
Int. J. Nonlinear Anal. Appl. 13 (2022) 2, 361–369
ISSN: 2008-6822 (electronic)
http://dx.doi.org/10.22075/ijnaa.2021.21812.2298

Efficient quadrature methods for solving Hammerstein integral
equations on the half-line

Fatima Hamania, Azedine Rahmouneb,∗

aDepartment of Mathematics, University of M’sila, 28000, Algeria

bDepartment of Mathematics, University of Bordj Bou Arreridj, El Anasser, 34030, Algeria

(Communicated by Madjid Eshaghi Gordji)

Abstract

In this paper, we proposed two numerical methods to solve the nonlinear integral equations of Hammerstein type
on the half-line. By using a Sinc-Nyström method based on Single-Exponential (SE) and Double-Exponential (DE)
transformations, the problem is converted into a nonlinear system of equations. We provided an error analysis of
the proposed schemes and showed that these methods have exponential convergence rates. Finally, several numerical
examples are given to show the effectiveness of the methods.
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1 Introduction

We consider the nonlinear integral equation of Hammerstein type on the half-line given by the general form

u(s)−
∫ ∞

0

k(s, t)f(t, u(t))dt = g(s), s ∈ I = [0,∞) , (1.1)

where k, g, and f are known functions and u is a solution to be determined. More recently, some researchers have
returned their interest to numerical methods for solving linear integral equations on unbounded intervals, such as
[2, 3, 4, 5]. However, nonlinear integral equations on unbounded intervals are still a challenge where there is a scarcity
of research that’s interested in this type, as far as we know there is only the paper of Nahid and Nelakanti [1] where
they have applied the Galerkin and collocation methods to solve the nonlinear Hammerstein integral equations on the
half-line.

In this work we presented two numerical schemes for solving Eq.(1.1). The first one is based on the so-called single
exponential transformations, which has the convergence rate O(exp(−C

√
N)), the second one is based on double

exponential transformations, which improves the order of convergence to O(exp(−C(N/ logN))). It should be noted
that we have already provided these methods to solve the linear Fredholm integral equation on the infinite intervals in
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[4], so this work is an extending of our previous study on the linear case to the nonlinear case. We can write Eq.(1.1)
in operator notation as

(I − Kf)u = g, (1.2)

where

(Kf)u(s) =
∫
I

k(s, t)f(t, u(t))dt = g(s), s ∈ I. (1.3)

The operator Kf is defined on the Banach space X = Hol(D) ∩ C(D), where D is a simply connected domain in
the complex plane C which satisfies I ⊂ D and Hol(D) denotes the family of all functions v that are analytic in the
domain D. Moreover, assume that Eq.(1.1) has an analytic solution.

The layout of this paper is as follows, in section 2, we present the basic properties for the sinc quadrature rule.
In section 3, Sinc-Nyström methods for Eq.(1.1) are developed. In section 4, the convergence analysis are described
for the proposed methods. In section 5, several typical examples are presented to illustrate the effectiveness of our
approaches, and the conclusions follow in section 6.

2 Approximation on real line

The Sinc function is defined on the whole real line by

Sinc(t) =

{
sin(πt)

πt , t ̸= 0,

1, t = 0.
(2.1)

For h > 0 and integer j, we define the j-th Sinc function with step size h by

S(j, h)(t) =
sin[π(t/h− j)]

π(t/h− j)
.

The Sinc approximation for a function f on the entire interval (−∞,∞) is defined as

f(s) ≈
N∑

j=−N

f(jh)S(j, h)(s), (2.2)

and the Sinc quadrature rule can be derived by integrating both side of (2.2) as follows∫ ∞

−∞
f(s)ds ≈

N∑
j=−N

f(jh)

∫ ∞

−∞
S(j, h)(s)ds = h

N∑
j=−N

f(jh). (2.3)

In order to define a convenient function space, the step domain

Dd = {z ∈ C : |ℑ(z)| < d} ,

for some d > 0 is introduced.
Let t = ψ(z) denote a conformal map of D into Dd such that ψ(0) = −∞ and ψ(∞) = ∞.
Let ψ = ϕ−1 denote the inverse map, we define the range of ϕ−1 on the real line as

I =
{
ψ(ξ) = ϕ−1(ξ) ∈ D : −∞ < ξ <∞

}
. (2.4)

Applying the variable transformation t = ψ(z), we obtain∫ ∞

0

f(s)ds =

∫ ∞

−∞
f(ψ(s))ψ′(s)ds ≈ h

N∑
j=−N

f(ψ(jh))ψ′(jh). (2.5)

Let α and C be positive constants, then Lα(D) denotes the family of all functions f ∈ Hol(D) where

|f(z)| ≤ C
|Q(z)|α

[1 + |Q(z)|]2α
, (2.6)
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for all z in D, where Q(z) = eϕ(z). Moreover, Mα(D) with 0 < α ⩽ 1 consists of all functions f ∈ X such that

f(z)− f(0) +Q(z)f(∞)

1 +Q(z)
∈ Lα(D). (2.7)

The equation (2.2) can be adapted to approximate on I with the aid of ”Single-Exponential transformation” (SE)
given by Stenger [6] by

ψSE1(t) = et, ψSE2(t) = arcsinh (et),

and then by ones of the following transformations

ψDE1
(t) = ψSE1

(
π

2
sinh t), ψDE2

(t) = ψSE2
(
π

2
sinh t), ψDE3

(t) = et−exp(−t).

These are called the ”Double-Exponential transformation” (DE) and were originally introduced by Takahasi and
Mori [7]. The following theorems shows the exponential convergence of the SE-Sinc approximation and the DE-Sinc
approximation.

Theorem 2.1. (Stenger [6]) Assume that fψ′ ∈ Lα(ψSEi
(Dd)) for d with 0 < d < π/2. Then, there exists a

constant C, independent of N , such that∣∣∣∣∣∣
∫ ∞

0

f(t)dt− h

N∑
j=−N

f(ψSEi(jh))ψ
′
SEi(jh)

∣∣∣∣∣∣ ≤ C exp(−
√
2πdαN), (2.8)

where h =
√
2πd/(αN).

Theorem 2.2. (Tanaka et al. [8]) Assume that fψ′ ∈ Lα(ψDEi
(Dd)) for d with 0 < d < π/2. Then, there exists a

constant C, independent of N , such that∣∣∣∣∣∣
∫ ∞

0

f(t)dt− h

N∑
j=−N

f(ψDEi
(jh))ψ′

DEi
(jh)

∣∣∣∣∣∣ ≤ C exp

(
−2πdN

log(8dN/α)

)
, (2.9)

where h = log(8dN/α)
N .

3 Sinc-Nyström method

3.1 SE-Sinc scheme

Let k(s, .)f(., u(.))ψ′
SEi

(.) ∈ Lα (ψSEi(Dd)) for all s ∈ I. Then the discrete SE-Sinc operator can be defined by

(
KSEi

N f
)
(u(s)) = h

N∑
j=−N

k(s, tSEi
j )f

(
tSEi
j , u(tSEi

j )
)
ψ′
SEi

(jh). (3.1)

The Nyström method applied to (1.1) is exploited to find uSEi

N such that

uSEi

N (s)− h

N∑
j=−N

k(s, tSEi
j )f

(
tSEi
j , u(tSEi

j )
)
ψ′
SEi

(jh) = g(s), (3.2)

where the quadrature points are defined by

tSEi
j = ψSEi

(jh), j = −N, · · · , N.

Solving (3.2) reduces to solving a finite dimensional nonlinear system. For any solution of (3.2) the values uSEi
N (tSEi

j )
at the quadrature points satisfy the nonlinear system

uSEi

N (tSEi

l )− h

N∑
j=−N

k(tSEi

l , tSEi
j )f

(
tDEi
j , u(tDEi

j )
)
ψ′
SEi

(jh) = g(tSEi

l ), l = −N, · · · , N.
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Then the approximate solution uSEi

N (s) at an arbitrary point s, can be expressed as

uSEi

N (s) = g(s) + h

N∑
j=−N

k(s, tSEi
j )f(tSEi

j , u(tSEi
j ))ψ′

SEi
(jh). (3.3)

Equation (3.2) can be written in the following discrete SE-sinc operator equation(
I − KSEi

N f
)
uSEi

N = g. (3.4)

3.2 DE-Sinc scheme

Let k(s, .)f(., u(.))ψ′
DEi

(.) ∈ Lα(ψDEi
(Dd)) for all s ∈ I. Then, the discrete DE-Sinc operator can be defined by

(
KDEi

N f
)
(u(s)) = h

N∑
j=−N

k(s, tDEi
j )f

(
tDEi
j , u(tDEi

j )
)
ψ′
DEi

(jh). (3.5)

The Nyström method applied to (1.1) is exploited to fined uDEi
N such that

uDEi

N (s)− h

N∑
j=−N

k(s, tDEi
j )f

(
tDEi
j , u(tDEi

j )
)
ψ′
DEi

(jh) = g(s), (3.6)

where the quadrature points are defined by

tDEi
j = ψDEi

(jh), j = −N · · ·N.

solving (3.6) reduce to solving a finite dimensional nonlinear system. For any solution of (3.6) the value uDEi

N (tDEi
j )

at the quadrature points satisfy the nonlinear system

uDEi

N (tDEi

l )− h

N∑
j=−N

k(tDEi

l , tDEi
j )f

(
tDEi
j , u(tDEi

j )
)
ψ′
DEi

(jh) = g(tDEi

l ), l = −N, · · · , N.

Then the approximate solution uDEi

N (s) at an arbitrary point s can be expressed as

uDEi

N (s) = g(s) + h

N∑
j=−N

k(s, tDEi
j )f(tDEi

j , u(tDEi
j ))ψ′

DEi
(jh). (3.7)

Equation (3.6) can be written in the following discrete DE-Sinc operator equation(
I − KDEi

N f
)
uDEi

N = g. (3.8)

4 Convergence analysis

Throughout this section, we discuss the convergence of the SE and DE Sinc-Nyström methods on the semi-infinite
interval I = [0,∞), we first consider the SE-case. Assume that u and g belong to the space Cl, the space of all
continuous functions on [0,∞) having a limit at infinity, which is a Banach space when equipped with the norm
∥g∥∞ = sup

s∈I
|g(s)| . Also, we suppose that (1.2) has an isolated solution u0 ∈ Cl and Kf possesses a continuous first

and a bounded second derivative on B(u0, δ) where

B(u0, δ) = {u ∈ Cl : ∥u− u0∥∞ ≦ δ, δ > 0} .

For prove the following Theorem we need to mentioned the following required conditions, let the kernel k(., .) satisfy

A1. k(s, t) is bounded and continuous for s, t ∈ I.

A2. k(s, t) is continuous in t uniformly with respect to s for all s, t ∈ I.
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A3. For each t ∈ I, k(s, t) → 0 as s→ ∞.

We also assume that the following conditions are met on the nonlinear function f(., u(.))

B1. f(s, u) is defined and continuous on I × R.

B2. f(s, u) is bounded for s ∈ I uniformly for u in any bounded set.

B3. the partial derivative fu(s, u) =
∂
∂uf(s, u) exists and is continuous on I × R.

B4. the second partial derivative fuu(s, u) =
∂2

∂u2 f(s, u) exists, continuous on I×R, and bounded for s ∈ I uniformly
for u in any bounded set.

Theorem 4.1. Let A1 −A3 and B1 −B4 hold, assume that k(s, .)f(., u(.))ψ′ ∈ Lα(ψSEi
(Dd)) with 0 < d < π/2 and

u ∈ B(u0, δ), then

C1. {KSEi

N f : N ≥ 1} is a collectively compact family on Cl.

C2. KSEi

N f is pointwise convergent to Kf on Cl.

C3. For N ≥ 1, KSEi

N f possesses continuous first and bounded second Fréchet derivatives on B(u0, δ). Moreover,

∥(KSEi

N f)′′∥ ≤ λ <∞,

where λ is a constant independent of N .

Proof. We recall that the set {KSEi

N f : N ≥ 1} is a collectively compact family on the Banach space Cl if the set

Λ = {(KSEi

N f)u : N ≥ 1, u ∈ B}, (where B is the unit ball in Cl) is a relatively compact subset of Cl, we deduce that

the set {KSEi

N f : N ≥ 1} is collectively compact if Λ is equicontinuous at each point s ∈ I, equiconvergent at infinity
and bounded.
From (3.1) we have

∣∣∣(KSEi

N f
)
(u(s′))−

(
KSEi

N f
)
(u(s))

∣∣∣ ≤ h

N∑
j=−N

∣∣∣k(s′, tSEi
j )− k(s, tSEi

j )
∣∣∣ ∣∣∣f(tSEi

j , u(tSEi
j ))ψ′

SEi
(jh)

∣∣∣ ,
due to the conditions A1, A2, B1 and B2 we obtain∣∣∣(KSEi

N f
)
(u(s′))−

(
KSEi

N f
)
(u(s))

∣∣∣ → 0 as s′ → s,∀s ∈ I, uniformly for N ≥ 1, (4.1)

hence, we conclude that Λ is equicontinuous at each point of I.
Also from (3.1) ∣∣∣(KSEi

N f
)
(u(s))

∣∣∣ ≤ h

N∑
j=−N

∣∣∣k(s, tSEi
j )

∣∣∣ ∣∣∣f (tSEi
j , u(tSEi

j )
)
ψ′
SEi

(jh)
∣∣∣ , (4.2)

hence by the condition A3, the set {(KSEi

N f)u | N ⩾ 1, u ∈ B} is equiconvergent to zero at infinity.
Next, we seek to show that S is bounded. It follows from the assumption of Theorem 2.1 that

(KSEi

N f)u(s) → (Kf)u(s), for all s ∈ I.

It is known that pointwise convergence on the interval [0,∞) of a family that is equicontinuous at each point of [0,∞)
and equiconvergent at infinity is sufficient to guarantee uniform convergence, hence

lim
N→∞

∥(KSEi

N f)u− (Kf)u∥∞ = 0,

for all u ∈ Cl, then
sup
N

∥(KSEi

N f)u∥∞ <∞,
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since {KSEi

N f} is a sequence of bounded operators on the Banach space Cl, it follows from the uniform-boundedness
(Banach-Steinhaus) theorem that

sup
N

∥KSEi

N f∥ <∞,

thus, Λ is bounded.
So from the above-mentioned discussions, C1 holds.
Due to the Theorem 2.1 the assumption C2 holds immediately.
The condition B3 implies that Kf is Fréchet differentiable with

(Kf)′(u)x(s) =
∫
I

k(s, t)fu(t, u(t))x(t)dt, s ∈ I, x ∈ B(u0, δ),

and the condition B4 leading to the existence and the boundedness of the second Fréchet derivative with

(Kf)′′(u)(x, y)(s) =
∫
I

k(s, t)fuu(t, u(t))x(t)y(t)dt, s ∈ I, x, y ∈ B(u0, δ),

similar to
(
KSEi

N f
)
, (KSEi

N f)′ and (KSEi

N f)′′ can be defined by the SE-Sinc quadrature formula as follows

(
KSEi

N f
)′

(u)x(s) = h

N∑
j=−N

k(s, tSEi
j )fu

(
tSEi
j , u(tSEi

j )
)
ψ′
SEi

(jh)x(tSEi
j ),

(
KSEi

N f
)′′

(u)(x, y)(s) = h

N∑
j=−N

k(s, tSEi
j )fuu

(
tSEi
j , u(tSEi

j )
)
ψ′
SEi

(jh)x(tSEi
j )y(tSEi

j ),

if we consider that
k(s, .)fu(., u(.))x(.)ψ

′
SEi

(.) ∈ Lα (ψSEi(Dd)) ,

and
k(s, .)fuu(., u(.))x(.)y(.)ψ

′
SEi

(.) ∈ Lα (ψSEi
(Dd)) ,

for all s ∈ I, then by Theorem 2.1 and the conditions B3 and B4 it is easily to concluded C3.

Lemma 4.2. (Weiss [9]) Assume that [I − (Kf)′(u0)] is nonsingular and that the hypotheses C1 − C3 hold. Then

the linear operator
[
I − (KSEi

N f)′(u0)
]
are non-singular for sufficiently large N and∥∥∥∥[I − (KSEi

N f)′(u0)
]−1

∥∥∥∥
∞

≤ β <∞, (4.3)

where β is a positive constant.

Theorem 4.3. Assume that the assumptions of Lemma 4.2 hold. Then there exists a positive integer N1 such that,
for all N ≥ N1, Eq.(3.4) has a unique solution uSEi

N ∈ B(u0, δ). Furthermore, there exists a constant C independent
of N such that ∥∥∥u0 − uSEi

N

∥∥∥
∞

≤ C exp(−
√
2πdαN). (4.4)

Proof. By subtracting (1.2) from (3.4) we obtain

u0 − uSEi

N = (Kf)(u0)− (KSEi
N f)(uSEi

N ),

by adding the term (KSEi

N f)′(u0)(u0 − uSEi

N ) on both sides we have[
I − (KSEi

N f)′(u0)
]
(u0 − uSEi

N ) =(Kf)(u0)− (KSEi

N f)(u0)−
[
(KSEi

N f)(uSEi

N )− (KSEi

N f)(u0)

−(KSEi

N f)′(u0)(u
SEi

N − u0)
]
.
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By condition C3, the term (KSEi

N f)(uSEi

N )− (KSEi

N f)(u0)− (KSEi

N f)′(u0)(u
SEi

N − u0) has been bounded by the term
1
2λ∥u0 − uSEi

N ∥2∞, then from Lemma 4.2 we have∥∥∥u0 − uSEi

N

∥∥∥
∞

≤ β

[
∥(Kf)(u0)− (KSEi

N f)(u0)∥∞ +
1

2
λ∥u0 − uSEi

N ∥2∞
]
,

hence ∥∥∥u0 − uSEi

N

∥∥∥
∞

≤
β∥(Kf)(u0)− (KSEi

N f)(u0)∥∞
(1− βλ

2 )

≤ β

1− βλ
2

∥(Kf)(u0)− (KSEi

N f)(u0)∥∞.

Then by using Theorem 2.1 we obtain the desired result.
Concerning the convergence of the DE-Sinc Nyström method, we can define the assumptions C1 − C3 for the DE-
case by replacing the SE-transformation ψSEi

with DE-transformation ψDEi
. Then we can formulate and prove the

following Theorem in the same way as in the SE-case.

Theorem 4.4. Assume that the same assumptions of Lemma 4.2 are satisfied for the DE-case. Then there exists a
positive integer N1 such that, for all N ≥ N1, Eq.(3.8) has a unique solution uDEi

N ∈ B(u0, δ). Furthermore, there
exist a constant C independent of N such that

∥u0 − uDEi

N ∥∞ ≤ C exp

(
−2πdN

log(8dN/α)

)
. (4.5)

5 Numerical results

In this section, we show numerical results that illustrate the theoretical results obtained previously. As we men-
tioned in the preceding section, the convergence of the SE-Sinc and DE-Sinc methods depends to the parameters α
and d, the important parameter d value is 1.57 for both methods, and the parameter α changes by each Example.

Example 5.1. Consider the following nonlinear integral equation

u(s) +

∫ ∞

0

e−(s+t)u2(t)dt = 6e−s,

where the exact solution is given by u(s) = 3e−s, Table 1 shows a comparison of the maximum absolute errors obtained
using SE-Sinc and DE-Sinc methods with α = 1, respectively α = 3, and those obtained from [1].

Table 1: Maximum absolute errors for Example 5.1 .

N SE1 SE2 DE1 DE2 DE3 [1]
8 2.17e-04 9.98e-04 6.10e-05 8.84e-09 6.36e-08
16 3.31e-05 2.38e-05 4.79e-08 3.55e-15 1.33e-15 6.54e-03
32 2.54e-07 1.19e-07 5.03e-11 1.78e-15 1.33e-15 8.39e-04
64 1.02e-10 6.94e-11 2.22e-15 2.66e-15 2.22e-15 1.05e-04

Example 5.2. Consider the following nonlinear integral equation

u(s) +

∫ ∞

0

e−(s+t)

1 + u(t) + u2(t)
dt = (1− π

3
√
3
)e−s,

whose exact solution is u(s) = e−s, we choose α = 1, for the SE-Sinc method and α = 2, for the DE-Sinc method, the
obtained numerical results are given in Table 2.

Example 5.3. Consider the following nonlinear integral equation

u(s) +

∫ ∞

0

e−t(s+1)u2(t)dt = sin(s)− 2

s3 + 3s2 + 7s+ 5
,

whose exact solution is u(s) = sin(s), we choose α = 5, for the SE-Sinc method and α = 9, for the DE-Sinc method,
the numerical results for this Example are given in Table 3.
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Table 2: Maximum absolute errors for Example 5.2.

N SE1 SE2 DE1 DE2
4 1.83e-02 2.00e-03 1.46e-02 1.46e-05
8 2.33e-04 1.16e-04 1.50e-03 1.09e-08
16 1.67e-05 2.12e-06 3.15e-05 6.88e-15
32 1.18e-08 7.65e-09 1.08e-08 2.22e-16
64 9.69e-11 2.62e-12 5.15e-13 4.44e-16

Table 3: Maximum absolute errors for Example 5.3.

N SE1 SE2 DE1 DE2 DE3
4 2.45e-02 1.32e-02 4.72e-02 7.59e-04 1.30e-03
8 4.70e-03 3.70e-03 6.50e-03 6.86e-05 2.05e-04
16 6.01e-04 7.75e-04 2.80e-03 4.40e-07 1.75e-06
32 8.86e-06 4.51e-05 1.93e-04 4.73e-11 2.36e-10
64 2.03e-07 1.70e-06 3.03e-06 3.05e-16 2.16e-16

Example 5.4. Consider the following nonlinear integral equation on the half-line

u(s) +

∫ ∞

0

e−(s+t) cos(u(t))dt = e−s(1− sin(1)),

where the exact solution is given by u(s) = e−s, we choose α = 1, for SE-Sinc method and α = 2, for DE-Sinc method,
the numerical results for this Example are given in Table 4.

Table 4: Maximum absolute errors for Example 5.4.

N SE1 SE1 DE1 DE2
4 9.00e-03 3.60e-03 1.35e-02 1.39e-05
8 1.65e-04 2.15e-04 1.40e-03 1.92e-08
16 4.43e-05 2.15e-04 3.23e-05 9.77e-15
32 8.32e-08 1.54e-08 1.10e-08 3.33e-16
64 1.41e-10 6.12e-12 5.08e-13 6.66e-16

Example 5.5. Consider the linear integral equation

u(s) +

∫ ∞

0

e−t2−su(t)dt = g(s),

where g(s) is selected so that the exact solution is u(s) = 1
s4+2s2+1 , Table 5 shows the numerical results using DE1-Sinc

and DE2-Sinc methods with α = 7.

Table 5: Maximum absolute errors for Example 5.5.

N DE1 DE2
4 1.63e-03 9.91e-04
9 7.81e-04 1.97e-07
12 1.50e-05 4.96e-10
15 2.65e-06 1.90e-11
18 9.94e-08 5.28e-13
21 9.96e-08 1.65e-14

6 Conclusion

In this paper, we have provided two numerical methods based on Sinc-quadrature for nonlinear integral equations
of Hammerstein type on the half line, the methods have been developed by means of the Sinc approximation with
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the Single Exponential (SE) and Double Exponential (DE) transformations. We have discussed the convergence for
both schemes to prove the accuracy of our approaches then the numerical results have confirmed that the error decay
exponentially.
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