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Abstract

The aim of this paper is to investigate the Legendre spectral method for solving the diffusion equation with a source
term and mixed initial-boundary value problem in a finite rectangle Ω2, we use some techniques to convert the problem
to a system of ordinary differential equations and by an analysis matrical we find a general term defines all ordinary
differential equations of this system, we solve this general term we get the desired approximate solution, we also present
the error estimate.
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1 Introduction

The differential equations play a very important role in all fields of science like mathematics and Mathematical
Physics and other Sciences, and a long time ago the scientists and researchers face difficulties in resolving many of these
equations, for this we turned in recent years, especially after the emergence of the computer to search for approximate
solution instead of the exact solution for these problems, these methods gave his fruit.

The main motivation in this paper is the numerical analysis of discretization of the in homogeneous mixed initial-
boundary value problem using spectral element method, this method is associated with quadrature formulas which
allow for a complete discretization of the right-hand side and of the linear form involved in the variational formulation,
see also [4, 5, 8, 12, 25].

The concerned problem refers to the equation: ∂tu− a∂2
xu+ cu = f in Ω2

u(x, t) = 0 on ∂Λ× I
u(x, 0) = u0(x) in Λ

(1.1)

where Ω2 is a regular finte rectangle defined by Ω2 = Λ×I = (−1, 1)×(0, T ), also a and c are the positive constants,
which u(x, t) represents the temperature at point x and time t, the discretization consists therefore the space variable
and the time variable.
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Then the problem (1.1) is a problem of one space variable, by using the orthogonal matrix we reduce this problem
to a system of ordinary differential equations.

In this work we construct approximate solution to the boundary value problem (1.1) in the following form

uN (x, t) =

N∑
n=0

bn(t)ln(x). (1.2)

Where ln(x), 0 ≤ n ≤ N , are the Lagrangian interpolates at the points xi ∈ Λ = [−1, 1], 0 ≤ i ≤ N , these
interpolates satisfy the property ln(xj) = δnj , 1 ≤ n, j ≤ N − 1, where δnj is the Kronecker delta and the points
xj , 0 ≤ j ≤ N are the collocation points on the Gauss-Lobatto Legendre grid. The grid made by xj , 0 ≤ j ≤ N,
is denoted by SN+1. The choice of the form (1.2) for the approximation solution, added to some techniques give a
linear system which can be written in a matricial form as ΓDb − Ab = ΓG, where A is a square matrix and Γ is a
diagonal invertible matrix and the operator D = d

dt . We write b = Pv where P is an orthogonal matrix such that
P−1

(
Γ−1A

)
P = C is a diagonal matrix, then we obtain a system of N − 1 ordinary differential equations, we can

use the Lagrange method to solve for each component vi(t) of v, finally we conclude the expression of functions bn(t)
and for which we obtain the desired approximate solution, see also [1, 2, 15, 26, 27].

2 Orthogonal polynomials

We work in the model domain Λ and we use the Legendre polynomials Ln, n ≥ 0 : each polynomial Ln has a
degree n, it is orthogonal to the other ones in

L2 (Λ) =

{
φ : Λ → R,measurable/

∫ 1

−1

φ2 (x) dx < +∞
}
, (2.1)

and satisfies the following property ∫ 1

−1

Ln(x)Lm(x)dx =
2

2n+ 1
δnm, (2.2)

where δnm denotes the Kronecker symbol.

h′
n (x) = −n (n+ 1)Ln (x) , hn (x) =

(
1− x2

)
L

′

n (x) , n ≥ 0. (2.3)

hn (x) =
n (n+ 1)

2n+ 1
(Ln−1(x)− Ln+1(x)) . (2.4)

∥hn (x)∥2L2(Λ) =
4 [n(n+ 1)]

2

(4n2 − 1)(2n+ 3)
. (2.5)

3 Variational Formulation

3.1 The spaces

The pivot space of the problem (1.1) is the space L2 (Λ) , and the variational space is the Sobolev space

H1 (Λ) =
{
v ∈ L2 (Λ) / ∂xv ∈ L2(Λ)

}
, (3.1)

and the corresponding norms are defiended respectively as

∥v∥2L2(Λ) =

∫
Λ

v2dx, (3.2)

∥v∥2H1(Λ) =

∫
Λ

(v2 + (∂xv)
2
)dx. (3.3)
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3.2 The continuous problem

To introduce the variational formulation for the continuous problem ( 1.1), we need the subspace of the variational
space with zero Dirichlet trace

H1
0 (Λ) =

{
v ∈ L2 (Λ) / vx ∈ L2(Λ), v(1) = v(−1) = 0

}
. (3.4)

We introduce the product in L2 (Λ)

(f, v) =

∫
Λ

f(x, t)v(x, t)dx. (3.5)

The continuous problem (1.1) admits the equivalent variational formulation:

Find u in H1
0 (Λ), such that,

∀v ∈ H1
0 (Λ) , θ(u, v) = ⟨f, v⟩ , (3.6)

where

θ(u, v) =

∫
Λ

(
∂tu− a∂2

xu+ cu
)
vdx, (3.7)

integrating by parts leads to,

θ(u, v) =

∫
Λ

(∂tuv + a∂xu∂xv + cuv) dx. (3.8)

4 Discrete space and form

Let us denoted by N the parameter of discretization for the problem (1.1), in spectral method N represents the
degree of polynomials. The approximate space is essentially generated by the finite dimensional subspace of L2 (Λ),
P 0
N (Λ) is the approximate space of the space H1

0 (Λ), where

P 0
N (Λ) = {pn ∈ PN (Λ) / pn(1) = pn(−1) = 0} , (4.1)

where PN (Λ) is the set of polynomials of degree less than or equal to N . We consider also the exact quadrature
formula and introduce a bilinear form a N with approach to the form a and we approximate the scalar (., .) for (., .)N .

4.1 The Discrete problem

Firstly we observe that the Lagrange polynomials ln(x), 0 ≤ n ≤ N , form a basis of P 0
N (Λ), then the exact solution

u of problem (1.1) is approached by the solution u1
N belonging to P 0

N (Λ) with
(
u1
N − u0

)
∈ P 0

N (Λ){
find u1

N ∈ P 0
N (Λ), s.t

∀vN ∈ P 0
N (Λ), θN (u1

N , vN ) = (fN , vN )N
(4.2)

where

θN (u1
N , vN ) =

N∑
k=0

(
∂tu

1
NvN + a∂xu

1
N∂xvN + cu1

NvN
)
(xk, t)ρk. (4.3)

where xk, ρk, 0 ≤ k ≤ N, are defined in proposition 4.1, u1
N = uN + uN0, uN ∈ P 0

N (Λ), and the problem (4.2) is
equivalent to the following problem: Find u1

N in P 0
N (Λ) with uN = u1

N − uN0 in P 0
N (Λ) such that, ∀vN ∈ P 0

N (Λ)

θN (uN , vN ) = ∆N (uN0, vN ), (4.4)

where
∆N (uN0, vN ) = (fN , vN )N − θN (uN0, vN ). (4.5)
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4.2 Existence and uniqueness of solution

4.2.1 Quadrature formula

Proposition 4.1. There exists a unique set of N − 1 nodes xj , 1 ≤ j ≤ N − 1 in Λ and with the condition
x0 = −1, xN = 1, there exists N + 1 positive weights ρj , 0 ≤ j ≤ N, such that the following exactness property holds:

∀φ ∈ P2N−1(Λ),

∫ 1

−1

φ (x) dx =

N∑
j=0

φ (xj) ρj . (4.6)

where xj , 1 ≤ j ≤ N − 1, are the roots of the polynomial L
′

N . and the weights ρj are given by:{
ρ0 = ρN = 2

N(N+1)

ρj=
ρ0

L2
N (xj)

, 1 ≤ j ≤ N − 1
(4.7)

Proof . See [5, 6]. □

Definition 4.2. We define the discrete product for all polynomials vN , uN in P 0
N (Λ) as:

(uN , vN )N =

N∑
k=0

uN (xk, t)vN (xk, t)ρk. (4.8)

Lemma 4.3. The polynomial hN−1 ∈ P 0
N (Λ) verifies the double inequality:

∥hN−1∥2L2(Λ) ≤ (hN−1, hN−1)N ≤ 3

2
∥hN−1∥2L2(Λ) . (4.9)

Proof . See [1]. □

Proposition 4.4. For all polynomial hn ∈ P 0
n(Λ) we have

n ∥hn∥L2(Λ) ≤
∥∥∥h′

n

∥∥∥
L2(Λ)

≤ 3n ∥hn∥L2(Λ) . (4.10)

Proof . See [1]. □

Also the lagrange’s polynomials lj(x), j = 1, N − 1 can be written in the following form

lj(x) =

N−1∑
k=0

γkjhk (x) , (4.11)

using (2.3), then we get

lj(x) =

N−1∑
k=0

λkjLk (x) . (4.12)

Proposition 4.5. The set of polynomials {Ln (ζ)} , n = 0..N forms a basis to the polynomial space PN (Λ), then any

polynomial φN ∈ PN (Λ) can be written as φN (ζ) =
N∑

n=0
αnLn(ζ) and we have the following inequality:

c1 log(2N + 1) ≤ ∥φ∥2L2(Λ) ≤ c2 log(exp(2)(2N + 1)), (4.13)

where (c1, c2) =
(
min(α2

n

)
,max(α2

n)).

Proof . See [1]. □

Proposition 4.6. For a positive integer m the Sobolev space Hm (Λ) is defined by:

Hm (Λ) =

{
φ ∈ L2 (Λ) : 1 ≤ k ≤ m,

dk

dxk
φ ∈ L2 (Λ)

}
, (4.14)



Spectral method for the diffusion equation with a source term 1347

with the norm:

∥φ∥2Hm(Λ) =

∫
Λ

m∑
k=0

(
dk

dxk
φ

)2

(x) dx. (4.15)

Proposition 4.7. The bilinear form θN (., .) in (4.4) satisfies the following properties of continuity:

∀uN ∈ P 0
N (Λ), ∀vN ∈ P 0

N (Λ), |θN (uN , vN )| ≤ max (a,
3

2
(c+ C4) )

(
||uN ||H1

0 (Λ) . ||vN ||H1
0 (Λ)

)
, (4.16)

and ellipticity:

∀uN ∈ P 0
N (Λ), |θN (uN , uN )| ≥ min(a, c+ C3)

(
||uN ||2H1

0 (Λ)

)
. (4.17)

Proof . Continuity:

θN (uN , vN ) =
N∑

k=0

∂tuN (xk, t)vN (xk, t)ρk +
N

a
∑

k=0

∂xuN (xk, t)∂xvN (xk, t)ρk +
N

c
∑

k=0

uN (xk, t)vN (xk, t)ρk.

We consider the solution and its derivatives are bounded then there exists two real positive constants C3 and C4

such that
C3 |uN (xk, t)| ≤ |∂tuN (xk, t)| ≤ C4 |uN (xk, t)| . (4.18)

Using lemmas (4.3), the exact quadrature formula and the Schwarz inequality then we obtain the desired results
also and ellipticity:

θN (uN , uN ) =
N∑

k=0

∂tuN (xk, t)uN (xk, t)ρk +
N

a
∑

k=0

∂xuN (xk, t)∂xuN (xk, t)ρk +
N

c
∑

k=0

uN (xk, t)uN (xk, t)ρk.

using the exactingness quadrature formula we can write,

θN (uN , uN ) =

N∑
k=0

∂tuN (xk, t)uN (xk, t)ρk + a

∫ 1

−1

∂xuN (x, t)∂xuN (x, t)dx+

N

c
∑
k=0

uN (xk, t)uN (xk, t)ρk, (4.19)

then from (4.18) we can write:

|θN (uN , uN )| ≥
N

C3

∑
k=0

uN (xk, t)uN (xk, t)ρk + a
∫ 1

−1
∂xuN (x, t)∂xuN (x, t)dx+

N

c
∑

k=0

uN (xk, t)uN (xk, t)ρk.

Using (4.9) we can write:

|θN (uN , uN )| ≥ min(a, c+ C3)
(
||uN ||2H1

0 (Λ)

)
.

then for this inequality yields the desired result. □

Proposition 4.8. (The inequality of stability) For any continuous function g = u0 on Λ, the problem (4.4) has a
unique solution uN in P 0

N (Λ), and this solution verifies the inequality of stability:

∥uN (x, t)∥H1
0 (Λ) ≤ γ

(
∥fN (x, t)∥L2(Λ) + ∥gN (x)∥L2(Λ)

)
. (4.20)

Proof . Using (4.4) we can write:

θN (uN , uN ) = (fN , uN )N − θN (gN , uN ) ≤ |(fN , uN )N |+ |θN (gN , uN )| , (4.21)

using Schwarz inequality we can write

|(fN , uN )N |+ |θN (gN , uN )| ≤ 3
2 ∥fN (x, t)∥L2(Λ) . ∥uN (x, t)∥L2(Λ)

+a ∥∂xgN (x, t)∥L2(Λ) . ∥∂xuN (x, t)∥L2(Λ)

+ 3c
2 ∥gN (x, t)∥L2(Λ) . ∥uN (x, t)∥L2(Λ) ,

the quantities ∥∂xgN (x, t)∥L2(Λ) , and ∥∂xuN (x, t)∥L2(Λ) are bounded then there exists a positive number γ such
that,

θN (uN , uN ) ≤ |(fN , uN )N |+ |θN (gN , uN )| ≤ γ
(
∥fN (x, t)∥L2(Λ) + ∥gN (x)∥L2(Λ)

)
∥uN (x, t)∥H1

0 (Λ) ,

using (4.17), yields the desired result. □
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5 Numerical experiment

At the points xk, 1 ≤ k ≤ N − 1 the problem (1.1) is equivalent to,

N−1∑
n=1

ln(xk)b
′
n(t) + [cln(xk)− al′n(xk)] bn(t) =

N−1∑
n=1

fn(t)ln(xk) + au′′
0(xk)− cu0(xk) in Λ ∩ SN+1

uN (xk, t) = 0, on ∂Λ ∩ SN+1

uN (x, 0) = uN0(x)

f(x, t) =
N−1∑
n=1

fn(t)ln (x) , fn(t) =
N−1∑
j=1

fjnlj (t) , fjn = f (xj , tn)

(5.1)

Since the functions

cln(x)− al′′n(x), 1 ≤ n ≤ N − 1

are polynomials with degree N, we multiply both sides by lm(xk)ρk and applying the sum, by using the quadrature
formula, when m varies from 1 to N − 1, we obtain a linear system, then we can write this system in a matricial form:

ΓDb−Ab = ΓF (5.2)

where A is a square symmetric define positive matrix with order N − 1, its elements have the form:

αmn = (−cln(xk)lm(xk)− a(l′n(xk)l
′
m(xk))ρk, n = 1, N − 1

}
,m = 1, N − 1

Γ is a diagonal invertible matrix its elements are defined as:

γmn =

{
ρm , n = m
0, n ̸= m

, m, n = 1, N − 1

F is a known vector where:

αmn = (−cln(xk)lm(xk)− a(l′n(xk)l
′
m(xk))ρk, n = 1, N − 1

}
,m = 1, N − 1

and the vector b is an unknown vector where

b(t) = (b1(t), b2(t), b3(t), ....., bN−2(t), bN−1(t))
t

the operator,

D =
d

dt

multiplying (5.2) by the invertible matrix Γ−1 of Γ then we find

Db− Γ−1Ab = F (5.3)

the matrix Γ−1A has positive eigenvalues and there exists an orthogonal invertible matrix P such that,

P−1
(
Γ−1A

)
P = C

where C is a diagonal matrix, the elements of the diagonal are the eigenvalues λi = αii, i = 1, N − 1 of the matrix
Γ−1A, if we consider the vector v such that

b = Pv

then the system (5.3) becomes
PDv − (Γ−1A)Pv = F (5.4)

multiplying multiplying (5.4) by the matrix P−1 we obtain,

Dv − Cv = P−1F (5.5)
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The matricial form (5.5) has N − 1 linear ordinary differential equations defined as

v′k(t)− λkvk(t) = hk(t) (5.6)

where hk(t) =

N−1∑
j=1

p−1 (k, j) (fj(t) + au′′
0(xk)− cu0(xk)) , 1 ≤ k ≤ N − 1 (5.7)

p−1 (k, j) are the elements of the inverse matrix P−1. To solve the equations (5.6) we use Lagrange’s method [27],
we may write the solution in the closed form:

vk(t) = eλkt

(∫ t

0

e−λkshk(s)ds+ dk

)
(5.8)

where dk is constant to be determined, using the boundary conditions then (5.8) may be written in the following
form:

vk(t) = eλkt

∫ t

0

e−λkshk(s)ds+

N−1∑
j=1

p−1
kj u0(xk)

 (5.9)

Finally we obtain the functions,

bn(t) =

N−1∑
j=1

pnjvj(t) (5.10)

where pnj , 1 ≤ n, j ≤ N − 1 are the elements of the matrix P , and the approximation solution is:

u(x, t) =

N−1∑
n=1

N−1∑
j=1

pnj

∫ t

0

e−λkshk(s)ds+

N−1∑
j=1

p−1
kj u0(xk)

 eλktln(x).

If the time t defined in the interval I = [0, T ] , we can consider the solution in the form

u(x, t) =

N−1∑
n=1

N−1∑
j=1

unj ln (x) lj (t) , bn(t) =

N−1∑
j=1

unj lj(t) (5.11)

using (5.10) and (5.11) then we determine the coefficients

unj =

N−1∑
j=1

pnj

∫ tj

0

e−λkshk(s)ds+

N−1∑
j=1

p−1
kj u0(xk)

 eλktj

and the approximate solution is

uN (x, t) =

N−1∑
n=1

N−1∑
m=1

N−1∑
j=1

pnj

∫ tj

0

e−λkshk(s)ds+

N−1∑
j=1

p−1
kj u0(xk)

 eλktj

 ln(x)lm (t) + Φ (x)

Φ (x) =
N−1∑
n=1

u0(xn)ln (x)

and using (5.7) we get

uN (x, t) =

N−1∑
n=1

N−1∑
m=1

N−1∑
j=1

pnj

∫ tj

0

e−λk(s−tj)
N−1∑
j=1

p−1 (k, j) (fj(s) + au′′
0(xk)− cu0(xk))

 ds

+

N−1∑
j=1

p−1
kj u0(xk)

 eλktj

 ln(x)lm (t) + Φ (x)
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5.1 Numerical integration

The function
qk(s) = e−λk(s−t)hk(s) (5.12)

is explicit but we can not always calculate its primitive explicitly, in this case we use the polynomial interpolation
and seek numerical approximation of the integral. Then the Lagrange polynomial interpolation is

qNj(s) =

N∑
n=0

qj(tn)lj(s)

where tn defined by tn = T
2 (xn+1), n = 0, N, and xn, 0 ≤ n ≤ N, are the collocation points on the Gauss-Lobatto

Legendre grid, then the approximation of the integral (5.9)

vNj(t) =

∫ t

0

qNj(s)ds+

N−1∑
j=1

p−1
kj u0(xk)

 eλkt

then we obtain

bn(t) =

N−1∑
j=1

pnj(tn)vNj(t)

where pnj , 1 ≤ n, j ≤ N − 1 are the entries of the matrix P , using (1.2) we get the approximate solution

uN (x, t) =

N−1∑
n=1

N−1∑
j=1

pnjvNj(t)ln(x)

5.2 Error estimation

Definition 5.1. The polynomial space P 0
N (Λ) is dense in the space of continuous functions on Λ hence in H1

0 (Λ)
then any function u ∈ H1

0 (Λ) admits the expansion

u(x, t) =

∞∑
k=1

∞∑
l=1

α(k, l)hk(x)tl(t) (5.13)

We know

tn(t) =
n(n+ 1)

2(2n+ 1)
(pn−1 (t)− pn+1 (t)) (5.14)

where

pn(t) = Ln(
2

T
t− 1), n ≥ 0 (5.15)

and using (5.14) then

u(x, t) =

∞∑
k=1

∞∑
l=1

γ(k, l)hk(x)pl(t) (5.16)

Proposition 5.2. The following estimate holds between the exact solution u in H1
0 (Λ) and the approximate solution

uN ∈ P 0
N (Λ) verify,

∥u− uN∥L2(Λ) ≤ 3CN−1
(
∥(u0 − uN0)∥L2(Λ) + ∥f − fN∥L2(Λ)

)
(5.17)

Proof . Using the ellipticity condition (4.17) and (4.10) we can write,

N2 ∥u− uN∥2L2(Λ) ≤ θ(u− uN , u− uN ) = (f − fN , u− uN )N − θ(u0 − uN0, u− uN )

≤ C

(∣∣∣∣∫
Λ

(f − fN ) (u− uN ) dx

∣∣∣∣+ |θ(u0 − uN0, u− uN )|
)

(5.18)
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Λ

(f − fN ) (u− uN ) dx

∣∣∣∣ ≤ ∥f − fN∥L2(Λ) ∥u− uN∥L2(Λ) (5.19)

|θ(u0 − uN0, u− uN )| ≤
∣∣∣∣a ∫

Λ

∂x (u0 − uN0) ∂x (u− uN ) dx

∣∣∣∣+ ∣∣∣∣∫
Λ

∂t (u0 − uN0) (u− uN ) dx

∣∣∣∣
+

∣∣∣∣c∫
Λ

(u0 − uN0) (u− uN ) dx

∣∣∣∣
the function u0 is independent of the variable t then∫

Λ

∂t (u0 − uN0) (u− uN ) dx = 0

and ∣∣∣∣c∫
Λ

(u0 − uN0) (u− uN ) dx

∣∣∣∣ ≤ c ∥(u0 − uN0)∥L2(Λ) ∥(u− uN )∥L2(Λ)

and ∣∣∣∣a∫
Λ

∂x (u0 − uN0) ∂x (u− uN ) dx

∣∣∣∣ ≤ a ∥∂x (u0 − uN0)∥L2(Λ) ∥∂x (u− uN )∥L2(Λ) (5.20)

using (5.19), (5.20) and (4.10) we get

N2 ∥u− uN∥2L2(Λ) ≤ 3CN
(
∥(u0 − uN0)∥L2(Λ) + ∥f − fN∥L2(Λ)

)
∥(u− uN )∥L2(Λ)

finally we find the desired results □

5.3 Condition number

Definition 5.3. The condition number of a n× n non-singular matrix A is defined by:

kP (A) = ∥A∥P
∥∥A−1

∥∥
P

(5.21)

where ∥A∥P is the spectral norm defined by ρ = (AtA)
1
2 .

Remark 5.4. The condition number of a matrix A gives a measure of how sensitive systems of equations, with
coefficients matrix A, are to small perturbations such as those caused by rounding. Then if the condition number of
a matrix is large, the effect of rounding error in the solution process may be serious [27].

To compute the condition number of different order of these matrix we use the spectral norm, and all operations
are made by the Maple 12 (Maple 2008), using [11] (Richards 2002).

5.4 Figure illustration

We consider the true explicit solution: u(x, t) = exp(−0.05π2t) sin(πx), u(x, 0) = u0(x) = sin(πx) and f(x, t) =(
((−1.05)π2 + 1) sin(πx)

)
exp(−0.05π2t)− (−π2 + 1) sin(πx).

The figures 1 and 2 present the behavior of the condition number and the error, N vary from 3 to 12 we plot
(N, log(kP (A))). In Figure 3, we present the behavior of the functions bn(t), when n vary from 3 to 10, and the figures
4 and 5, presents the true and the approximate solutions u and uN respectively, these plots occurs when N = 9.

Remark 5.5. This figure shows that the error decreases rapidly when N increass. Here we plot
(
N, ∥u− uN∥L2(Λ)

)
.



1352 Lateli, Boutaghou, Hamaizia

Figure 1: The behavior of the condition number when N vary from 3 to 12

Figure 2: The behavior of the error when N vary from 3 to 12
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Figure 3: Plots of the functions bn(t), n vary from 3 to 10

Figure 4: The true solution when N = 9
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Figure 5: The approximation solution when N = 9

6 Conclusion

We know that many ordinary or partial differential equations do not admit exact solution, so we seek the approx-
imate solution, in this article I have described a numerical method converges quickly to the solution of the problem,
this method based on the properties of orthogonal polynomials and matrix analysis.
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R.A.I.R.O. Anal. numér. 16 (1982), 97–100.

[5] C. Bernardi and Y. Maday, Approximations spectrales de problemes aux limites elliptiques, Vol. 10. Berlin:
Springer, 1992.
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