
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,027 |
تعداد مشاهده مقاله | 67,082,772 |
تعداد دریافت فایل اصل مقاله | 7,656,171 |
On optimization problems of the difference of non-negative valued affine IR functions and their dual problems | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 185، دوره 13، شماره 2، مهر 2022، صفحه 2287-2295 اصل مقاله (384.64 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2021.18956.2044 | ||
نویسندگان | ||
Somayeh Mirzadeh* 1؛ Samaneh Bahrami2 | ||
1Department of Mathematics, University of Hormozgan, P.O. Box, 3995, Bandar Abbas, Iran | ||
2Department of Mathematics, Shahid Bahonar University of Kerman, P.O. Box, 76169133 Kerman, Iran | ||
تاریخ دریافت: 25 مهر 1398، تاریخ بازنگری: 09 خرداد 1400، تاریخ پذیرش: 22 خرداد 1400 | ||
چکیده | ||
The aim of this paper is to present dual optimality conditions for the difference of two non-negative valued affine increasing and radiant (IR) functions. We first give a characterization of dual optimality conditions for the difference of two non-negative valued increasing and radiant (IR) functions. Our approach is based on the Toland-Singer formula. | ||
کلیدواژهها | ||
global optimization؛ abstract concavity؛ increasing and radiant function؛ superdifferential؛ upper support set؛ affine function؛ Toland-Singer formula | ||
مراجع | ||
[1] M. H. Daryaei and H. Mohebi, Global minimization of the difference of strictly non-positive valued affine ICR functions, J. Glob. Optim. 61 (2015), no. 2, 311–323. [2] A.R. Doagooei and H. Mohebi, Optimization of the difference of ICR functions, Nonlinear Anal. 71 (2009), no. 10, 4493–4499. [3] J. B. Hiriart, From convex to nonconvex minimization: necessary and sufficient conditions for global optimality, Nonsmooth Optimization and Related Topics, 1989, 219–240. [4] H. Mohebi, Abstract convexity of radiant functions with applications, J. Glob. Optim. 55 (2013), no. 3, 521–538. [5] H. Mohebi and M. Esmaeili, Optimization of the difference of increasing and radiant functions, Appl. Math. Sci. 6 (2012), no. 67, 3339–3345. [6] H. Mohebi and S. Mirzadeh, Abstract convexity of extended real valued increasing and radiant functions, Filomat 26 (2012), no. 5, 1002–1022. [7] A. Nedi´c, A. Ozdaglar and A.M. Rubinov, Abstract convexity for nonconvex optimization duality, Optim. 56 (2007), no. 5-6, 655–674. [8] A.M. Rubinov, Abstract convexity and global optimization, Kluwer Academic Publishers, Dordrecht-BostonLondon, 2000. [9] A.M. Rubinov and B.M. Glover, Increasing convex-along-rays functions with application to global optimization, J. Optim. Theory Appl. 102 (1999), no. 3, 615-642. [10] I. Singer, Abstract convex analysis, Wiley-Interscience, New York, 1997. [11] J.F. Toland, Duality in nonconvex optimization, J. Math. Anal. Appl. 66 (1978), no. 2, 399–415. | ||
آمار تعداد مشاهده مقاله: 43,827 تعداد دریافت فایل اصل مقاله: 298 |