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Abstract

Quantile regression is a powerful statistical method for modeling and analyzing the impact of explanatory and response
variables at different points in the conditional distribution of the response variable. Many research papers have
indicated that Quantile Regression (QR) estimator is only resistant to vertical outliers. Quantile regression like other
regression M-estimators and Least Absolute Deviation LAD can be very sensitive to outliers in explanatory variables
(Leverage Points). To overcome this drawback, at first, we have to use a robust, effective and efficient method to
identify high leverage points if there is masking and swamping problems. In literature, the usage of Generalized
M-estimator (GM-estimator) is proposed to estimate the unknown parameters against high leverage points. In this
paper, we proposed weighted method’s the generalized- M for quantile regression namely (GMQu), and improve
the algorithm of this method by adapting the Improved Diagnostic Robust Generalized Potential (IDRGP) method.
So that the calculation of the initial weights in this algorithm depends on (IDRGP), we’re going to symbolize that
method by (GMQuID). Simulation study and real data are considered to verify the performance of our proposed
methods compared to other methods.

Keywords: weighted quantile regression, high leverage points, GMQu, GMQu (IDRGP).
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1 Introduction

Quantile regression (QR) model has been introduced by [22] as an extension from the notion of ordinary quantiles
in a location model to a more general class of linear models in which the conditional quantiles have a linear form.
Quantile regression model have been successfully used in a wide range of scientific applications, for instance: Economics,
Biology, Ecology and Finance. It can reveal relationships between model variables that are difficult to be captured by
a traditional mean regression. One of the most virtues of quantile regression is that it allows us to make inference on
the entire conditional distribution of response by estimating a number of different quantiles. Also, these estimators can
resist the damaging effect of outlier’s observations in y- direction. In addition, QR does not impose any distributional
assumption on the error except the requirement about the zero conditional quantiles [21]. Considers the following

∗Corresponding author
Email addresses: stat.post06@qu.edu.iq (Mohammad Abdul Kareem), sirtaha12@qu.edu.iq (Taha Alshaybawee)

Received: November 2021 Accepted: January 2022

http://dx.doi.org/10.22075/ijnaa.2022.6255


1326 Abdul Kareem, Alshaybawee

regression model:

yi = xtiβ + ζi i = 1, 2, ..., n (1.1)

β̂τ = arg min
β∈Rp

n∑
i=1

ρτ
(
yi − xtiβ

)
(1.2)

where ρτ (u) = u
(
τ − I{u<0}

)
, I{A} is the indicator function of the event A, ρτ (u) is a quantile loss function it can be

defined as

ρτ (u) =

{
(τ − 1)u if u < 0

τu if u ≥ 0
(1.3)

Quantile regression estimators can be highly sensitive to outliers with high leverage [18]. Some studies dealing with
relevant on this issue for example see [15, 7, 2, 31, 28].

The crucial point here is that the leverage points in multiple regression data is very hard to identify when the
number of covariates exceeds tow. The classical Mahalanobis Distance (MD) measure was most the familiar choice
to identify the leverage points. The MD is suffering from masking problem [35], so it is a non robust measure. Hat
matrix which is traditionally used as a measure of leverage points in regression analysis. However, [4] pointed out
that the hat matrix may fail to identify the HLPs due to the effect of HLPs in leverage structure. So he introduced
potential measure. Still this method was unable to detect all of the HLPs. [33] introduced another diagnostic tool
which is called Generalized Potential (GP).Recently, [8], developed Diagnostic Robust Generalized Potential (DRGP)
to determine outlying points in multivariate data sets. The mine weakness of (DRGP) is that it has small rate of
masking and swamping effects, especially for small percentage of high leverage points between (5% and 10%). [30]
improve the performance of DRGP (MVE) called (IDRGP) by adding new step pertaining two cases to algorithm of
(DRGP).

The rest of this paper is organized as follows, section 2, Generalized M- Estimator, Section 3, proposed methods
and algorithms, In Section 4, the simulation study has been done to assess the performance of our proposed method
compared to other methods, Section 5 real data and some results, Section 6 conclusion of this research.

2 Generalized M- Estimator

[10] showed that the M-estimator does not have Bounded Influence Function (BIF), because it fails to account
for leverages, and also implicitly assumes that the model matrix (X) is measured without errors, to overcome these
drawbacks of M-estimator. Generalized M- Estimator (GM-estimator) which is usually called bounded influence
estimation had proposed by Schweppe [13, 3]. In general, GM-estimator ofβ in regression model is to produce weights
that consider both Y and X-direction. The general form is given by

n∑
i=1

πiψ

(
yi − xi

tβ̂

πi
s

)
xi = 0, (2.1)

where, πi, i = 1, . . . , n is initial weight controls weights that given for leverages. Equation (2.1) can be solved by using
IRLS technique, and then the GM convergence can be written as

β̂GM =
(
xtwx

)−1
xtwy (2.2)

ωi =
ψ
(

yi−xi
tβ̂GM

πis

)
(

yi−xi
tβ̂GM

πis

) (2.3)

3 Improved Diagnostic Robust Generalized Potential (IDRGP)

[30] He improved the performance of DRGP (MVE). He notices that there is an impact of swamping and masking
cases when the percentage of high leverage points is between 5% and 10%. Therefore [30] suggested to adding a new
diagnostic step to second algorithm step of DRGP .The algorithm of IDRGP can be summarized as follows

Step1: computing the location and scale estimators by using MVE.
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Step2: Based on MVE calculate Robust Mahalanobis Distance RMD. Any i-th exceed Median (RMDi)+c×MAD (RMDi) i =
1, 2, . . . , n that means the i-th row having the suspected observation as HLP.

Step3: the row i-th which diagnosed from the previous step will be deleted from design matrix X and putting in a
new sub-matrix denoted as XD. The remaining rows that are diagnosed as clean will be putting in sub- matrix
denoted as XR .

Step4: constructing weights matrix as follows

w =

[
UR V
V t UD

]
When D rows are omitted, the wii

(D) is the i-th diagonal elements of

xi
t
(
xtRxR

)−1
xi , i = 1, 2, . . . , n

and R = (N −D) × p . Deletion the i-th diagonal elements from xR makes R = (N − 1) × p , in this case

wii
(−i)will be a single diagnostic equivalent to potential measure wii

(−i) = xi
t
(
xt(i)x(i)

)−1
xi.

The group deletion measure can be written as follows

pii =

{
wii

(D) for i ∈ D
wii

(D)

1−wii
(D) for i ∈ R

Whenpii > median (pii)+ c ×mad(pii) is confirmed i-th row having HLP, to improve DRGP [30] adding a further
step to algorithm through the diagnostic of LPs by using hat matrix and then compared with the first diagnosis.

1. If the observations diagnosed as HLPs are the same as ′D′
2 and ′D′ thus the algorithm will the announcement

of this diagnosis and then stop.

2. If the number of HLPs in ′D′
2 are more than those in ’D’, then the algorithm works on move those observations

that are not matched with ’D’ to the matrix R one by one according to Pii value. If the value of Pii for certain
observation exceeds the cutoff point (Pii + 3Pii), stay in ′D′

2 matrix, otherwise it move to R matrix.

3. If the number of the HLP in D2 is less than the number of what is diagnosed in D which means new observations
that have not been diagnosed before, that the algorithm works on merging between D and D2. Re-checking
the suspected observations by using the generalized potential measure Pii is crucial to confirm whether these
observations are HLP or clean. So, clean observation should be moved to R matrix.

4 Proposed methods

GM-estimator is in the definition of πi –weight that depended on hat matrix which could fail to identify high
leverage point due to the effect of these points in leverage structure. This problem can be alleviated by assigning
weights to each term of Eq.(1.2) that is decreasing functions of their leverage [5]. [6] pointed out that down-weighting
the leverage points can improve the conditional breakdown point of LAD regression (special case of QR when τ = 0.5).
[7] proposed a weighted LAD estimator (special case of QR when τ = 0.5)

β̂LAD = arg min
β∈Rp

n∑
i=1

πi
∣∣yi − xtiβ

∣∣ , (4.1)

From (4.1), the weighted quantile regression estimators can be obtained by minimizing the problem

β̂π
τ = arg min

β∈Rp

τ ∑
yi≥xt

iβ

πi
∣∣yi − xtiβ

∣∣+ (1− τ)
∑

yi≤xt
iβ

πi
∣∣yi − xtiβ

∣∣ (4.2)
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The minimization of Equation (4.2) can be quite complex because it is non-differentiable. [21] suggested using computa-
tional algorithm based on linear programming techniques. In order to minimize Equation (4.2) via linear programming,
the model in (1.1) it can be written as

yi = xtiβτ + (uiτ − viτ )
∣∣
ζiτ=uiτ−viτ

(4.3)

where uiτ = |ζiτ | I(ζiτ > o) and viτ = |ζiτ | I(ζiτ < o). Therefore the linear programming can be show

β̂τ = arg min
β∈Rp

n∑
i=1

πiρτ
(
yi − xtiβ

)
⇐⇒ arg min

β∈Rp

n∑
i=1

πi (τuiτ + (1− τ) viτ ) (4.4)

β̂τ free, u > 0, v > 0. πi is the weigh and set to be 0 < πi ≤ 1. From (4.3), we can see that the difference of two

non-negative residuals(uiτ − viτ ) = yi − xtiβ̂τ , then the weight of the loss function will be equal to

n∑
i=1

πi (τuiτ + (1− τ)viτ ) = τ
∑

(i/yi≥xt
iβ̂τ )

πi

(
yi − xtiβ̂τ

)
+ (1− τ)

∑
(i/yi<xt

iβ̂τ )

πi

(
yi − xtiβ̂τ

)
. (4.5)

In This study, we will propose two new methods based one GM-estimator method. The first proposed method
GM-estimator method will be modified for the quantile regression. The algorithm of GMQu is summarized as follows

Step 1: Calculate the initial weight πi by applying the form πi =
√
1− hii,

Step 2: Compute quantile regression estimate β̂τ = argminβ∈Rp

∑n
i=1 ρτ

(
yi − x⊤i β

)
to use as initial estimates.

Step 3: Compute the residuals ri and scale from the form S = 1.4826 [ median largest (n− p) of |ri|] based on step
1.and then compute standardized residuals (ti) . where ti=

r−i
πi×s .

Step 4: Using standardized residuals ti in first iteration (weighted quantile regression), then ωi are chosen based on
Huber function.

Step 5: Update β̂τ using weighted least squares with the weightsωi.

Step 6: Steps (3-5) are repeated until convergence.

In the second proposed method the precision of GM-estimator can be improved by utilizing more effective diagnostic
method. This motivates us to consider the IDRGP which is proposed by [30] for identifying the HLPs. The weights
will be calculated based on IDRGP from the following form:

πi = min

{
1,

median (pii) + 3MAD(pii)

pii

}
.

5 Simulation study

Monte Carlo simulation example is considered in this section to evaluation and compare the performance the
proposed methods Generalized- M for quantile regression (GMQu) and generalized M based on IDRGP to the existing
methods classical quantile regression QR [22] and least trimmed quantile regression LTQR [31]. The following model
was considered to generated data

yi = β0 + β1xi1 + β2xi2 + β3xi3 + εi,

where, β0 = 2, β1 = 1, β2 = 0, β3 = 1.7, three predictor’s variables are considered p = 3 the covariates xij, j = 3 are
generated from uniform distribution U (−1, 1) and the error term generated from normal distribution εi ∼ N (0, 3).
Two sample sizes are used (50 and 100). We have contaminated the generated data by replacing the first k observations,
where k compute from n × ϵ , where n is a sample size and ϵ is the contamination rate, (0.10, 0.20 and 0.30) is the
contamination level used in this simulation study. The first k observations of by using uniform distribution U (−30, 30)
.We have used five levels of quantiles τ ∈ (0.10, 0.30, 0.50, 0.70, 0.90) to estimate the parameters vector βτ .
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To compare the performance of all used methods existing and proposed, three measurements are considered bias, mean
squares error MSE and mean absolute error MAE. These measures are computed as follows:

Bias = βj − βtrue
j , where βj =

1

m

m∑
r=1

β̂
(r)
j

MSE =
1

n

n∑
r=1

(yi − ŷi)

2

MAE =
1

n

n∑
r=1

|yi − ŷi|

Where, the replication m is used 100 and βtrue
j is the true parameter. To compute QR, LTQR, GMQu and GMQuID

R code is used.

In the following tables we will summarize the results of the simulation study. In Table (1) and Table (2), we
reported the bias for the existing and proposed methods when the sample sizes 50 and 100. In these two tables, we
see the bias at three different contamination rates (10%, 20% and 30%) and the five levels of quantiles (0.10, 0.30,
0.50, 0.70, and 0.90).

Table 1: Bias values for QR, LTQR, GMQR and GMQuID methods at five quantiles (0.10,0.30,0.50,0.70,0.90) and different
contamination levels 10%,20% and 30% when the sample size n = 50.

Quantile Method

Contamination (10%) Contamination (20%) Contamination (30%)

Bias Bias Bias Bias Bias Bias Bias Bias Bias Bias Bias Bias

β0 β1 β2 β3 β0 β1 β2 β3 β0 β1 β2 β3

0.10

Qu 2.007 0.272 0.674 2.555 2.391 0.176 0.257 2.562 2.298 0.166 0.173 2.573

LTQRe 2.236 0.248 0.149 2.523 2.962 0.288 0.414 2.455 2.843 0.129 0.461 2.634

GM-Qu 1.375 0.259 0.759 2.553 1.542 0.122 0.072 2.619 1.445 0.206 0.023 2.542

GMQuID 0.808 0.005 0.003 0.033 0.717 0.023 0.019 0.002 0.728 0.025 0.134 0.020

0.30

Qu 0.907 0.273 0.456 2.501 1.053 0.061 0.408 2.662 0.849 0.272 0.371 2.464

LTQRe 1.342 0.297 0.621 2.371 1.441 0.073 0.359 2.657 1.211 0.273 0.400 2.466

GM-Qu 0.584 0.246 0.503 2.521 0.653 0.088 0.011 2.645 0.503 0.237 0.376 2.499

GMQuID 0.336 0.002 0.043 0.035 0.307 0.001 0.037 0.042 0.285 0.001 0.041 0.046

0.50

Qu 0.086 0.249 0.325 2.484 0.086 0.031 0.003 2.686 0.191 0.247 0.559 2.487

LTQRe 0.053 0.211 0.139 2.508 0.092 0.078 0.063 2.638 0.320 0.250 0.685 2.483

GM-Qu 0.027 0.204 0.284 2.532 0.027 0.061 0.031 2.664 0.126 0.219 0.503 2.512

GMQuID 0.003 0.016 0.015 0.044 0.028 0.004 0.024 0.006 0.011 0.001 0.009 0.021

0.70

Qu 0.909 0.207 0.048 2.514 1.031 0.021 0.274 2.692 1.279 0.167 0.620 2.563

LTQRe 1.165 0.168 0.116 2.495 1.492 0.008 0.266 2.711 1.682 0.198 0.614 2.530

GM-Qu 0.663 0.171 0.087 2.548 0.624 0.044 0.162 2.675 0.834 0.194 0.544 2.537

GMQuID 0.298 0.013 0.050 0.051 0.309 0.016 0.065 0.063 0.356 0.012 0.005 0.086

0.90

Qu 2.174 0.113 0.030 2.574 2.240 0.080 0.678 2.630 2.400 0.097 0.636 2.621

LTQRe 2.497 0.127 0.036 2.594 2.687 0.096 0.761 2.621 2.596 0.143 0.635 2.561

GM-Qu 1.465 0.137 0.006 2.556 1.508 0.066 0.444 2.653 1.628 0.154 0.531 2.567

GMQuID 0.747 0.020 0.029 0.125 0.814 0.003 0.029 0.052 0.799 0.005 0.080 0.041

From Table 1 and Table 2, we can see that the at different levels of contamination and at all quantiles was the
highest for QR and LTQR methods. That means QR method was so affected by the high leverage point observations.
Whereas LTQR is a robust method but it cannot treat the effect of the high leverage points. The proposed methods
GMQu and GMQuID get the smallest values of . Therefore, these two methods overcome the effects of the high
leverage point observations. In addition, GMQuID has a smaller than GMQu method, its remedy the influence of
high leverage point better than GMQu method.

In Figure 1 and Figure 2, we summarize the MSE and MAE values for the proposed and existing methods. It is
clear that the LTQR method is getting the largest values of MSE and MAE especially in the extreme quantiles levels.
MSE and MAE for the QR method is also large but it’s smaller than LTQR method. The proposed method GMQuID
gets the smallest values of MSE and MAE at all the different quantile levels and the contamination rates. The GMQu
method was better than the existing methods, where the values of MSE and MAE for this method were smaller than
that for the existing methods.



1330 Abdul Kareem, Alshaybawee

Table 2: values for QR, LTQR, GMQR and GMQuID at five quantiles (0.10,0.30,0.50,0.70,0.90) and different contamination
levels 10%,20% and 30% when the sample sizen = 100.

Quantile Method

Contamination (10%) Contamination (20%) Contamination (30%)

Bias Bias Bias Bias Bias Bias Bias Bias Bias Bias Bias Bias

β0 β1 β2 β3 β0 β1 β2 β3 β0 β1 β2 β3

0.10

Qu 2.338 0.172 0.247 2.547 2.617 0.235 0.262 2.500 2.184 0.169 1.036 2.567

LTQRe 2.836 0.070 0.005 2.674 3.202 0.177 0.280 2.585 2.648 0.146 1.042 2.611

GM-Qu 1.538 0.183 0.327 2.549 1.801 0.251 0.212 2.486 1.392 0.205 0.860 2.532

GMQuID 0.857 0.012 0.073 0.029 0.841 0.006 0.054 0.013 0.818 0.017 0.002 0.050

0.30

Qu 0.957 0.252 0.169 2.469 1.241 0.321 0.089 2.383 0.773 0.241 0.914 2.485

LTQRe 1.537 0.265 0.158 2.447 1.853 0.369 0.242 2.327 1.353 0.268 1.278 2.458

GM-Qu 0.574 0.216 0.228 2.503 0.846 0.277 0.163 2.438 0.459 0.214 0.694 2.513

GMQuID 0.329 0.004 0.018 0.035 0.316 0.002 0.003 0.011 0.288 0.013 0.020 0.004

0.50

Qu 0.094 0.277 0.341 2.430 0.186 0.317 0.232 2.383 0.252 0.268 0.471 2.451

LTQRe 0.111 0.310 0.503 2.401 0.093 0.318 0.264 2.381 0.339 0.305 0.516 2.414

GM-Qu 0.107 0.223 0.247 2.489 0.194 0.281 0.196 2.426 0.184 0.238 0.543 2.483

GMQuID 0.017 0.007 0.024 0.064 0.004 0.007 0.017 0.003 0.021 0.006 0.002 0.019

0.70

Qu 1.141 0.224 0.165 2.462 0.897 0.266 0.317 2.435 1.150 0.226 0.350 2.490

LTQRe 1.902 0.157 0.056 2.538 1.540 0.247 0.307 2.457 1.735 0.195 0.262 2.523

GM-Qu 0.762 0.219 0.203 2.477 0.468 0.264 0.294 2.439 0.824 0.218 0.407 2.500

GMQuID 0.331 0.004 0.029 0.005 0.326 0.003 0.032 0.017 0.344 0.003 0.001 0.001

0.90

Qu 2.381 0.154 0.016 2.525 2.152 0.198 0.341 2.506 2.325 0.183 0.252 2.529

LTQRe 2.921 0.085 0.141 2.608 2.711 0.141 0.357 2.566 2.799 0.136 0.178 2.575

GM-Qu 1.638 0.184 0.067 2.506 1.376 0.233 0.270 2.473 1.650 0.199 0.290 2.517

GMQuID 0.802 0.007 0.051 0.007 0.810 0.007 0.009 0.030 0.822 0.009 0.030 0.027

Figure 1: show the MSE for QR, LTQR, GMQu and GMQuID methods at five quantiles (0.10,0.30,0.50,0.70, 0.90 ) and three contamination
levels, when N = (50, 100).

6 Real data Example

To verify the performance of the existing and proposed methods, Star Cluster CYG OB1 dataset is used. This
dataset was presented by [24]. It is consists of 47 observations and two variables, the dependent variables (the logarithm
of light intensity) whereas the explanatory variable shows the logarithm of the effective temperature at the surface of
stars. The scatterplot of these data was showing two groups of observations. The first group was the majority of data
and it’s consisted of 43 observations, while the second group consisted of four observations 11, 20, 30 and 34, these
data are classified as leverage points.
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Figure 2: show the MAE for QR, LTQR, GMQu and GMQuID methods at five quantiles (0.10,0.30,0.50,0.70, 0.90 ) and three contamination
levels, when N = (50, 100).

As same as simulation study five quantiles are considered (0.10, 0.30, 0.50, 0.70, and 0.90)

Table 3: Show the MSE and MAE values for QR, LTQR, GMQu and GMQuID, at three quantiles (0.10, 0.30, 0.50, 0.70, 0.90)
for Star cluster CYG OB1 dataset.

Methods 0.10 0.30 0.50 0.70 0.90

MSE

Qu 0.3114114 0.09528817 0.1077508 0.1207724 0.1449797

LTQRe 0.4391339 0.10198449 0.1196301 0.1281637 0.1493265

GM-Qu 0.1823753 0.08582650 0.1026927 0.1140047 0.1266969

GMQuID 0.1644511 0.08154381 0.0975173 0.0834345 0.1078837

MAE

Qu 0.4810517 0.1762131 0.1642249 0.1753095 0.2099951

LTQRe 0.5883964 0.1751335 0.1674482 0.1981649 0.2260934

GM-Qu 0.3690579 0.1863123 0.1656058 0.1693746 0.1856701

GMQuID 0.2618719 0.1382675 0.1209018 0.1215717 0.1400892

In Table 3, we have reported the MSE and MAE values for the existing methods QR and LTQR, and the proposed
methods GMQu and GMQuID for all quantile levels. The values of MSE and MAE for LTQR method is the largest
among the other methods, which means this method has failed in diagnosing the high leverage points and trims them.
The proposed method gets the smallest values of MSE and MAE at all quantiles; this indicates this proposed methods
success in diagnosing the high leverage point and down weights them. The classical method is better than LTQR
whereas it gets smaller values of MAE and MAE in most cases. The proposed method GMQu gets MSE and MAE
smaller than the existing methods.

7 Conclusion

In this paper, to overcome the effect of high leverage point observation we have adapted generalized – M and also
use generalized M based on IDRGP where the weight computed depend on IDRGP. To check the performance of our
proposed new methods compare to two existing methods QR and LTQR simulation study and real data Star cluster
CYG OB1 dataset are considered. MSE and MAE criteria are using to evolution the performance of the methods in
this study.

The result that reported in Table 1 indicates the proposed methods GMQu and GMQuID are getting the smallest
at all the different of contamination rates and quantile levels. In addition, the proposed methods have got the smallest
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MSE and MAE compare to the existing in both simulation study and real dataset. So that, we can conclude that
the new proposed method GMQuID is better all method in this study also GMQu do better than the other existing
method. Therefore, we can see that the new method can reduce the effect of high leverage point observations.
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