemann-Liouville fractional integral for the function f(t), as in (2.1) , can be expressed as the convolution

Iαf(t) =
1

Γ(α)
tα−1 ∗ f(t). (2.7)

Applying the Aboodh transform in the Eq. (2.7) and using the properties (3) and (5), we have

A [Iαf(t)] = A
[

1

Γ(α)
tα−1 ∗ f(t)

]
= vA

[
tα−1

Γ(α)

]
A [f(t)]

= v
1

vα+1
K(v) =

1

vα
K(v).

The proof is complete. □
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Theorem 2.8. Let n ∈ N∗ and α > 0 be such that n− 1 < α ≤ n and K(v) be the Aboodh transform of the function
f(t), then the Aboodh transform of the Liouville-Caputo fractional derivative of f(t) of order α, is given by

A [Dαf(t)] = vαK(v)−
n−1∑
k=0

f (k)(0)

v2−α+k
. (2.8)

Proof . Let
g(t) = f (n)(t),

then by the Definition of the Liouville-Caputo fractional derivative 2.3, we obtain

Dαf(t) =
1

Γ(n− α)

t∫
0

(t− ξ)n−α−1f (n)(ξ)dξ

=
1

Γ(n− α)

t∫
0

(t− ξ)n−α−1g(ξ)dξ

= In−αg(t). (2.9)

Applying the Aboodh transform on both sides of (2.9) using the Theorem 2.7, we get

A [Dαf(t)] = A
[
In−αg(t)

]
=

1

vn−α
G(v). (2.10)

Also, we have from the properties (1) and (2)

A [g(t)] = A
[
f (n)(t)

]
,

and

G(v) = vnK(v)−
n−1∑
k=0

f (k)(0)

v2−n+k
.

Hence, (2.10) becomes

A [Dαf(t)] =
1

vn−α

(
vnK(v)−

n−1∑
k=0

f (k)(0)

v2−n+k

)
= vαK(v)−

n−1∑
k=0

f (k)(0)

v2−α+k
.

The proof is complete. □

3 Variational iteration method

Idea of variational iteration method (VIM) depends on the general Lagrange’s multiplier method. This method
has a main feature, which is the solution of a mathematical problem with linearization assumption used as initial
approximation or trial function. This approximation converges rapidly to an accurate solution.

To illustrate the basic concepts of the VIM, we consider the following nonlinear differential equation

Lu(x, t) +Nu(x, t) = f(x, t), (3.1)

where L is a linear operator and N is a nonlinear operator, and f(x, t) is an inhomogeneous term.

According to the VIM [10], we can construct a correction functional as follows

un+1(x, t) = un(x, t) +

t∫
0

λ(ξ) [Lu(x, ξ) +Nũ(x, ξ)− f(x, ξ)] dξ, (3.2)
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wherel λ(ξ) is a general Lagrangian multiplier, which can be identified optimally via the variational theory and
integration by parts. The subscript n denotes the nth−order approximation, ũn is considered as a restricted variation
( i.e. δũn = 0 ).

So, we first determine the Lagrange multiplier λ(ξ) that will be identified optimally via integration by parts. The
successive approximations un+1, n ≥ 0 of the solution u(x, t) will be readily obtained upon using the obtained Lagrange
multiplier and by using any selective function u0 . Consequently, the Solution

u(x, t) = lim
n−→∞

un(x, t).

4 Description of the Aboodh variational iteration method (AVIM)

Theorem 4.1. Consider the nonlinear time-fractional reaction-diffusion-convection equation (1.1) with the initial
condition (1.2). Then, by the AVIM the exact solution of Eqs. (1.1) and (1.2) is given as a limit of the successive
approximations {un(x, t)}n≥0 , in other words

u(x, t) = lim
n−→∞

un(x, t).

Proof . To prove the above theorem, we consider the following nonlinear time-fractional reaction-diffusion-convection
equation (1.1) with the initial condition (1.2).

First we define
Nu = (a(u)ux)x ,Mu = b(u)ux,Ku = c(u). (4.1)

Eq. (1.1) is written in the form

Dα
t u(x, t) = Nu(x, t) +Mu(x, t) +Ku(x, t). (4.2)

Applying the Aboodh transform on both sides of (4.2) and using the Theorem 2.8, we get

A [u(x, t)] =
1

v2
u(x, 0) +

1

vα
A [Nu(x, t) +Mu(x, t) +Ku(x, t)] . (4.3)

After that, let us take the inverse Aboodh transform on both sides of (4.3) we have

u(x, t) = u0(x) +A−1

(
1

vα
A [Nu(x, t) +Mu(x, t) +Ku(x, t)]

)
. (4.4)

Take the first partial derivative with respect to t of Eq. (4.4) to obtain

0 =
∂

∂t
u(x, t)− ∂

∂t
u0(x)−A−1

(
1

vα
A [Nu(x, t) +Mu(x, t) +Ku(x, t)]

)
. (4.5)

According to the variational iteration method, we can construct a correct functional as follows

un+1(x, t) = un(x, t)−
t∫

0

[
∂un(x, t)

∂ξ
− ∂

∂ξ
A−1

(
1

vα
A [Nun(x, t) +Mun(x, t)

+Kun(x, t)])−
∂

∂t
u0(x)

]
dξ. (4.6)

Or equivalently

un+1(x, t) = u0(x) +A−1

(
1

vα
A [Nun(x, t) +Mun(x, t) +Kun(x, t)]

)
. (4.7)

The exact solution is given as a limit of the successive approximations {un(x, t)}n≥0 ,in other words,

u(x, t) = lim
n→∞

un(x, t). (4.8)

This completes the proof. □
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5 Numerical Applications

This section demonstrates the accuracy and effectiveness of the proposed method by presenting three different
types of nonlinear time-fractional reaction-diffusion-convection equation.

Example 5.1. Consider the following nonlinear time-fractional reaction-diffusion-convection equation

Dα
t u = uxx + uux + u− u2, (5.1)

with the initial condition
u(x, 0) = 1 + exp(x), (5.2)

where Dα
t is the Liouville-Caputo time-fractional derivative operator of order α, 0 < α ≤ 1 and u is a function of

(x, t) ∈ R× R+.

According to (4.7), we can construct the iteration formula as follows

un+1(x, t) = 1 + exp(x) +A−1

(
1

vα
A
[
unxx + ununx + un − u2

n

])
. (5.3)

Using the iteration formula (5.3), we obtain

u0(x, t) = 1 + exp(x),

u1(x, t) = 1 + exp(x)

(
1 +

tα

Γ(α+ 1)

)
,

u2(x, t) = 1 + exp(x)

(
1 +

tα

Γ(α+ 1)
+

t2α

Γ(2α+ 1)

)
,

u3(x, t) = 1 + exp(x)

(
1 +

tα

Γ(α+ 1)
+

t2α

Γ(2α+ 1)
+

t3α

Γ(3α+ 1)

)
,

...

and so on.

Then, the general term in successive approximation is given by

un(x, t) = 1 + exp(x)

n∑
k=0

tkα

Γ(kα+ 1)
.

Consequently, the exact solution of Eqs. (5.1) and (5.2) in a closed form is given by

u(x, t) = lim
n→∞

un(x, t) =

(
1 + exp(x)

∞∑
k=0

tkα

Γ(kα+ 1)

)
= 1 + exp(x)Eα(t

α).

where Eα(t
α) is the Mittag-Leffler functions defined by Eq. (2.4).

For α = 1, then
u(x, t) = 1 + exp(x)E1(t) = 1 + exp(x+ t).

The solution is the same as that obtained by the RPSM [5].

Example 5.2. Consider the following nonlinear time-fractional reaction-diffusion-convection equation

Dα
t u = (uux)x + 3uux + 2(u− u2), (5.4)

with the initial condition
u(x, 0) = 2

√
exp(x)− exp(−4x), (5.5)
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Figure 1: 3D plots graphs of the 4th−order approximate solution and exact solution for Example 5.1.
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Figure 2: 2D plots graphs of the 4th−order approximate solution and exact solution for Example 5.1 when x = 1.

t α = 0.7 α = 0.8 α = 0.9 α = 1 exact solution |uexact − uAV IM |
0.01 3.8409 3.7928 3.7635 3.7456 3.7456 2.2690× 10−12

0.03 3.9922 3.9020 3.8417 3.8011 3.8011 5.5322× 10−10

0.05 4.1212 4.0005 3.9165 3.8577 3.8577 7.1383× 10−9

0.07 4.2412 4.0947 3.9904 3.9154 3.9154 3.8520× 10−8

0.09 4.3565 4.1868 4.0642 3.9743 3.9743 1.3579× 10−7

Table 1: The numerical values of the 4th order approximpate solution by AVIM and exact solution for Example 5.1 when x = 1.

where Dα
t is the Liouville-Caputo time-fractional derivative operator of order α, 0 < α ≤ 1 and u is a function of

(x, t) ∈ R+ × R+.
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According to (4.7), we can construct the iteration formula as follows

un+1(x, t) = 2
√
exp(x)− exp(−4x)

+A−1

(
1

vα
A
[
(ununx)x + 3ununx + 2(un − u2

n)
])

. (5.6)

Using the iteration formula (5.6), we obtain

u0(x, t) = 2
√

exp(x)− exp(−4x),

u1(x, t) = 2
√

exp(x)− exp(−4x)

(
1 +

2tα

Γ(α+ 1)

)
,

u2(x, t) = 2
√
exp(x)− exp(−4x)

(
1 +

2tα

Γ(α+ 1)
+

22t2α

Γ(2α+ 1)

)
,

u3(x, t) = 2
√
exp(x)− exp(−4x)

(
1 +

2tα

Γ(α+ 1)
+

22t2α

Γ(2α+ 1)
+

23t3α

Γ(3α+ 1)

)
,

...

and so on.

Then, the general term in successive approximation is given by

un(x, t) = 2
√
exp(x)− exp(−4x)

n∑
k=0

(2tα)
k

Γ(kα+ 1)
.

Consequently, the exact solution of Eqs. (5.4) and (5.5) in a closed form is given by

u(x, t) = lim
n→∞

un(x, t)

= 2
√

exp(x)− exp(−4x)

∞∑
n=0

tkα

Γ(nα+ 1)

= 2
√
exp(x)− exp(−4x)Eα (2tα) .

where Eα(2t
α) is the Mittag-Leffler functions defined by Eq. (2.4).

For α = 1, then

u(x, t) = 2
√
exp(x)− exp(−4x)E1(2t) = 2 exp(2t)

√
exp(x)− exp(−4x).

The solution is the same as that obtained by the RPSM [5].

t α = 0.7 α = 0.8 α = 0.9 α = 1 exact solution |uexact − uAV IM |
0.01 3.5918 3.4695 3.3966 3.3527 3.3527 8.7928× 10−11

0.03 3.9939 3.7489 3.5922 3.4895 3.4895 2.1510× 10−8

0.05 4.3591 4.0120 3.7851 3.6319 3.6319 2.7849× 10−7

0.07 4.7179 4.5398 3.9809 3.7802 3.7802 1.5079× 10−6

0.09 5.0799 4.5398 4.1818 3.9344 3.9344 5.3341× 10−6

Table 2: The numerical values of the 4th order approximpate solution by AVIM and exact solution for Example 5.2 when x = 1.

Example 5.3. Consider the following nonlinear time-fractional reaction-diffusion-convection equation

Dα
t u = uxx − ux + uux + u− u2, (5.7)

with the initial condition
u(x, 0) = exp(x), (5.8)
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Figure 3: 3D plots graphs of the 4th−order approximate solution and exact solution for Example 5.2.
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Figure 4: 2D plots graphs of the 4th−order approximate solution and exact solution for Example 5.2 when x = 1.

where Dα
t the Liouville-Caputo time-fractional derivative operator of order α, 0 < α ≤ 1 and u is a function of

(x, t) ∈ R× R+.

According to (4.7), we can construct the iteration formula as follows

un+1(x, t) = ex +A−1

(
1

vα
A
[
unxx − unx + ununx + un − u2

n

])
. (5.9)
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Using the iteration formula (5.9), we obtain

u0(x, t) = exp(x),

u1(x, t) = exp(x)

(
1 +

tα

Γ(α+ 1)

)
,

u2(x, t) = exp(x)

(
1 +

tα

Γ(α+ 1)
+

t2α

Γ(2α+ 1)

)
,

u3(x, t) = exp(x)

(
1 +

tα

Γ(α+ 1)
+

t2α

Γ(2α+ 1)
+

t3α

Γ(3α+ 1)

)
,

u4(x, t) = exp(x)

(
1 +

tα

Γ(α+ 1)
+

t2α

Γ(2α+ 1)
+

t3α

Γ(3α+ 1)
+

t4α

Γ(4α+ 1)

)
,

...

Then, the general term in successive approximation is given by

un(x, t) = exp(x)

n∑
k=0

tkα

Γ(kα+ 1)
.

Consequently, the exact solution of Eqs. (5.7) and (5.8) in a closed form is given by

u(x, t) = lim
n→∞

un(x, t) = exp(x)

∞∑
k=0

tkα

Γ(kα+ 1)

= exp(x)Eα (tα) .

where Eα(t
α) is the Mittag-Leffler functions defined by Eq. (2.4).

For α = 1, then
u(x, t) = exp(x)E1 (t) = exp(x+ t).

The solution is the same as that obtained by the HPM [8].
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Figure 5: 3D plots graphs of the 4th−order approximate solution and exact solution for Example 5.3.
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Figure 6: 2D plots graphs of the 4th−order approximate solution and exact solution for Example 5.3 when x = 1.

t α = 0.7 α = 0.8 α = 0.9 α = 1 exact solution |uexact − uAV IM |
0.01 2.8409 2.7928 2.7635 2.7456 2.7456 2.2690× 10−12

0.03 2.9922 2.9020 2.8417 2.8011 2.8011 5.5322× 10−10

0.05 3.1212 3.0004 2.9165 2.8577 2.8577 7.1383× 10−9

0.07 3.2412 3.0946 2.9904 2.9154 2.9154 3.8520× 10−8

0.09 3.3565 3.1868 3.0642 2.9743 2.9743 1.3579× 10−7

Table 3: The numerical values of the 4th order approximpate solution by AVIM and exact solution for Example 5.3 when x = 1.

6 Conclusion

In this work, we proposed a new coupling method namely, the Aboodh variational iteration method (AVIM) for
obtaining the exact solution of the nonlinear time-fractional reaction-diffusion-convection equation. The exact solution
is given in the form of the Mittag-Leffler function. Three different examples are presented in order to validate and
illustrate the effectiveness of the proposed method. We have noticed that the results obtained by the AVIM are in
perfect agreement with the results obtained from the exisiting methods. Consequently and in conclusion, the AVIM
can be considered as a promising method and can be applied to other nonlinear fractional partial differential equations
which appear in various scientific fields and dynamical systems in the applied mathematics and engineering.

7 Open problems

In future works, we will extend the proposed method for solving a wide variety of nonlinear fractional partial
differential equations that include higher-order fractional derivatives α, where n− 1 < α ≤ n and n > 1. In addition,
we will try to apply this method in solving nonlinear fractional partial differential equations, but with different
fractional derivative operators such as: Caputo-Fabrizio fractional derivative, Atangana-Baleanu-Caputo fractional
derivative, Conformable fractional derivative, etc...
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