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Abstract

Let G be a compact Lie group. This article shows that a contraction pseudo-differential operator Aτ on Lp(G) has a
Dominated Ergodic Estimate (DEE), and is trigonometrically well-bounded. Then we express ergodic generalization
of the Vector-Valued M. Riesz theorem for invertible contraction pseudo-differential operator Aτ on Lp(G). For this
purpose, we show that Aτ is a Lamperti operator. Then we find a formula for its symbols τ . According to this formula,
a representation for the symbol of adjoint and products is given.
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1 Introduction

The theory of pseudo-differential operators(abbreviated ΨDO) is essential in modern analysis and Mathematical
Physics. ΨDO are a powerful and natural tool for studying partial differential operators. Some properties of ΨDO
on the compact Lie group, like the study on the adjoint, boundedness, compactness and nuclearity, are investigated
in [6], [8], [7]. First, some definitions and notions from [12] are recalled.

Suppose G is a compact Lie group with the unit element 1G, and with Ĝ the unitary dual, consisting of the
equivalence classes [π] of the continuous irreducible unitary representations π : G −→ Cdπ×dπ of dimension dπ. The
Fourier coefficient at π is defined by

f̂(π) :=

∫
G
f(x)π(x)∗dx ∈ Cdπ×dπ , (f ∈ C∞(G))

where the integral is always taken w.r.t. the Haar measure on G.
If τ be a function taking values in Cdπ×dπ , the ΨDO Aτ on Lp(G), p ≥ 1, defined as

(Aτf)(x) =
∑
[π]∈Ĝ

dπTr(π(x)τ(x, π)f̂(π))

=
∑
[π]∈Ĝ

dπ∑
l,k=1

dπ(π(x)τ(x, π))kl(f̂(π))lk.
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Function τ is called the symbol of the ΨDO Aτ .

Our first aim in this paper is to show that the contraction ΨDO, Aτ : Lp(G) −→ Lp(G), 1 < p < ∞, are

Lamperti operator, then it is proved the contraction ΨDO, Aτ on Lp(G) have a DEE with constant
p

p− 1
, and is

trigonometrically well-bounded. We know that to prove the pointwise ergodic convergence of a contraction U on an
Lp-space it is enough to prove a Dominated Ergodic Estimate (DEE) for U (see e.g. [13]). The DEE for general
positive Lp contractions for long was an open problem finally proved by Akcoglu [1] in 1974. We find a new display
for the symbol of Aτ , its adjoint and the symbol of the products of the two ΨDOs on Lp(G). In Sect.2, we introduce
the concept of Lamperti operators on Lp-space. Then, we introduce the concept of DEE for Lp operators and prove
that the contraction ΨDO, Aτ on Lp(G) have a DEE and is trigonometrically well-bounded. Then we express ergodic
generalization of the Vector-Valued M. Riesz theorem for invertible contraction pseudo-differential operator Aτ on
Lp(G). Finally, we give a formula for its symbols τ . In Sect.3, the symbol will be determined. In Sect.4, we will
determine the symbol of the products.

2 Lamperti operators and Ergodic properties

2.1 Lamperti operators

Definition 2.1. A Lamperti operator is an order bounded and disjointness preserving operator T : E → F between
Banach lattices.

Definition 2.2. A linear operator on a Banach space of functions is said to separate supports if it maps functions
with disjoint supports to the same.

Definition 2.3. Suppose that (Ω,M, µ) is an arbitrary measure space, and 1 ≤ p < ∞. A linear mapping T :
Lp(µ) → Lp(µ) is said to be separation-preserving provided that whenever f ∈ Lp(µ), g ∈ Lp(µ), and fg = 0 µ− a.e.
on Ω, the pointwise product (Tf)(Tg) vanishes µ− a.e on Ω. Equivalently T is separation-preserving operator if it be
separate supports.

Theorem 2.4. ([14], Theorem 2.5) Suppose that T is separate supports bounded linear operator on an Lp-space ,
1 ⩽ p <∞ , then T is a Lamperti operator.

So on Lp-space, Lamperti operator and separation-preserving operator are equivalent. Lp isometries, 1 ⩽ p <
∞, p ̸= 2 , and positive L2 isometries are Lamperti operators. The idea goes back to Banach [2]. In the following, we
have the following characterization of Lamperti operators.

Theorem 2.5. ([9], Theorem3.1). A bounded linear operator U on an Lp-space, 1 ⩽ p < ∞, separates supports if
and only if there exists a positive linear operator | U | on Lp such that

| Uf |=| U || f | for every f ∈ Lp (2.1)

| U | is called the linear modulus of U (see [4]).

Definition 2.6. Let (Ω,Σ, µ) and (Y,∆, ν) be measure spaces. we call Φ : Σ −→ ∆ a regular (σ-)homomorphism
modulo nullsets if for all B ∈ Σ and (in-) finite disjoint sequences (Bn)n in Σ holds:

1. Φ(Ω∖B) = Φ(Y )∖ Φ(B),

2. Φ(
⋃
nBn) =

⋃
nΦ(Bn),

3. ν(Φ(B)) = 0 if µ(B) = 0.

In the following, we introduce a mappaing with unique properties related to a regular(σ-) homomorphism on sets
of measurable functions. Equivalence considering both measurable functions that are almost equal everywhere, we
consider the resulting mapping on the set of equivalence classes.
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Theorem 2.7. (cf.[10]) Let (Ω,Σ, µ) be a measure space and Φ be a (σ-) homomorphism. There is a unique linear
operator Φ∗ on the space of measurable functions, such that:

i) Φ∗1E = 1ΦE , for every E ∈ Σ,

ii) for every sequence of measurable functions like g, g1, g2, ... if gn −→ g µ a.e then Φ∗gn −→ Φ∗g µ a.e when
n→ ∞.

Theorem 2.8. ([9] Theorem 4.1) Let (Ω,Σ, µ) be a σ-finite measure space and 1 ≤ p < ∞. Let T be a Lamperti
operator on Lp(µ) and Φ , σ-homomorphism associated of T and Φ∗ be linear operator associated of Φ.Then there is
a unique h =

∑∞
n=1 T1Ei , where {Ei : i ⩾ 1} is a countable decomposition of Ω into the subset of finite measure, with

supp h = ΦΩ, and
Tf(x) = h(x)Φ∗f(x) for all f ∈ Lp. (2.2)

2.2 Ergodic properties and Mean-bounded

Let (Ω,Σ, µ) be a σ-finite measure space and Lp = Lp(Ω,Σ, µ), 1 ⩽ p ⩽ ∞. The indicator function of a set E is
denoted 1E . The support of a function g is the set suppg = {x : g(x) ̸= 0}. The maximal operator M(T ) ≡ M of an

Lp operator T is defined by Mf = supn≥1 | Tnf |, where Tn = n−1
∑n−1
i=0 T

i. The truncated maximal operator MN ,
N a positive integer , is defined similarly with the sup taken over n = 1, ..., N . T is said to have a Dominated Ergodic
Estimate (DEE) with (finite) constant C if

∥Mf ∥⩽ C ∥ f ∥ for all f ∈ Lp. (2.3)

This will be the case if 2.3 holds for all MN with the same C.

Definition 2.9. Let (Ω,Σ, µ) be a measure space. A bounded invertible linear operator T : Lp(µ) → Lp(µ) is said
to be mean-bounded if

sup
n≥0

∥ 1

2n+ 1

n∑
j=−n

T j ∥<∞

Theorem 2.10. ([3], Theorem 3.2 ) Suppose that (Ω,Σ, µ) is a σ-finite measure space, 1 < p <∞, and T is a bounded,
invertible, separation-preserving linear mapping of Lp(µ) onto Lp(µ). The following assertions are equivalent.
(i) There is a real constant C > 0 such that for any f ∈ Lp(µ),∫

Ω

|Mf |pdµ ⩽ C

∫
Ω

|f |pdµ,

where M is the maximal operator defined on Lp(µ). Equivalence T have Dominated Ergodic Estimate (DEE).
(ii) | T |, the linear modulus of T, is mean-bounded, that is

sup
n⩾0

∥ 1

2n+ 1

n∑
j=−n

| T |j∥<∞.

Let B(Y ) denote the Banach algebra of all bounded linear mappings of a Banach space Y into itself. F(.), the
spectral family in Y, is a projection-valued function, mapping the real line R into B(Y ). If there is a compact interval
[a, b] such that F (λ) = 0 for λ < a and F (λ) = I for λ ⩾ b, then we say that F (.) is concentrated on [a, b]. Cor-
responding to any spectral family F (.) of projections in Y , a RiemannStieltjes notion of spectral integration with
respect to F (.) can be defined as follows. For convenience, we suppose here that F (.) is concentrated on a compact
interval K = [a, b] of R. Given a bounded function f : K → C for each partition P = (λ0, λ1, ..., λn) of K we put

S(P, f, F ) = Σnk=1f(λk) {F (λk)− F (λk−1)} .
If the net {S(P, f, F )} converges in the strong operator topology of B(Y ) as P increases through the partitions of K
directed by inclusion, then the strong limit is called the spectral integral of f with respect to F (·), and denoted by∫
[a,b]

fdF . We then further define
∫⊕
[a,b]

fdF by writing∫ ⊕
[a,b]

fdF = f(a)F (a) +

∫
[a,b]

fdF.
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Definition 2.11. An operator U ∈ B(Y ) is said to be trigonometrically well-bounded provided there is a spectral

family E(·) in Y concentrated on [0, 2π] such that U =
∫⊕
[0,2π]

eiλdE(λ). In this case it is always possible to arrange

matters so that we also have E((2π)−) = I. With this additional property, the spectral family E(·) is uniquely
determined by U, and called the spectral decomposition of U. Note that in this event, σ(U), the spectrum of U, must
be a subset of [0, 2π].

Theorem 2.12. ([3], Theorem 4.2) Suppose that (Ω,Σ, µ) is a σ-finite measure space, 1 < p < ∞, and T is a
bounded, invertible, separation-preserving linear mapping of Lp(µ) onto Lp(µ) such that the linear modulus of T, be
mean-bounded, that is

sup
n⩾0

∥ 1

2n+ 1

n∑
j=−n

| T |j∥<∞

Then T is trigonometrically well-bounded.

Theorem 2.13. (ergodic generalization of the Vector-Valued M. Riesz theorem)([3], Theorem 6.7) Let T satisfy the
hypotheses of Theorem 2.12, and let E(·) be the spectral decomposition of T . Then there is a real constant K > 0
such that ∥∥∥∥∥∥∥∥

{ ∞∑
i=1

| E(bi)fi |2
}1

2

∥∥∥∥∥∥∥∥
Lp(µ)

⩽ K

∥∥∥∥∥∥∥∥
{ ∞∑
i=1

| fi |2
}1

2

∥∥∥∥∥∥∥∥
Lp(µ)

for all sequences {bi}∞i=1 ⊆ [0, 2π), and all sequences {fi}∞i=1 ⊆ Lp(µ).

Theorem 2.14. ( [9], Theorem 5.1 ) Suppose that S be a Lamperti contraction on Lp, 1 < p < ∞. Then S has a

DEE with constant
p

p− 1
.

In the following, we give the main result. We show that the contraction ΨDO on Lp(G) has a DEE.

Theorem 2.15. Suppose that τ(x, π) ∈ Cdπ×dπ and Aτ : Lp(G) → Lp(G) be contraction ΨDO for 1 < p <∞. Then

Aτ has a DEE with constant
p

p− 1
.

Proof . We show that the contraction ΨDO, Aτ is Lamperti operator for 1 ≤ p <∞. For this purpose, we first show
that Aτ (G) is Lamperti operator on indicator function. By definition of Aτ , we have

(Aτ1E)(x) =
∑
[π]∈Ĝ

dπTr(π(x)τ(x, π)1̂E(π))

such that

1̂E(π) =

∫
G
1E(x)π(x)

∗dx =

∫
E

π(x)∗dx

Therefore, Aτ1E(x) =
∑

[π]∈Ĝ dπTr(π(x)τ(x, π)1̂E(π)) where x ∈ E and Aτ1E(x) = 0 otherwise. So (suppAτ1E) ⊆ E

and the same way (suppAτ1F ) ⊆ F . So (suppAτ1E) ∩ (suppAτ1F ) = ∅ and thus the desired result is obtaind. Now,
we show that the assumptions of Theorem 2.5 is hold for Aτ (G) . That means Aτ (G) is Lamperti operator on Lp(G).
For this, let g ∈ Lp(G) ∩ L+ we define

| Aτ | (g) =| Aτg | (2.4)

and
| Aτ | (g) =| Aτ | (g+)− | Aτ | (g−) (2.5)

where g ∈ Lp(G) is a real function and g = g+ − g−. For every g ∈ Lp(G), we define

| Aτ | (g) =| Aτ | (gr) + i | Aτ | (gi) (2.6)
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where g ∈ Lp(G) and g = gr + igi . | Aτ |: Lp(G) −→ Lp(G) is well-defined . Because Aτ is Lamperti operator on
indicator function and as in steps 1, 2 and 3, proof of theorem 3 in [5], prove that | Aτ | is linear and by definition 2.4
| Aτ | is positive. In the next step, we show that for every g ∈ Lp(G),

| Aτg |=| Aτ | g || almost everywhere. (2.7)

If t =
∑n
i=1 βi1Ei is simple and integrable function, then Ei ∩ Ej = ∅ for every 1 ≤ i ≤ n , 1 ≤ j ≤ n, i ̸= j.

Because Aτ is Lamperti operator on indicator function so

(Aτ1Ei)(Aτ1Ej ) = 0 ,

So by lemma 1 in [5] ,

|
n∑
i=1

βiAτ1Ei |=
n∑
i=1

| βiAτ1Ei |

and

|
n∑
i=1

| βi | Aτ1Ei |=
n∑
i=1

|| βi | Aτ1Ei |

But for every 1 ≤ i ≤ n ,
|| βi | Aτ1Ei |=| βi || Aτ1Ei |=| βiAτ1Ei |

So

|
n∑
i=1

βiAτ1Ei |=|
n∑
i=1

| βi | Aτ1Ei |

By lemma 1 in [5] , | t |=
∑n
i=1 | βi | 1Ei . So

| Aτs |=|
n∑
i=1

βiAτ1Ei |=|
n∑
i=1

| βi | Aτ1Ei |

=| Aτ (
n∑
i=1

| βi | 1Ei) |=| Aτ | s ||
(2.8)

By [11] ( Theorem 13.3) , there is {tn}∞n=1 of simple and integrable function where

∥ g − tn ∥Lp(µ)→ 0 as n→ ∞. (2.9)

Aτ is bounded and by (2.8):

∥| Aτg | − | Aτ | g ||∥Lp(µ)≤∥| Aτg | − | Aτ tn |∥Lp(µ) + ∥| Aτ | tn || − | Aτ | g ||∥Lp(µ)
≤∥ Aτg −Aτ tn ∥Lp(µ) + ∥ Aτ | tn | −Aτ | g |∥Lp(µ)
≤∥ Aτ ∥∥ g − tn ∥Lp(µ) + ∥ Aτ ∥∥| tn | − | g |∥Lp(µ)
≤ 2 ∥ Aτ ∥∥ g − tn ∥Lp(µ)

Now we have the equality by (2.9) . In the following, we show that for every f ∈ Lp(G) ,

| Aτg |=| Aτ || g | (2.10)

| f |≥ 0 , so by definition (2.4), | Aτ | (| g |) =| Aτ (| g |) | . The desired equality obtained by (2.7). As in steps 7 and
8, proof of theorem 3 in [5], and because Aτ is Lamperti operator on indicator function, prove that | Aτ | is bounded
and unique. So by Theorem 2.5, the contraction linear operator Aτ on Lp(G) is a Lamperti operator. So Aτ is a
contraction Lamperti operator. Now the proof is completed by Theorem 2.14. □

Corollary 2.16. Let τ(x, π) ∈ Cdπ×dπ and Aτ : Lp(G) → Lp(G) be a bounded ΨDO, then Aτ is Lamperti operator
for 1 ≤ p <∞.
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Corollary 2.17. Suppose that τ(x, π) ∈ Cdπ×dπ and Aτ : Lp(G) → Lp(G) be invertible contraction ΨDO for
1 < p <∞. Then Aτ is trigonometrically well-bounded.

Proof . By theorem 2.15 Aτ is a separation-preserving (Lamperti) operator with DEE, so according to Theorem
2.10, | Aτ | is mean-bounded. Therefore the hypotheses of Theorem 2.12 are established, so Aτ is trigonometrically
well-bounded. □

Corollary 2.18. Suppose that τ(x, π) ∈ Cdπ×dπ and Aτ : Lp(G) → Lp(G) be invertible contraction ΨDO for
1 < p <∞, and E(.) be the spectral decomposition of Aτ . Then there is a real constant K > 0 such that∥∥∥∥∥∥∥∥

{ ∞∑
i=1

| E(λi)fi |2
}1

2

∥∥∥∥∥∥∥∥
Lp(G)

⩽ K

∥∥∥∥∥∥∥∥
{ ∞∑
i=1

| fi |2
}1

2

∥∥∥∥∥∥∥∥
Lp(G)

for all sequences {λi}∞i=1 ⊆ [0, 2π), and all sequences {fi}∞i=1 ⊆ Lp(G).

Proof . By corollary 2.17, Aτ satisfy the hypotheses of Theorem 2.12, so according to Theorem 2.13, inequality is
obtained. □

The following Theorem give the formula for the symbol of the Aτ : Lp(G) → Lp(G).

Theorem 2.19. Let τ(x, π) ∈ Cdπ×dπ and Aτ : Lp(G) → Lp(G) be bounded, then there exist a unique measurable
function h on G such that:

τ(x, π) = (π(x))∗h(x)(Φ∗π)(x). (2.11)

Proof . According to Corollary2.16, Aτ is a Lamperti operator. So by Theorem 2.8, we have

(Aτg)(x) = h(x)(Φ∗g)(x), g ∈ Lp(G)

By definition of Aτ , we have

(Aτg)(x) =
∑
[π]∈Ĝ

dπTr(π(x)τ(x, π)ĝ(π))

=
∑
η∈G

dη∑
i,j=1

dη(η(x)τ(x, η))ij ĝ(η)ji

=

∫
G

∑
η∈Ĝ

dη∑
i,j=1

dη((η(x)τ(x, η))ijη(y)ijg(y)dµ(y)

(2.12)

for all x ∈ G. Let π ∈ Ĝ is fixed. Then the function g on G for 1 ≤ m,n ≤ dπ is definde by

g(y) = π(y)nm, y ∈ G

We have ∫
G
π(y)nmη(y)ijdµ(y) =

1

dπ

if and only if π = η and n = i and m = j, and is zero o.w, it follows from 2.12

(π(x)τ(x, π))nm = h(x)(Φ∗π(y)nm)(x)

Thus,
τ(x, π) = (π(x))∗h(x)(Φ∗π)(x), (x, π) ∈ G× Ĝ,

where
(Φ∗π)(x) = (Φ∗πnm)(x), 1 ≤ n,m ≤ dπ.

□
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3 Adjoints

In the following, we get the symbol of the A∗
τ explicitly.

Theorem 3.1. Let τ(x, π) ∈ Cdπ×dπ such that Aτ : Lp(G) → Lp(G) is bounded for 1 ⩽ p <∞. Then A∗
τ : Lp

′
(G) −→

Lp
′
(G) is a Lamperti operator and its symbol γ given by

γ(x, η) = γ(x)∗ĥ(η)∗A(x), (x, η) ∈ G× Ĝ

Where,

A(x) =
∑
ρ∈Ĝ

dρtr(ρ(x)(Φ
∗ρ)∗)

Proof . Suppose that f ∈ Lp(G) and g ∈ Lp
′
(G). Then∫

G
(Aτf)(x)g(x)dµ(x) =

∫
G
f(x)(A∗

τg)(x)dµ(x)

So ∫
G

∫
G

∑
π∈Ĝ

dπ∑
i,j=1

dπ(π(x)τ(x, π))ijπ(y)ijf(y)dµ(y)

 g(x)dµ(x)

=

∫
G
f(x)

∫
G

∑
π∈Ĝ

dπ∑
i,j=1

dπ(π(x)γ(x, π))ijπ(y)ijg(y)dµ(y)

dµ(x)
(3.1)

In the following, suppose ψ and η be elements in Ĝ. Then for 1 ≤ t,m ≤ dψ and 1 ≤ n, l ≤ dη, we let f and g be
functions on G be defined by

f(x) = ψ(x)tm, x ∈ G

and
g(x) = η(x)nl , x ∈ G.

Therefore by 3.1, ∫
G
(ψ(x)τ(x, ψ)tmη(x)nldµ(x) =

∫
G
ψ(x)tm(η(x)γ(x, η))nldµ(x)

and we get ∫
G
(ψ(x)τ(x, ψ)tmη(x)nldµ(x) =

∫
G
(η(x)γ(x, η))nlψ(x)tmdµ(x).

Thus,
((ψ(.)τ(., ψ))tm)∧(η)ln = ((η(.)γ(., η))nl)

∧(ψ)mt. (3.2)

By Corollary 2.16, Aτ is a Lamperti operator, so by theorem 2.19, there exists a unique, measurable function
h : G → C such that

(ψ(y)τ(y, ψ))tm = h(y)(Φ∗ψ)tm(y), 1 ≤ m, t ≤ dψ, (y, ψ) ∈ G× Ĝ.

So, for all (x, η) ∈ G× Ĝ,

((η(x)γ(x, η))nl =
∑
ψ∈Ĝ

dψtr [ψ(x)((η(.)γ(., η))nl)
∧(ψ)]

=
∑
ψ∈Ĝ

dψ∑
t,m=1

dψψ(x)tm(((η(.)γ(., η))nl)
∧(ψ))mt.
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Hence for all (x, η) ∈ G× Ĝ, we get by 3.2

((η(x)γ(x, η))nl =
∑
ψ∈Ĝ

dψ∑
t,m=1

dψψ(x)tm(((ψ(.)τ(., ψ))tm)∧(η))ln

=
∑
ψ∈Ĝ

dψ∑
t,m=1

dψψ(x)tm

∫
G
((ψ(y)τ(y, ψ))tmη(y)nldµ(y)

=
∑
ψ∈Ĝ

dψ∑
t,m=1

dψψ(x)tm

∫
G
h(y)(Φ∗ψ)∗mtη(y)nldµ(y)

= ĥ(η)ln
∑
ψ∈Ĝ

dψtr(ψ(x)(Φ
∗ψ)∗)

= ĥ(η)lnA(x)

= ĥ(η)∗nlA(x),

for 1 ≤ n, l ≤ dη. Thus, for all (x, η) ∈ G× Ĝ, we get

η(x)γ(x, η) = ĥ(η)∗A(x)

and hence
γ(x, η) = η(x)∗ĥ(η)∗A(x).

□

4 Products

The following theorem shows that the product of two ΨDOs on Lp(G) is a Lamperti ΨDO on Lp(G), for 1 ≤ p <∞,
and a formula for the symbol of the product of two ΨDOs on Lp(G) is given.

Theorem 4.1. If Aσ and Aτ are the ΨDO on Lp(G)(p ≤ 1 <∞), then Aλ = AτAσ : Lp(G) → Lp(G) is a Lamperti
ΨDO and the symbol λ of AτAσ is given by

λ(x, ξ) = ξ(x)∗h′(x)(Φ∗ξ)

for all (x, ξ) ∈ G× Ĝ, where

h′(x) =
∑
η∈Ĝ

tr
[
η(x)τ(x, η)ĥ(η)

]
, x ∈ G,

Proof . Let f ∈ Lp(G). Then

(AτAσf)(x) =
∑
η∈Ĝ

dηtr
[
η(x)τ(x, η)Âσf(η)

]

=
∑
η∈Ĝ

dηtr

η(x)τ(x, η)∫
G

∑
ξ∈Ĝ

dξtr
(
ξ(y)σ(y, ξ)f̂(ξ)

)
η(y)∗dµ(y)

 .
By Corollary 2.16 Aσ is a Lamperti operator, now by Theorem 2.19, we have :

ξ(y)σ(y, ξ) = h(y)(Φ∗ξ).
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So,

(AτAσf)(x) =
∑
η∈Ĝ

dηtr

η(x)τ(x, η)∫
G

∑
ξ∈Ĝ

dξtr
(
h(y)(Φ∗ξ)f̂(ξ)

)
η(y)∗dµ(y)


=

∑
η∈Ĝ

dηtr

η(x)τ(x, η)∑
ξ∈Ĝ

ĥ(η)dξtr
(
Φ∗(ξ)f̂(ξ)

)
=

∑
ξ∈Ĝ

∑
η∈Ĝ

dηtr
[
η(x)τ(x, η)ĥ(η)

]
tr

(
(Φ∗ξ)f̂(ξ)

)
=

∑
ξ∈Ĝ

dξtr
(
ξ(x)λ(x, ξ)f̂(ξ)

)
, x ∈ G,

where

λ(x, ξ) = ξ(x)∗
∑
η∈Ĝ

dηtr
[
η(x)τ(x, η)ĥ(η)

]
(Φ∗ξ)

= ξ(x)∗h′(x)(Φ∗ξ)

for all (x, ξ) ∈ G× Ĝ. This completes the proof. □
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