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ISOMORPHISMS IN UNITAL C∗-ALGEBRAS

C. PARK1∗ AND TH. M. RASSIAS2

Dedicated to the 70th Anniversary of S.M.Ulam’s Problem for Approximate Homomorphisms

Abstract. It is shown that every almost linear bijection h : A → B of a uni-
tal C∗-algebra A onto a unital C∗-algebra B is a C∗-algebra isomorphism when
h(3nuy) = h(3nu)h(y) for all unitaries u ∈ A, all y ∈ A, and all n ∈ Z, and
that almost linear continuous bijection h : A → B of a unital C∗-algebra A of
real rank zero onto a unital C∗-algebra B is a C∗-algebra isomorphism when
h(3nuy) = h(3nu)h(y) for all u ∈ {v ∈ A | v = v∗, ‖v‖ = 1, v is invertible}, all
y ∈ A, and all n ∈ Z.

Assume that X and Y are left normed modules over a unital C∗-algebra A.
It is shown that every surjective isometry T : X → Y , satisfying T (0) = 0 and
T (ux) = uT (x) for all x ∈ X and all unitaries u ∈ A, is an A-linear isomorphism.
This is applied to investigate C∗-algebra isomorphisms in unital C∗-algebras.

1. Introduction

Let X and Y be Banach spaces with norms || · || and ‖ · ‖, respectively. Consider
f : X → Y to be a mapping such that f(tx) is continuous in t ∈ R for each
fixed x ∈ X. Th.M. Rassias [11] introduced the following inequality that is called
Cauchy–Rassias inequality: Assume that there exist constants θ ≥ 0 and p ∈ [0, 1)
such that

‖f(x + y)− f(x)− f(y)‖ ≤ θ(||x||p + ||y||p)
for all x, y ∈ X. Th.M. Rassias [11] showed that there exists a unique R-linear
mapping T : X → Y such that

‖f(x)− T (x)‖ ≤ 2θ

2− 2p
||x||p

for all x ∈ X. The above inequality has provided a a lot of influence in the de-
velopment of what is called Hyers-Ulam-Rassias stability or generalized Hyers-Ulam
stability of functional equations. Beginning around the year 1980 the topic of ap-
proximate homomorphisms, or the stability of the equation of homomorphism, was
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studied by a number of mathematicians. Jun and Lee [5] proved the following:
Denote by ϕ : X ×X → [0,∞) a function such that

ϕ̃(x, y) =
∞∑

j=0

1

3j
ϕ(3jx, 3jy) < ∞

for all x, y ∈ X. Suppose that f : X → Y is a mapping satisfying f(0) = 0 and

‖2f(
x + y

2
)− f(x)− f(y)‖ ≤ ϕ(x, y)

for all x, y ∈ X. Then there exists a unique additive mapping T : X → Y such that

‖f(x)− T (x)| ≤ 1

3
(ϕ̃(x,−x) + ϕ̃(−x, 3x))

for all x ∈ X. C. Park and W. Park [10] applied the Jun and Lee’s result to
the Jensen’s equation in Banach modules over a C∗-algebra. Various functional
equations have been investigated by several authors ([13]–[16], [18]).

Throughout this paper, let A be a unital C∗-algebra with norm || · || and unit e,
and B a unital C∗-algebra with norm ‖ · ‖. Let U(A) be the set of unitary elements
in A, Asa = {x ∈ A | x = x∗}, and I1(Asa) = {v ∈ Asa | ‖v‖ = 1, v is invertible}.

In Section 2, we prove that every almost linear bijection h : A → B is a C∗-
algebra isomorphism when h(3nuy) = h(3nu)h(y) for all u ∈ U(A), all y ∈ A, and
all n ∈ Z, and that for a unital C∗-algebra A of real rank zero (see [3]), every
almost linear continuous bijection h : A → B is a C∗-algebra isomorphism when
h(3nuy) = h(3nu)h(y) for all u ∈ I1(Asa), all y ∈ A, and all n ∈ Z. In Section 3,
we moreover prove that every surjective isometry, satisfying some conditions, is a
C∗-algebra isomorphism.

2. C∗-algebra isomorphisms in unital C∗-algebras

We investigate C∗-algebra isomorphisms in unital C∗-algebras.

Theorem 2.1. Let h : A → B be a bijective mapping satisfying h(0) = 0 and
h(3nuy) = h(3nu)h(y) for all u ∈ U(A), all y ∈ A, and all n ∈ Z, for which there
exists a function ϕ : A× A → [0,∞) such that

ϕ̃(x, y) :=
∞∑

j=0

1

3j
ϕ(3jx, 3jy) < ∞, (2.1)

‖2h(
µx + µy

2
)− µh(x)− µh(y)‖ ≤ ϕ(x, y), (2.2)

‖h(3nu∗)− h(3nu)∗‖ ≤ ϕ(3nu, 3nu) (2.3)

for all µ ∈ S1 := {λ ∈ C | |λ| = 1}, all u ∈ U(A), all n ∈ Z, and all x, y ∈ A.
Assume that

lim
n→∞

h(3ne)

3n
(2.4)

is invertible. Then the bijective mapping h : A → B is a C∗-algebra isomorphism.
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Proof. Put µ = 1 ∈ S1. It follows from the Jun and Lee’s theorem [5] that there
exists a unique additive mapping H : A → B such that

‖h(x)−H(x)‖ ≤ 1

3

(
ϕ̃(x,−x) + ϕ̃(−x, 3x)

)
(2.5)

for all x ∈ A. The additive mapping H : A → B is given by

H(x) = lim
n→∞

1

3n
h(3nx)

for all x ∈ A.
By the assumption, for each µ ∈ S1,

1

3n
‖2h(

3nµx

2
)− µh(3nx)‖ ≤ 1

3n
ϕ(3nx, 0),

which tends to zero as n →∞ for all x ∈ A. Hence

2H(
µx

2
) = lim

n→∞

2h(3nµx
2

)

3n
= lim

n→∞

µh(3nx)

3n
= µH(x)

for all µ ∈ S1 and all x ∈ A. Since H : A → B is additive,

H(µx) = 2H(
µx

2
) = µH(x) (2.6)

for all µ ∈ S1 and all x ∈ A.
Now let λ ∈ C (λ 6= 0) and M an integer greater than 4|λ|. Then, we have

| λ
M
| < 1

4
< 1 − 2

3
= 1

3
. By [6], there exist three elements µ1, µ2, µ3 ∈ S1 such that

3 λ
M

= µ1 + µ2 + µ3. So by (2.6)

H(λx) = H(
M

3
· 3 λ

M
x) = M ·H(

1

3
· 3 λ

M
x) =

M

3
H(3

λ

M
x)

=
M

3
H(µ1x + µ2x + µ3x) =

M

3
(H(µ1x) + H(µ2x) + H(µ3x))

=
M

3
(µ1 + µ2 + µ3)H(x) =

M

3
· 3 λ

M
H(x)

= λH(x)

for all x ∈ A. Hence

H(ζx + ηy) = H(ζx) + H(ηy) = ζH(x) + ηH(y)

for all ζ, η ∈ C(ζ, η 6= 0) and all x, y ∈ A. And H(0x) = 0 = 0H(x) for all x ∈ A.
So the unique additive mapping H : A → B is a C-linear mapping.

By (2.1) and (2.3), we get

H(u∗) = lim
n→∞

h(3nu∗)

3n
= lim

n→∞

h(3nu)∗

3n
= ( lim

n→∞

h(3nu)

3n
)∗

= H(u)∗



4 C. PARK AND TH. M. RASSIAS

for all u ∈ U(A). Since H is C-linear and each x ∈ A is a finite linear combination
of unitary elements (see [7]), i.e., x =

∑m
j=1 λjuj (λj ∈ C, uj ∈ U(A)),

H(x∗) = H(
m∑

j=1

λju
∗
j) =

m∑
j=1

λjH(u∗j) =
m∑

j=1

λjH(uj)
∗ = (

m∑
j=1

λjH(uj))
∗

= H(
m∑

j=1

λjuj)
∗ = H(x)∗

for all x ∈ A.
Since h(3nuy) = h(3nu)h(y) for all u ∈ U(A), all y ∈ A, and all n ∈ Z,

H(uy) = lim
n→∞

1

3n
h(3nuy) = lim

n→∞

1

3n
h(3nu)h(y) = H(u)h(y) (2.7)

for all u ∈ U(A) and all y ∈ A. By the additivity of H and (2.7),

3nH(uy) = H(3nuy) = H(u(3ny)) = H(u)h(3ny)

for all u ∈ U(A) and all y ∈ A. Hence

H(uy) =
1

3n
H(u)h(3ny) = H(u)

1

3n
h(3ny) (2.8)

for all u ∈ U(A) and all y ∈ A. Taking the limit in (2.8) as n →∞, we obtain

H(uy) = H(u)H(y) (2.9)

for all u ∈ U(A) and all y ∈ A. Since H is C-linear and each x ∈ A is a finite linear
combination of unitary elements, i.e., x =

∑m
j=1 λjuj (λj ∈ C, uj ∈ U(A)), it follows

from (2.9) that

H(xy) = H(
m∑

j=1

λjujy) =
m∑

j=1

λjH(ujy) =
m∑

j=1

λjH(uj)H(y)

= H(
m∑

j=1

λjuj)H(y) = H(x)H(y)

for all x, y ∈ A.
By (2.7) and (2.9),

H(e)H(y) = H(ey) = H(e)h(y)

for all y ∈ A. Since limn→∞
h(3ne)

3n = H(e) is invertible,

H(y) = h(y)

for all y ∈ A.
Therefore, the bijective mapping h : A → B is a C∗-algebra isomorphism. �

Corollary 2.2. Let h : A → B be a bijective mapping satisfying h(0) = 0 and
h(3nuy) = h(3nu)h(y) for all u ∈ U(A), all y ∈ A, and all n ∈ Z, for which there
exist constants θ ≥ 0 and p ∈ [0, 1) such that

‖2h(
µx + µy

2
)− µh(x)− µh(y)‖ ≤ θ(||x||p + ||y||p),

‖h(3nu∗)− h(3nu)∗‖ ≤ 2 · 3npθ
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for all µ ∈ S1, all u ∈ U(A), all n ∈ Z, and all x, y ∈ A. Assume that limn→∞
h(3ne)

3n

is invertible. Then the bijective mapping h : A → B is a C∗-algebra isomorphism.

Proof. Define ϕ(x, y) = θ(||x||p + ||y||p) to be Th.M. Rassias upper bound in the
Cauchy–Rassias inequality, and apply Theorem 2.1. �

Theorem 2.3. Let h : A → B be a bijective mapping satisfying h(0) = 0 and
h(3nuy) = h(3nu)h(y) for all u ∈ U(A), all y ∈ A, and all n ∈ Z, for which there
exists a function ϕ : A× A → [0,∞) satisfying (2.1), (2.3), and (2.4) such that

‖2h(
µx + µy

2
)− µh(x)− µh(y)‖ ≤ ϕ(x, y) (2.10)

for µ = 1, i, and all x, y ∈ A. If h(tx) is continuous in t ∈ R for each fixed x ∈ A,
then the bijective mapping h : A → B is a C∗-algebra isomorphism.

Proof. Put µ = 1 in (2.10). By the same reasoning as in the proof of Theorem 2.1,
there exists a unique additive mapping H : A → B satisfying (2.5). By the same
reasoning as in the proof of [11], the additive mapping H : A → B is R-linear.

Put µ = i and y = 0 in (2.10). By the same method as in the proof of Theorem
2.1, one can obtain that

H(ix) = 2H(
ix

2
) = lim

n→∞

2h(3nix
2

)

3n
= lim

n→∞

ih(3nx)

3n
= iH(x)

for all x ∈ A.
For each element λ ∈ C, λ = s + it, where s, t ∈ R. So

H(λx) = H(sx + itx) = sH(x) + tH(ix) = sH(x) + itH(x)

= (s + it)H(x) = λH(x)

for all λ ∈ C and all x ∈ A. So

H(ζx + ηy) = H(ζx) + H(ηy) = ζH(x) + ηH(y)

for all ζ, η ∈ C, and all x, y ∈ A. Hence the additive mapping H : A → B is
C-linear.

The rest of the proof is the same as in the proof of Theorem 2.1. �

From now on, assume that A is a unital C∗-algebra of real rank zero, where “real
rank zero” means that the set of invertible self-adjoint elements is dense in the set
of self-adjoint elements (see [3]).

Now we investigate continuous C∗-algebra isomorphisms in unital C∗-algebras.

Theorem 2.4. Let h : A → B be a continuous bijective mapping satisfying h(0) = 0
and h(3nuy) = h(3nu)h(y) for all u ∈ I1(Asa), all y ∈ A, and all n ∈ Z, for which
there exists a function ϕ : A × A → [0,∞) satisfying (2.1), (2.2), (2.3) and (2.4).
Then the bijective mapping h : A → B is a C∗-algebra isomorphism.

Proof. By the same reasoning as in the proof of Theorem 2.1, there exists a unique
C-linear involution H : A → B satisfying (2.5).

Since h(3nuy) = h(3nu)h(y) for all u ∈ I1(Asa), all y ∈ A, and all n ∈ Z,

H(uy) = lim
n→∞

1

3n
h(3nuy) = lim

n→∞

1

3n
h(3nu)h(y) = H(u)h(y) (2.11)
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for all u ∈ I1(Asa) and all y ∈ A. By the additivity of H and (2.11),

3nH(uy) = H(3nuy) = H(u(3ny)) = H(u)h(3ny)

for all u ∈ I1(Asa) and all y ∈ A. Hence

H(uy) =
1

3n
H(u)h(3ny) = H(u)

1

3n
h(3ny) (2.12)

for all u ∈ I1(Asa) and all y ∈ A. Taking the limit in (2.12) as n →∞, we obtain

H(uy) = H(u)H(y) (2.13)

for all u ∈ I1(Asa) and all y ∈ A.
By (2.11) and (2.13),

H(e)H(y) = H(ey) = H(e)h(y)

for all y ∈ A. Since limn→∞
h(3ne)

3n = H(e) is invertible,

H(y) = h(y)

for all y ∈ A. So H : A → B is continuous. But by the assumption that A has real
rank zero, it is easy to show that I1(Asa) is dense in {x ∈ Asa | ||x|| = 1}. So for
each w ∈ {z ∈ Asa | ||z|| = 1}, there is a sequence {κj} such that κj → w as j →∞
and κj ∈ I1(Asa). Since H : A → B is continuous, it follows from (2.13) that

H(wy) = H( lim
j→∞

κjy) = lim
j→∞

H(κjy) = lim
j→∞

H(κj)H(y)

= H( lim
j→∞

κj)H(y) = H(w)H(y) (2.14)

for all w ∈ {z ∈ Asa | ||z|| = 1} and all y ∈ A.
For each x ∈ A, x = x+x∗

2
+ix−x∗

2i
, where x1 := x+x∗

2
and x2 := x−x∗

2i
are self-adjoint.

First, consider the case that x1 6= 0, x2 6= 0. Since H : A → B is C-linear, it
follows from (2.14) that

H(xy) = H(x1y + ix2y) = H(||x1||
x1

||x1||
y + i||x2||

x2

||x2||
y)

= ||x1||H(
x1

||x1||
y) + i||x2||H(

x2

||x2||
y)

= ||x1||H(
x1

||x1||
)H(y) + i||x2||H(

x2

||x2||
)H(y)

= {H(||x1||
x1

||x1||
) + iH(||x2||

x2

||x2||
)}H(y) = H(x1 + ix2)H(y)

= H(x)H(y)

for all y ∈ A.
Next, consider the case that x1 6= 0, x2 = 0. Since H : A → B is C-linear, it

follows from (2.14) that

H(xy) = H(x1y) = H(||x1||
x1

||x1||
y) = ||x1||H(

x1

||x1||
y)

= ||x1||H(
x1

||x1||
)H(y) = H(||x1||

x1

||x1||
)H(y) = H(x1)H(y)

= H(x)H(y)

for all y ∈ A.



ISOMORPHISMS IN UNITAL C∗-ALGEBRAS 7

Finally, consider the case that x1 = 0, x2 6= 0. Since H : A → B is C-linear, it
follows from (2.14) that

H(xy) = H(ix2y) = H(i||x2||
x2

||x2||
y) = i||x2||H(

x2

||x2||
y)

= i||x2||H(
x2

||x2||
)H(y) = H(i||x2||

x2

||x2||
)H(y) = H(ix2)H(y)

= H(x)H(y)

for all y ∈ A. Hence

H(xy) = H(x)H(y)

for all x, y ∈ A.
Therefore, the bijective mapping h : A → B is a C∗-algebra isomorphism. �

Corollary 2.5. Let h : A → B be a continuous bijective mapping satisfying h(0) = 0
and h(3nuy) = h(3nu)h(y) for all u ∈ I1(Asa), all y ∈ A, and all n ∈ Z, for which
there exist constants θ ≥ 0 and p ∈ [0, 1) such that

‖2h(
µx + µy

2
)− µh(x)− µh(y)‖ ≤ θ(||x||p + ||y||p),

‖h(3nu∗)− h(3nu)∗‖ ≤ 2 · 3npθ

for all µ ∈ S1, all u ∈ I1(Asa), all n ∈ Z and all x, y ∈ A. Assume that limn→∞
h(3ne)

3n

is invertible. Then the bijective mapping h : A → B is a C∗-algebra isomorphism.

Proof. Define ϕ(x, y) = θ(||x||p + ||y||p) to be Th.M. Rassias upper bound in the
Cauchy–Rassias inequality, and apply Theorem 2.4. �

Theorem 2.6. Let h : A → B be a continuous bijective mapping satisfying h(0) = 0
and h(3nuy) = h(3nu)h(y) for all u ∈ I1(Asa), all y ∈ A, and all n ∈ Z, for which
there exists a function ϕ : A× A → [0,∞) satisfying (2.1), (2.3), (2.4), and (2.10).
Then the bijective mapping h : A → B is a C∗-algebra isomorphism.

Proof. By the same reasoning as in the proof of Theorem 2.3, there exists a unique
C-linear mapping H : A → B satisfying (2.5).

The rest of the proof is the same as in the proofs of Theorems 2.1 and 2.4. �

3. On the Mazur-Ulam theorem in modules over C∗-algebras

Surjective isometries between normed vector spaces have been investigated by
several authors ([1], [2], [8], [9], [12], [17]). We apply the results to investigate
C∗-algebra isomorphisms in unital C∗-algebras.

Lemma 3.1. ([4]) If T is an isometry from a normed vector space X onto a normed
vector space Y , then

T (x + y) = T (x) + T (y)− T (0),

T (rx) = rT (x) + (1− r)T (0), ∀r ∈ R.

Corollary 3.2. ([4]) If T is an isometry from a normed vector space X onto a
normed vector space Y and if T (0) = 0, then T is R-linear
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Theorem 3.3. Let X and Y be left normed modules over a unital C∗-algebra A.
If T : X → Y is a surjective isometry with T (0) = 0 and T (ux) = uT (x) for all
u ∈ U(A) and all x ∈ X, then T : X → Y is an A-linear isomorphism.

Proof. By Corollary 3.2, T : X → Y is a R-linear.
Since i ∈ U(A), T (ix) = iT (x) for all x ∈ X. For each λ ∈ C, λ = λ1 +

i λ2 (λ1, λ2 ∈ R). So

T (λx) = T (λ1 x + i λ2 x) = T (λ1 x) + T (i λ2 x) = λ1T (x) + iT (λ2 x)

= (λ1 + i λ2)T (x) = λT (x)

for all x ∈ X.
Since each a ∈ A is a finite linear combination of unitary elements, i.e., a =∑n
j=1 λjuj (λj ∈ C, uj ∈ U(A)),

T (ax) = T (
n∑

j=1

λjujx) =
n∑

j=1

λjT (ujx) =
n∑

j=1

λjujT (x) = aT (x)

for all x ∈ X. So

T (ax + by) = T (ax) + T (by) = aT (x) + bT (y)

for all a, b ∈ A and all x, y ∈ X, as desired. �

Now we investigate C∗-algebra isomorphisms in unital C∗-algebras.

Theorem 3.4. If T : A → B is a surjective isometry with T (0) = 0, T (iu) = iT (u),
T (u∗) = T (u)∗, and T (uv) = T (u)T (v) for all u, v ∈ U(A), then T : A → B is a
C∗-algebra isomorphism.

Proof. By the same reasoning as in the proof of Theorem 3.3, T : A → B is R-linear
and

T (λu) = λT (u)

for all λ ∈ C and all u ∈ U(A).
Since each a ∈ A is a finite linear combination of unitary elements, i.e., a =∑n
j=1 λjuj (λj ∈ C, uj ∈ U(A)),

T (λa) = T (
n∑

j=1

λλjuj) =
n∑

j=1

λλjT (uj) = λ(
n∑

j=1

λjT (uj))

= λT (
n∑

j=1

λjuj) = λT (a)

for all λ ∈ C and all a ∈ A. So T : A → B is C-linear. Furthermore,

T (a∗) = T (
n∑

j=1

λju
∗
j) =

n∑
j=1

λjT (u∗j) =
n∑

j=1

λjT (uj)
∗

= T (
n∑

j=1

λjuj)
∗ = T (a)∗
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for all a ∈ A. And

T (av) = T (
n∑

j=1

λjujv) =
n∑

j=1

λjT (ujv) =
n∑

j=1

λjT (uj)T (v)

= T (
n∑

j=1

λjuj)T (v) = T (a)T (v)

for all a ∈ A and all v ∈ U(A). Since each b ∈ A is a finite linear combination of
unitary elements, i.e., b =

∑m
j=1 νjvj (νj ∈ C, vj ∈ U(A)),

T (ab) = T (
m∑

j=1

νjavj) =
m∑

j=1

νjT (avj) =
m∑

j=1

νjT (a)T (vj)

= T (a)T (
m∑

j=1

νjvj) = T (a)T (b)

for all a, b ∈ A. So T : A → B is multiplicative.
Therefore, T : A → B is a C∗-algebra isomorphism. �
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