
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,028 |
تعداد مشاهده مقاله | 67,082,885 |
تعداد دریافت فایل اصل مقاله | 7,656,357 |
The effect of liquid nitrogen-microwave treatments on the structural, optical, and tribological properties of WS2 nanoflakes | ||
Progress in Physics of Applied Materials | ||
دوره 1، شماره 1، اسفند 2021، صفحه 74-82 اصل مقاله (1.4 M) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.22075/ppam.2021.24535.1015 | ||
نویسندگان | ||
Mitra Mahdavi1؛ Salimeh Kimiagar* 2؛ Fahimeh Abrinaei3 | ||
1Department of Physics, Central Tehran Branch, Islamic Azad University, Tehran, Iran | ||
2Nano Research lab, Physics Department, Faculty of Science, Central Tehran Branch, Islamic Azad university | ||
3Department of Physics, East Tehran Branch, Islamic Azad University, Tehran, Iran | ||
تاریخ دریافت: 22 شهریور 1400، تاریخ بازنگری: 22 آبان 1400، تاریخ پذیرش: 20 آذر 1400 | ||
چکیده | ||
WS2 was successfully synthesized by the hydrothermal method under various liquid nitrogen and microwave treatments. X-ray diffraction (XRD) analysis showed the presence of multiple WS2 phases, of which hexagonal was the dominant phase. The morphology of the samples was examined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) and WS2 exfoliation was confirmed after liquid nitrogen and microwave treatments. Fourier transform infrared spectroscopy (FTIR) confirmed WS2 exfoliation during the exfoliation process. Optical bandgap calculation showed an increase in the exfoliation WS2 bandwidth to 4.7 eV, which is large enough for the massive indirect bandwidth (1.3 eV) of WS2, indicating the effect of quantum confinement. Decreased photoluminescence (PL) showed the production of defects in the samples during the processes. The tribological properties of WS2 nanoflakes as an additive in oil showed that the coefficient of friction and wear performance of the oil were significantly improved by adding WS2 nanoflakes synthesized by the hydrothermal method under different liquid nitrogen and microwave treatments. The results show that WS2 nanoflakes with an improved coefficient of friction and wear performance can be a promising additive that could open a new avenue for the large-scale production of tribological materials. | ||
کلیدواژهها | ||
freezing؛ heating؛ Tribology؛ friction coefficient؛ Environmental friendly | ||
مراجع | ||
[1] M. Ali, H. Xianjun, Improving the tribological behavior of internal combustion engines via the addition of nanoparticles to engine oils, Nanotechnol, A 4 (2015) 347. [2] J. Kogovšek, M. Kalin, Various MoS2-, WS2- and C-Based Micro- and Nanoparticles in Boundary Lubrication, Tribol. Lett, A 53 (2014) 585. [3] E. Ettefaghi, H. Ahmadi, A. Rashidi, A. Nouralishahi, S. Mohtasebi, Preparation and thermal properties of oilbased nanofluid from multi-walled carbon nanotubes and engine oil as nano-lubricant, INT COMMUN HEAT MASS, A 46 (2013) 142. [4] H. Fu, G. Yan, M. Li, H. Wang, Y. Chen, C. Yan, C. Lin, N. Jiang, J. Yu, Graphene as a nanofiller for enhancing the tribological properties and thermal conductivity of base grease, RSC Adv, A 72 (2019) 42481. [5] C. Altavilla, M. Sarno, P. Ciambelli, A. Senatore, V. Petrone, New ‘chimie douce’ approach to the synthesis of hybrid nanosheets of MoS2on CNT and their antifriction and anti-wear properties, Nanotechnology, A 24 (2013) 125601. [6] N. Win Khun, H. Zhang, L. Hoon Lim, J. Yang, Mechanical and Tribological Properties of Graphene Modified Epoxy Composites, (KMUTNB) Int. J. App. Sci, A 8 (2015) 101. [7] E. Hu, Y. Xu, K. Hu, X. Hu, Tribological properties of 3 types of MoS2 additives in different base greases, LUBR SCI, A 29 (2017) 541. [8] M. Charoo, M. Wani, M. Hanief, M. Rather, Tribological Properties of MoS2 Particles as Lubricant Additive on EN31 Alloy Steel and AISI 52100 Steel Ball, Proceedings, A 4 (2017) 9967. [9] Y. Wu, H. Li, L. Ji, L. Liu, Y. Ye, J. Chen, H. Zhou, Structure, Mechanical, and Tribological Properties of MoS2/aC:H Composite Films, Tribol. Lett, A 52 (2013) 371. [10] M. Ratoi, V. Niste, J. Walker, J. Zekonyte, Mechanism of Action of WS2 Lubricant Nanoadditives in HighPressure Contacts, Tribol. Lett, A 52 (2013) 81. [11] I. Jenei, F. Svahn, S. Csillag, Correlation Studies of WS 2 Fullerene-Like Nanoparticles Enhanced Tribofilms: A Scanning Electron Microscopy Analysis, Tribol. Lett, A 51 (2013) 461. [12] P. Aldana, B. Vacher, T. Le Mogne, M. Belin, B. Thiebaut, F. Dassenoy, Action Mechanism of WS2 Nanoparticles with ZDDP Additive in Boundary Lubrication Regime, Tribol. Lett, A 56 (2014) 249. [13] V. Niste, H. Tanaka, M. Ratoi, J. Sugimura, WS2 nano additive lubricant for applications affected by hydrogen embrittlement, RSC Adv, A 5 (2015) 40678. [14] S. Ingole, A. Charanpahari, A. Kakade, S. Umare, D. Bhatt, J. Menghani, Tribological behavior of nano TiO2 as an additive in base oil, Wear, A 301 (2013) 776. [15] A. Hernandez Battez, J. Fernandez Rico, A. Navas Arias, J. Viesca Rodriguez, R. Chou Rodriguez, J. Diaz Fernandez, The tribological behavior of ZnO nanoparticles as an additive to PAO6, Wear, A 261 (2006) 256. [16] J. Guo, G. Barber, D. Schall, Q. Zou, S. Jacob, Tribological properties of ZnO and WS2 nanofluids using different surfactants, Wear, A15 (2017) 382. [17] L. Gara, Q. Zou, Friction and Wear Characteristics of Oil-Based ZnO Nanofluids, Tribology T, A 56 (2013) 236. [18] L. Taran, R. Rasuli, Cost-effective liquid-phase exfoliation of molybdenum disulfide by prefreezing and thermal-shock, ADV POWDER TECHNOL, A 28 (2017) 2996. [19] B. Li, X. Wang, W. Liu, Q. Xue, Tribochemistry and antiwear mechanism of organic–inorganic nanoparticles as lubricant additives, Tribol. Lett, A 22 (2006) 79. [20] Lince, Jeffrey R. "Effective application of solid lubricants in spacecraft mechanisms." Lubricants 8, 7 (2020) 74. [21] Freschi, Marco, Matteo Di Virgilio, Gabriele Zanardi, Marco Mariani, Nora Lecis, and Giovanni Dotelli. "Employment of Micro-and Nano-WS2 Structures to Enhance the Tribological Properties of Copper Matrix Composites." Lubricants 9, 5 (2021) 53. [22] Fayaz, Syed Danish, and M. F. Wani. "Insights into the tribological behavior of IF-WS2 nanoparticle reinforced mild extreme pressure lubrication for coated chromium/bulk grey cast iron interface." Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology (2021) 1350650120964026. [23] N. Wu, N. Hu, J. Wu, G. Zhou, Tribology Properties of Synthesized Multiscale Lamellar WS2 and Their Synergistic Effect with Anti-Wear Agent ZDDP, Appl. Sci, A 10 (2019) 115. [24] X. Zhu, J. Yang, X. She, Y. Song, J. Qian, Y. Wang, H. Xu, H. Li, Q. Yan, Rapid synthesis of ultrathin 2D materials through liquid-nitrogen and microwave treatments, J. mater. chem, A 7 (2019) 5209. [25] Q. Wang, K. Kalantar-Zadeh, A. Kis, J. Coleman, M. Strano, Electronics and optoelectronics of twodimensional transition metal dichalcogenides, Nat. Nanotechnol, A 7 (2012) 699. [26] S. Cao, T. Liu, S. Hussain, W. Zeng, X. Peng, F. Pan, Hydrothermal synthesis of variety low dimensional WS2 nanostructures, Mater. Lett., A 129 (2014) 205. [27] M. Piao, J. Chu, X. Wang, Y. Chi, H. Zhang, C. Li, H. Shi, M.K. Joo, Hydrothermal synthesis of stable metallic 1T phase WS2 nanosheets for thermoelectric application, Nanotechnology, A 29 (2017) 025705. [28] G. Cunningham, M. Lotya, C. Cucinotta, S. Sanvito, S. Bergin, R. Menzel, M. Shaffer, J. Coleman, Solvent Exfoliation of Transition Metal Dichalcogenides: Dispersibility of Exfoliated Nanosheets Varies Only Weakly between Compounds, ACS Nano, A 6 (2012) 3468. [29] A. Winchester, S. Ghosh, S. Feng, A.L. Elias, T. Mallouk, M. Terrones, S. Talapatra, Electrochemical Characterization of Liquid Phase Exfoliated TwoDimensional Layers of Molybdenum Disulfide, ACS APPL MATER INTER, A 6 (2014) 2125. [30] K. Zhou, N. Mao, H. Wang, Y. Peng, H. Zhang, A MixedSolvent Strategy for Efficient Exfoliation of Inorganic Graphene Analogues, Chem. Int. Ed, A 123 (2011) 11031. [31] U. Halim, C.R. Zheng, Y. Chen, Z. Lin, S. Jiang, R. Cheng, Y. Huang, X. Duan, A rational design of cosolvent exfoliation of layered materials by directly probing liquid–solid interaction, Nat. Commun, A 4 (2013) 1. [32] X. Liu, J. Liu, D. Zhan, J. Yan, J. Wang, D. Chao, L. Lai, M. Chen, J. Yin, Z. Shen, Repeated microwave-assisted exfoliation of expandable graphite for the preparation of large scale and high-quality multi-layer graphene, RSC advances, A 3 (2013) 11601. [33] Z. Liu, Y. Wang, Z. Wang, Y. Yao, J. Dai, S. Das, L. Hu, olvothermal microwave-powered two-dimensional material exfoliation, ChemComm, A 33 (2016) 5757. [34] A. Albu-Yaron, M. Levy, R. Tenne, R. Popovitz-Biro, M. Weidenbach, M. Bar-Sadan, L. Houben, A. Enyashin, G. Seifert, D. Feuermann, E. Katz, J. Gordon, MoS2 Hybrid Nanostructures: From Octahedral to Quasi-Spherical Shells within Individual Nanoparticles, Angew. Chem. Int. Ed, A 8 (2011) 1810. [35] Y. Lin, D. Dumcenco, Y. Huang, K. Suenaga, Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2, Nat. Nanotechnol, A 9 (2014) 391. [36] K. Peng, H. Wang, X. Li, J. Wang, Z. Cai, L. Su, X. Fan, Emerging WS2/montmorillonite composite nanosheets as an efficient hydrophilic photocatalyst for aqueous phase reactions, Sci. Rep, A 9 (2019) 1. [37] S. Hazarika, D. Mohanta, norganic fullerene-type WS2 nanoparticles: processing, characterization and its photocatalytic performance on malachite green, APPL PHYS A, A 123 (2017) 381. [38] X. Zhang, J. Wang, H. Xu, H. Tan, X. Ye, Preparation and Tribological Properties of WS2 Hexagonal Nanoplates and Nanoflowers, Nanomaterials, A 9 (2019) 840. [39] Q. Pang, Y. Gao, Y. Zhao, Y. Ju, H. Qiu, Y. Wei, B. Liu, B. Zou, F. Du, G. Chen, improved Lithium-Ion and Sodium-Ion Storage Properties from Few-Layered WS2 Nanosheets Embedded in a Mesoporous CMK-3 Matrix, Chem. Eur. J, A 23 (2017) 7074. [40] X. Zhao, X. Ma, J. Sun, D. Li, X. Yang, Enhanced Catalytic Activities of Surfactant-Assisted Exfoliated WS2 Nanodots for Hydrogen Evolution, ACS Nano, A 10 (2016) 2159. [41] B. Mahler, V. Hoepfner, K. Liao, G. Ozin, Colloidal Synthesis of 1T-WS2 and 2H-WS2 Nanosheets: Applications for Photocatalytic Hydrogen Evolution, J. Am. Chem. Soc, A 136 (2014) 14121. [42] S. Sharma, S. Bhagat, J. Singh, R. Singh, S. Sharma, Excitation-dependent photoluminescence from WS2 nanostructures synthesized via top-down approach, J. Mater. Sci, A 52 (2017) 11326. [43] S. Vattikuti, C. Byon, Effect of CTAB Surfactant on Textural, Structural, and Photocatalytic Properties of Mesoporous WS2, Sci. Adv. Mater, A 7 (2015) 2639. [44] J. Wu, G. Yue, Y. Xiao, M. Huang, J. Lin, L. Fan, Z. Lan, J. Lin, Glucose Aided Preparation of Tungsten Sulfide/Multi-Wall Carbon Nanotube Hybrid and Use as Counter Electrode in Dye-Sensitized Solar Cells, ACS APPL MATER INTER, A 4 (2012) 6530. [45] R. A. Ismail, G. M. Sulaiman, S. A. Abdulrahman, T. R. Marzoog, Solvothermal synthesis of Au@Fe3O4 nanoparticles for antibacterial applications, Mater. Sci. Eng., C, 53 (2015) 286–297. [46] Li N. Chen, J. Shi, Y.-P. Anal. Magnetic polyethyleneimine functionalized reduced graphene oxide as a novel magnetic solid-phase extraction adsorbent for the determination of polar acidic herbicides in rice, Chim. Acta, 949 (2017) 23–34. [47] Y. Yan, C. Zhang, W. Gu, C. Ding, X. Li, Y. Xian, Facile Synthesis of Water-Soluble WS2 Quantum Dots for Turn-On Fluorescent Measurement of Lipoic Acid, J. Phys. Chem C, A 120 (2016) 12170. [48] A. Bayat, E. Saievar-Iranizad, Synthesis of blue photoluminescent WS2 quantum dots via ultrasonic cavitation, J. Lumin, A 185 (2017) 236. [49] G. Frey, S. Elani, M. Homyonfer, Y. Feldman, R. Tenne, Optical-absorption spectra of inorganic fullerenelike MS2 (M=Mo,W), Phys. Rev, A 57 (1998) 6666. [50] K. He, N. Kumar, L. Zhao, Z. Wang, K. Mak, H. Zhao, J. Shan, Tightly Bound Excitons in MonolayerWSe2, PHYS REV LETT, A 113 (2014) 026803. [51] S. Xu, D. Li, P. Wu, One-Pot, Facile, and Versatile Synthesis of Monolayer MoS2/WS2 Quantum Dots as Bioimaging Probes and Efficient Electrocatalysts for Hydrogen Evolution Reaction, Adv. Funct. Mater, A 25 (2015) 1127. [52] H. Mishra, S. Umrao, J. Singh, R. Srivastava, R. Ali, A. Misra, A. Srivastava, pH Dependent Optical Switching and Fluorescence Modulation of Molybdenum Sulfide Quantum Dots, Advanced Optical Materials 5, 9 (2017) 1601021. [53] F. Laatar, M. Hassen, C. Amri, F. Laatar, A. Smida, H. Ezzaouia, Fabrication of CdSe nanocrystals using porous anodic alumina and their optical properties, J. Lumin, A 178 (2016) 13. [54] N. Ben Brahim, M. Poggi, N. Haj Mohamed, R. Ben Chaâbane, M. Haouari, M. Negrerie, H. Ben Ouada, Synthesis, characterization and spectral temperaturedependence of thioglycerol-CdSe nanocrystals, J. Lumin, A 177 (2016) 402. [55] Y. Sang, Z. Zhao, M. Zhao, P. Hao, Y. Leng, H. Liu, From UV to Near-Infrared, WS2 Nanosheet: A Novel Photocatalyst for Full Solar Light Spectrum Photodegradation, Adv. Mater, A 27 (2015) 363. [56] S. Notley, High yield production of photoluminescent tungsten disulphide nanoparticles, J. Colloid Interface Sci, A 15 (2013) 160. [57] H. Jiang, Electronic Band Structures of Molybdenum and Tungsten Dichalcogenides by the GW Approach, J. Phys. Chem, A 116 (2012) 7664. [58] D. Feng, Z. Xu, T. Jia, X. Li, S. Gong, Quantum size effects on exciton states in indirect-gap quantum dots, Phys. Rev B, A 68 (2003) 035334. [59] X. Duan, Q. Liu, G. Wang, X. Su, WS2 quantum dots as a sensitive fluorescence probe for the detection of glucose, MICROCHIM ACTA, A 207 (2019) 491. [60] Lin, T. N., S. R. M. Santiago, S. P. Caigas, C. T. Yuan, T. Y. Lin, J. L. Shen, and Y. F. Chen. "Many-body effects in doped WS2 monolayer quantum disks at room temperature." npj 2D Materials and Applications 3, 1 (2019) 1-6. [61] Y. S. Liu, X. M. Hu, T. Wang, and D. M. Liu, “Reduced Binding Energy and Layer-Dependent Exciton Dynamics in Monolayer and Multilayer WS2,” ACS Nano 13(12) (2019) 14416–14425. [62] A. Hichri, I. B. Amara, S. Ayari, and S. Jaziri, “Dielectric environment and/or random disorder effects on free,charged and localized excitonic states in monolayer WS2,” J. Phys.: Condens. Matter 29(43) (2017) 435305. [63] Xu, Xuejun, Lihui Li, Mingming Yang, Qinglin Guo, Ying Wang, Xiaoli Li, Xiujuan Zhuang, and Baolai Liang. "Localized state effect and exciton dynamics for monolayer WS2." Optics Express 29, 4 (2021) 5856- 5866. [64] H. Wang, C. Zhang, W. Chan, S. Tiwari, F. Rana, Ultrafast response of monolayer molybdenum disulfide photodetectors, A 6 (2015) 339. [65] Ma, Churong, Jiahao Yan, Yingcong Huang, and Guowei Yang. Photoluminescence manipulation of WS2 flakes by an individual Si nanoparticle, Materials Horizons 6, 1 (2019) 97-106. [66] M. Mahdavi, S. Kimiagar, and F. Abrinaei, Effect of Laser Energy on the Tribology Properties of MoS2 Flakes, Tribology in Industry 42(2) (2020). [67] Wu, Na, Ningning Hu, Gongbo Zhou, and Jinhe Wu. "Tribological properties of lubricating oil with micro/nano-scale WS2 particles." Journal of Experimental Nanoscience 13, 1 (2018) 27-38. [68] Zhang, Xianghua, Hongxiang Xu, Jiangtao Wang, Xia Ye, Weining Lei, Maoquan Xue, Hua Tang, and Changsheng Li. "Synthesis of ultrathin WS2 nanosheets and their tribological properties as lubricant additives." Nanoscale research letters 11, 1 (2016) 1-9. [69] Jiang, Zhengquan, Yujuan Zhang, Guangbin Yang, Kunpeng Yang, Shengmao Zhang, Laigui Yu, and Pingyu Zhang. "Tribological properties of oleylaminemodified ultrathin WS2 nanosheets as the additive in polyalpha olefin over a wide temperature range." Tribology Letters 61, 24 (2016) 3. [70] A. Bos, Wear in the four-ball apparatus: relationship between the displacement of the upper ball and the diameter of the wear scars on the lower balls, Wear, A 41 (1977) 191. [71] T.B. Lane, the flash temperature parameter: A criterion for assessing EP performance in the four-ball machine, J JPN PETROL INST, A 4 (1961) 254. | ||
آمار تعداد مشاهده مقاله: 297 تعداد دریافت فایل اصل مقاله: 234 |