Int. J. Nonlinear Anal. Appl. 1 (2010) No.2, 1-10
ISSN: 2008-6822 (electronic)
http://www.ijnaa.com

ISOMORPHISMS IN UNITAL C*-ALGEBRAS

C. PARK'* AND TH. M. RASSIAS?

Dedicated to the 70th Anniversary of S.M.Ulam’s Problem for Approxzimate Homomorphisms

ABSTRACT. It is shown that every almost linear bijection h : A — B of a uni-
tal C*-algebra A onto a unital C*-algebra B is a C*-algebra isomorphism when
h(3™uy) = h(3"u)h(y) for all unitaries v € A, all y € A, and all n € Z, and
that almost linear continuous bijection h : A — B of a unital C*-algebra A of
real rank zero onto a unital C*-algebra B is a C*-algebra isomorphism when
h(3™uy) = h(3"u)h(y) for all u € {v € A | v = v*,||v]] = 1,v is invertible}, all
y€ A, and all n € Z.

Assume that X and Y are left normed modules over a unital C*-algebra A.
It is shown that every surjective isometry T : X — Y, satisfying T(0) = 0 and
T(ux) = uT'(z) for all x € X and all unitaries u € A, is an A-linear isomorphism.
This is applied to investigate C*-algebra isomorphisms in unital C*-algebras.

1. INTRODUCTION

Let X and Y be Banach spaces with norms || - || and || - ||, respectively. Consider
f X — Y to be a mapping such that f(tx) is continuous in t € R for each
fixed € X. Th.M. Rassias [I 1] introduced the following inequality that is called
Cauchy—Rassias inequality: Assume that there exist constants § > 0 and p € [0,1)
such that

1z +y) = @) = F)l < 0Cl” + [yl")

for all z,y € X. Th.M. Rassias [ 1] showed that there exists a unique R-linear
mapping 7' : X — Y such that
20

I£() = T(@)] < 5=

for all z € X. The above inequality has provided a a lot of influence in the de-
velopment of what is called Hyers-Ulam-Rassias stability or generalized Hyers-Ulam
stability of functional equations. Beginning around the year 1980 the topic of ap-
proximate homomorphisms, or the stability of the equation of homomorphism, was
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studied by a number of mathematicians. Jun and Lee [5] proved the following:
Denote by ¢ : X x X — [0, 00) a function such that

=1
§_ iy, 3y
3Jg03:v3 < 00

J=0

for all ,y € X. Suppose that f: X — Y is a mapping satisfying f(0) = 0 and

12 ( )= f(@) = fWl < elz,y)
for all z,y € X. Then there exists a unique additive mapping 7" : X — Y such that
1, ~
If (@) = T(2)] < 5 (e, —2) + &=, 32))

for all z € X. C. Park and W. Park [10] applied the Jun and Lee’s result to
the Jensen’s equation in Banach modules over a C*-algebra. Various functional

x+y

equations have been investigated by several authors ([13]-[10], [18]).
Throughout this paper, let A be a unital C*-algebra with norm || - || and unit e,
and B a unital C*-algebra with norm || - ||. Let U(A) be the set of unitary elements

in A, A, ={x € Alx=2a"}, and [,(Asa) = {v € Asa | ||v|| = 1, v is invertible}.

In Section 2, we prove that every almost linear bijection h : A — B is a C*-
algebra isomorphism when h(3"uy) = h(3"u)h(y) for all u € U(A), all y € A, and
all n € Z, and that for a unital C*-algebra A of real rank zero (see [3]), every
almost linear continuous bijection h : A — B is a C"*-algebra isomorphism when
h(3"uy) = h(3"u)h(y) for all u € I(As,), all y € A, and all n € Z. In Section 3,
we moreover prove that every surjective isometry, satisfying some conditions, is a
C*-algebra isomorphism.

2. C*-ALGEBRA ISOMORPHISMS IN UNITAL C*-ALGEBRAS

We investigate C*-algebra isomorphisms in unital C*-algebras.

Theorem 2.1. Let h : A — B be a bijective mapping satisfying h(0) = 0 and
h(3"uy) = h(3"u)h(y) for allu € U(A), all y € A, and all n € Z, for which there
exists a function p : A x A — [0,00) such that

oz, y) == Z %@(3%,3@) < 00, (2.1)
I2n(“ ) — ih(a) — ph(y)] < (), (22)
13" = b3 < $(3"u, 3") (23)

forallpe St :={NeC ||\ =1}, dlu e UA), alln € Z, and all z,y € A.
Assume that
lim h(3")

n—o00 3n

(2.4)

1s invertible. Then the bijective mapping h : A — B is a C*-algebra isomorphism.
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Proof. Put u =1 € S'. Tt follows from the Jun and Lee’s theorem [5] that there
exists a unique additive mapping H : A — B such that

1, ~
Ih(e) = H(2)ll < 5 (Ple, —) + F(—x,37)) (2.5)
for all x € A. The additive mapping H : A — B is given by

H(z) = lim ih(3"a:)

n—oo 3™

for all x € A.
By the assumption, for each p € S*,

3"z
2

1 1
g l12h(—5—) — ph(3"2)|| < 20(3",0),

which tends to zero as n — oo for all x € A. Hence

oh (3L
2H(%): Tl

n—00 n n—00

I — i )

for all 4 € S* and all z € A. Since H : A — B is additive,

Hi(ux) = 2H(57) = pH (x) (2:6)

for all p € S* and all z € A.
Now let A € C (A # 0) and M an integer greater than 4|\|. Then, we have
14| <1 <1—2=1 By [0], there exist three elements p1, pt, 3 € S* such that

3% = p1 + p2 + pg. So by (2.6)

H(\z) = H(% : S%x) =M - H(é : S%x) = %H(S%x)
— %H(mx + poT + pi3r) = %(H(Mﬂi) + H(pox) + H(paz))
M M A
= ?(Nl + po + pi3) H(z) = 3 3MH(x)
= M\H(z)

for all z € A. Hence

H(Cz +ny) = H(Cx) + H(ny) = CH(x) + nH(y)

for all {,n € C(¢,n # 0) and all z,y € A. And H(0z) =0 = 0H(z) for all x € A.
So the unique additive mapping H : A — B is a C-linear mapping.
By (2.1) and (2.3), we get
H(u") = lim —h(3 w) = lim —h(3 w) = (lim —h(3 u))*

n—00 3 n—00 3 n—00 3n
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for all w € U(A). Since H is C-linear and each x € A is a finite linear combination
of unitary elements (see [7]), i.e., z = Y770 Nju; (\; € C, u; € U(A)),

H(z") = HO Nu)=> NH)=> NH(u) =) NH(u))
j=1 j=1 j=1 j=1
= H() \uw) = H(z)
j=1
for all z € A.
Since h(3"uy) = h(3"u)h(y) for all u € U(A), all y € A, and all n € Z,
1 1
H(uy) = lim 3—nh(3"uy) = lim 3—nh(3"u)h(y) = H(u)h(y) (2.7)

for all w € U(A) and all y € A. By the additivity of H and (2.7),
3"H(uy) = H(3"uy) = H(u(3"y)) = H(u)h(3"y)
for all u € U(A) and all y € A. Hence

1 1
H(uy) = o H(u)h(3"y) = H(u) - h(3"y) (2.8)
for all w € U(A) and all y € A. Taking the limit in (2.8) as n — oo, we obtain
H(uy) = H(u)H(y) (2.9)

for all u € U(A) and all y € A. Since H is C-linear and each x € A is a finite linear
combination of unitary elements, i.e., z = > Aju; (\; € C, u; € U(A)), it follows
from (2.9) that

H(zy) = H(Z Ajuzy) = Z)\jH(UjZ/) = Z AjH (uj)H(y)

- H(Z Njug)H (y) = H(x)H (y)

for all z,y € A.
By (2.7) and (2.9),

H(e)H(y) = H(ey) = H(e)h(y)
for all y € A. Since lim,,_, % = H (e) is invertible,
H(y) = h(y)
for all y € A.
Therefore, the bijective mapping h : A — B is a C*-algebra isomorphism. 0

Corollary 2.2. Let h : A — B be a bijective mapping satisfying h(0) = 0 and
h(3"uy) = h(3"u)h(y) for allu € U(A), all y € A, and all n € Z, for which there
exist constants @ > 0 and p € [0,1) such that

i + py
12h(—5—) = ph(x) — ph(y)ll < O(l|l” +[lyl[").
Ih(3"") — h(3™w)*|| < 2-3"70
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forallp e S*, allu € U(A), alln € Z, and all z,y € A. Assume that lim,, h(;’—:e)

1s invertible. Then the bijective mapping h : A — B is a C*-algebra isomorphism.

Proof. Define p(z,y) = 0(||x|[” + ||y||P) to be Th.M. Rassias upper bound in the
Cauchy—Rassias inequality, and apply Theorem 2.1. O

Theorem 2.3. Let h : A — B be a bijective mapping satisfying h(0) = 0 and
h(3"uy) = h(3™u)h(y) for allu € U(A), ally € A, and all n € Z, for which there
exists a function ¢ : A x A — [0,00) satisfying (2.1), (2.3), and (2.4) such that

28 “ ) — i) — ()] < () (2.10)

for p=1,i, and all x,y € A. If h(tx) is continuous in t € R for each fized x € A,
then the bijective mapping h : A — B is a C*-algebra isomorphism.

Proof. Put ;1 =1 in (2.10). By the same reasoning as in the proof of Theorem 2.1,
there exists a unique additive mapping H : A — B satisfying (2.5). By the same
reasoning as in the proof of [11], the additive mapping H : A — B is R-linear.

Put p =14 and y = 0 in (2.10). By the same method as in the proof of Theorem
2.1, one can obtain that

(E) = lim 59 = lim ih(3"z)

n—00 3n n—00 3n

H(ix) =2H =iH(x)

for all z € A.
For each element A € C, A = s + it, where s,t € R. So

H(A\x) = H(sx+itr) =sH(z)+tH(ix) = sH(x) + itH(x)
= (s+1it)H(x) = \H(x)
for all A € C and all z € A. So

H(Cz +ny) = H(Cx) + H(ny) = CH(x) +nH(y)

for all (,n € C, and all z,y € A. Hence the additive mapping H : A — B is
C-linear.
The rest of the proof is the same as in the proof of Theorem 2.1. O

From now on, assume that A is a unital C*-algebra of real rank zero, where “real
rank zero” means that the set of invertible self-adjoint elements is dense in the set
of self-adjoint elements (see [3]).

Now we investigate continuous C*-algebra isomorphisms in unital C*-algebras.

Theorem 2.4. Let h : A — B be a continuous bijective mapping satisfying h(0) = 0
and h(3"uy) = h(3"u)h(y) for all u € I,(As), ally € A, and all n € Z, for which
there exists a function ¢ : A x A — [0,00) satisfying (2.1), (2.2), (2.3) and (2.4).
Then the bijective mapping h : A — B is a C*-algebra isomorphism.

Proof. By the same reasoning as in the proof of Theorem 2.1, there exists a unique
C-linear involution H : A — B satisfying (2.5).
Since h(3"uy) = h(3"u)h(y) for all u € I1(As,), all y € A, and all n € Z,

H(uy) = lim —h(3"uy) = lim —h(3"u)h(y) = H(u)h(y) (2.11)
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for all u € I1(As,) and all y € A. By the additivity of H and (2.11),
3"H(uy) = H(3"uy) = H(u(3"y)) = H(u)h(3"y)
for all u € I;(As,) and all y € A. Hence

1 1
() = < H(u)h(3'y) = Hu)3-h(3") (2.12)
for all u € I1(As,) and all y € A. Taking the limit in (2.12) as n — oo, we obtain
H(uy) = H(u)H(y) (2.13)

for all u € I1(As,) and all y € A.
By (2.11) and (2.13),
H(e)H(y) = H(ey) = H(e)h(y)
for all y € A. Since lim,,_, h"e) — g (e) is invertible,
H(y) = h(y)
for all y € A. So H : A — B is continuous. But by the assumption that A has real
rank zero, it is easy to show that I1(A,,) is dense in {z € Ay, | ||z|] = 1}. So for

each w € {z € Ay, | ||2|| = 1}, there is a sequence {x;} such that k; — w as j — oo
and k; € I1(As,). Since H : A — B is continuous, it follows from (2.13) that

H(wy) = H(lim k;y) = lim H(k;y) = lim H(k;)H(y)
j—o00 j—o00 j—00
= H(lim ;) H(y) = H(w)H(y) (2.14)
for all w € {z € As | ||2]| =1} and all y € A.
Foreachz € A, x = #%—z’”"gf*, where x1 := ”; o adjoint.

First, consider the case that x; # 0,29 # 0. Since H : A — B is C-linear, it
follows from (2.14) that

Hay) = Hlowy+iny) = H{lal| ety +illeal -2 )
el lH (o) + izl | H G2 H>
[l (e ) + ol [H () H (y)

[J2]|
H)}H( y) = H(xy +ize)H(y)

foall
= {H(nllg ) + i (el
= H(x)H()

for all y € A.
Next, consider the case that x; # 0,29 = 0. Since H : A — B is C-linear, it
follows from (2.14) that

H(ry) = H(xy)= (||$1||||x|| y) = ||z || H (|| Y y)
\|$1HH(H H)H( )ZH(H%HW)H(Q)ZH(%)H(?J)
= H(z)H(y)

for all y € A.
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Finally, consider the case that 7 = 0,29 # 0. Since H : A — B is C-linear, it
follows from (2.14) that

= Z||$2|IH(| H)H( ) = (Z||$2|| “@H) ( ) H (ix2) H(y)
= H(x)H(y
for all y € A. Hence
H(xy) = H(x)H (y)
for all x,y € A.
Therefore, the bijective mapping h : A — B is a C*-algebra isomorphism. U

Corollary 2.5. Let h : A — B be a continuous bijective mapping satisfying h(0) = 0
and h(3"uy) = h(3"u)h(y) for all u € I1(As), ally € A, and all n € Z, for which
there exist constants 0 > 0 and p € [0,1) such that
px + py
12h(—5) = ph(x) — ph(y)ll < O(|l” +[lyl[").

|h(3"u*) — h(3™u)*|| < 2-3™60
forallp € S*, allu € I,(Ay), alln € Z and all z,y € A. Assume that lim,, . %
is invertible. Then the bijective mapping h : A — B is a C*-algebra isomorphism.

Proof. Define ¢(z,y) = 0(||z||” + ||y||P) to be Th.M. Rassias upper bound in the
Cauchy—-Rassias inequality, and apply Theorem 2.4. O

Theorem 2.6. Let h : A — B be a continuous bijective mapping satisfying h(0) = 0
and h(3"uy) = h(3"u)h(y) for all u € I1(As), ally € A, and all n € Z, for which
there exists a function ¢ : A x A — [0,00) satisfying (2.1), (2.3), (2.4), and (2.10).
Then the bijective mapping h : A — B is a C*-algebra isomorphism.

Proof. By the same reasoning as in the proof of Theorem 2.3, there exists a unique
C-linear mapping H : A — B satisfying (2.5).
The rest of the proof is the same as in the proofs of Theorems 2.1 and 2.4. O

3. ON THE MAZUR-ULAM THEOREM IN MODULES OVER C*-ALGEBRAS

Surjective isometries between normed vector spaces have been investigated by
several authors ([1], [2], [8], [9], [12], [17]). We apply the results to investigate
C*-algebra isomorphisms in unital C*-algebras.

Lemma 3.1. ([4]) If T is an isometry from a normed vector space X onto a normed
vector space Y, then

T(x+y) =T(x) +T(y) - T(0),
T(rx)=rT(x)+ (1 —r)T(0), VreR.

Corollary 3.2. ([1]) If T is an isometry from a normed vector space X onto a
normed vector space Y and if T(0) =0, then T is R-linear
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Theorem 3.3. Let X and Y be left normed modules over a unital C*-algebra A.
If T': X =Y is a surjective isometry with T(0) = 0 and T(ux) = uT'(z) for all
u€U(A) and all x € X, then T : X — Y is an A-linear isomorphism.

Proof. By Corollary 3.2, T: X — Y is a R-linear.
Since i € U(A), T(iz) = iT(z) for all x € X. For each A € C, A = A\ +
Y (/\1,/\2 € R) So

TAx) = Tho+ida)=TN\ z)+T( A x)=MT(x)+iT (A 2)
= (M 41 )T (x) = \T(2)

for all x € X.
Since each a € A is a finite linear combination of unitary elements, i.e., a =

Z?:l )\juj ()\] e C, uj € U<A))7

= T(Z \ju;z) = Z AT (uj) Z ;T () = aT(x)

for all x € X. So
T(azx + by) = T(ax) + T'(by) = aT'(x) + bT'(y)
for all a,b € A and all z,y € X, as desired. O
Now we investigate C*-algebra isomorphisms in unital C*-algebras.

Theorem 3.4. If T : A — B is a surjective isometry with T(0) = 0, T'(iu) = iT'(u),
T(u*) = T(u)*, and T(uwv) = T'(u)T(v) for all u,v € U(A), thenT : A — B is a
C*-algebra isomorphism.

Proof. By the same reasoning as in the proof of Theorem 3.3, T': A — B is R-linear
and

T(Au) = AT (u)
for all A\ € C and all u € U(A).

Since each a € A is a finite linear combination of unitary elements, i.e., a =

Z?:l Ajuj ()\] € C, uj € U<A))7

T(ha) = T Au;) Z/\A T(u;) Z)\ T(u;))
j=1
= AT()_ M\uy) = AT(a
7j=1

forall A € Cand all a € A. So T : A — B is C-linear. Furthermore,
T(a*) = T Aup) =Y NT(w))=> NT(u)"
j=1 j=1 j=1
= T()_ Au)" =Tl(a)
j=1
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foralla € A. And

T(av) = T(Z Ajujv) = Z AT (ujv) = Z AT ()T (v)

= T Au)T() = T(@)T()

for all a € A and all v € U(A). Since each b € A is a finite linear combination of
unitary elements, i.e., b=>"" v;u; (v; € C,v; € U(A)),

j=1

T(ab) = T(Z vjavy) = Z viT(av;) = Z viT(a)T (v;)

=TT} vyy) =TT ()

for all a,b € A. So T : A — B is multiplicative.

N —

10.

11.

12.
13.

14.

Therefore, T : A — B is a C*-algebra isomorphism. 0
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