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Abstract

In this paper, we will study a type and refinement of Selberg type inequalities on semi-Hilbertian spaces, which is
a simultaneous extension of the Bombieri type inequality in a semi-Hilbertian space. As applications, we give some
examples of the Selberg inequality and its refinement on semi-Hilbertian spaces.
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1 Introduction and preliminaries

Let H be a Hilbert space with inner product ⟨ , ⟩ . By B(H) we denote the algebra of all linear bounded operators
from H to H and by B(H)+ the cone of positive (semi-definite) operators of B(H). Also, for T ∈ B(H), the range and
the null space of T are denoted by R(T ) and N (T ), respectively.

Any A ∈ B(H)+ defines a positive semi-definite sesquilinear form as follows

⟨ , ⟩A : H×H → C, ⟨x, y⟩A = ⟨Ax, y⟩ .

By ∥ · ∥A we denote the semi-norm induced by ⟨x, y⟩A , i.e., ∥x∥A = ⟨x, x⟩
1
2

A . Observe that ∥x∥A = 0 if and only
if x ∈ N (A). Then ∥ · ∥A is a norm if and only if A is an injective operator. Moreover, ∥ · ∥A induces a semi-norm
on a certain subset of B(H), namely, on the subset of all T ∈ B(H) for which there exists a constant c > 0 such that
∥Tx∥A ≤ c∥x∥A for all x ∈ H. For these operators it holds

∥T∥A = sup
x∈R(A),x ̸=0

∥Tx∥A
∥x∥A

< ∞.

For more details refer [1].
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The inequality of Selberg

n∑
i=1

|⟨x, yi⟩|2∑n
j=1 |⟨yi, yj⟩|

≤ ∥x∥2 , x, y1, . . . , yn ∈ H, yi ̸= 0, 1 ≤ i ≤ n, (1.1)

is originating from analytic theory of numbers [12]. It was discovered by A. Selberg around 1949, on account of the
arguments of the distribution of primes [3, 5, 9, 10, 12, 13].

In 1971, Bombieri [2] showed the following inequality: If x, y1, . . . , yn are nonzero vectors in H, then

n∑
i=1

|⟨x, yi⟩|2 ≤ ∥x∥2 max
1≤i≤n

n∑
j=1

|⟨yj , yi⟩|.

Since that time it has interested many mathematicians who gave it many proofs, many extensions and refinements, see
[2, 4, 8, 6, 11]. Moreover, in 1998, M. Fujii and R. Nakamoto [7] obtained in a Hilbert space, the following refinement
for previous inequalities,

|⟨y, x⟩|2 +
n∑

i=1

|⟨x, yi⟩|2∑n
j=1 |⟨yi, yj⟩|

∥y∥2 ≤ ∥x∥2 ∥y∥2 , x, y, y1, . . . , yn ∈ H, yi ̸= 0, 1 ≤ i ≤ n (1.2)

with the condition that ⟨y, yi⟩ = 0.

The purpose of this work is to show selberg’s inequality and its refinement in semi-Hilbertian space. As an
application, we give an extension of (1.2) in semi-Hilbertian space.

2 Main results

We start our work by presenting the Selberg inequality in semi-Hilbertian space.

Theorem 2.1. Let H be a Hilbert space and yj be a vector such that yj /∈ N (A) for all j = 1, . . . , n. If x ∈ H then

n∑
i=1

| ⟨yi, x⟩A |2∑n
j=1 | ⟨yi, yj⟩A |

≤ ∥x∥2A . (2.1)

The equality in (2.1) holds if x −
∑n

i=1 aiyi ∈ N (A) for some complex scalars a1, a2, . . . , an such that for arbitrary
i ̸= j, 

(C1) ⟨yi, yj⟩A = 0

or

(C2) ⟨aiyi, ajyj⟩A = | ⟨aiyi, ajyj⟩A | and |ai| = |aj |.

Proof .

0 ≤

∥∥∥∥∥x−
n∑
i

aiyi

∥∥∥∥∥
2

A

= ∥x∥2A − 2Re

n∑
i=1

ai ⟨x, yi⟩A +

n∑
i,j

aiaj ⟨yi, yj⟩A

= ∥x∥2A − 2Re

n∑
i=1

ai ⟨x, yi⟩A +

n∑
i,j

Re(aiaj ⟨yi, yj⟩A)

≤ ∥x∥2A − 2Re

n∑
i=1

ai ⟨x, yi⟩A +
1

2

n∑
i,j

|ai|2 + |aj |2| ⟨yi, yj⟩A |

= ∥x∥2A − 2Re

n∑
i=1

ai ⟨x, yi⟩A +

n∑
i=1

|ai|2
n∑

j=1

| ⟨yi, yj⟩A |

 .

If we put ai =
⟨x,yi⟩A∑n

j=1 |⟨yi,yj⟩A| , then, we have the desired result.
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The equality in (2.1) holds if the following (2.2) and (2.3),

x−
n∑

i=1

aiyi ∈ N (A) (2.2)

n∑
i,j

aiaj ⟨yi, yj⟩A =
1

2

∑
i,j

(|ai|2 + |aj |2)| ⟨yi, yj⟩A |. (2.3)

The condition (2.3) is equivalent to the following (2.4)

n∑
i,j=1

2Re{aiaj ⟨yi, yj⟩A} =
1

2

n∑
i,j=1

(
|ai|2 + |aj |2

)
| ⟨yi, yj⟩A |. (2.4)

On the other hand, the following inequality (2.5) is always valid for all i and j,

2Re{⟨aiyi, ajyj⟩A} ≤ 2|ai||aj || ⟨yi, yj⟩A | ≤
(
|ai|2 + |aj |2

)
| ⟨yi, yj⟩A |. (2.5)

So (2.3) is equivalent to the following (2.6) or (2.7) for arbitrary i and j because comparing (2.3) with (2.4)

⟨yi, yj⟩A = 0 for i ̸= j (2.6)

⟨a1yi, ajyj⟩A = | ⟨aiyi, ajyj⟩A | and |ai| = |aj |. (2.7)

Whence the proof of Theorem is complete. □

Example 2.2. Let

A =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 .

(i) In R4, x =


1
2
c
d

, y1 =


1
0
r
s

, y2 =


0
1
l
m

, where c, d, r, s, l and m are arbitrary scalars in R. We have N (A) =

vect
{
(0, 0, 1, 0)t, (0, 0, 0, 1)t

}
, x− y1 − 2y2 ∈ N (A) and we have (C1) since y1 ⊥A y2 (i.e., ⟨y1, y2⟩A = 0). By Selberg’s

inequality we have equality in (2.1).

(ii) In R4, x =


1
3
c
d

, y1 =


1
2
r
s

, y2 =


1
1
l
m

, where c, d, r, s, l and m are arbitrary scalars in R. We have N (A) =

vect
{
(0, 0, 1, 0)t, (0, 0, 0, 1)t

}
, x− y1 − y2 ∈ N (A) and we have (C2). By Selberg’s inequality we have equality in (2.1).

(iii) In R4, if x− ay1 − by2 ∈ N (A), y1 =


1
2
r
s

, and y2 =


1
1
l
m

, where a, b, r, s, l and m are arbitrary scalars in R, then

the Selberg inequality can be written as(
⟨ay1, y1⟩A + ⟨by2, y1⟩A

)2
| ⟨y1, y1⟩A |+ | ⟨y1, y2⟩A |

+

(
⟨ay1, y2⟩A + ⟨by2, y2⟩A

)2
| ⟨y2, y1⟩A |+ | ⟨y2, y2⟩A |

≤a2 ⟨y1, y1⟩A + 2ab ⟨y1, y2⟩A

+ b2 ⟨y2, y2⟩A
i.e.,

(5a+ 3b)2

8
+

(3a+ 2b)2

5
≤ 5a2 + 6ab+ 2b2.

If a = b, then we have equality.
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Theorem 2.3. Let H be a Hilbert space, A be an injective positive bounded operator and y1, . . . , yn be non zero
vectors in H. If x ∈ H then

n∑
i=1

| ⟨yi, x⟩A |2∑n
j=1 | ⟨yi, yj⟩A |

≤ ∥x∥2A . (2.8)

The equality in (2.8) holds if and only if x =
∑n

i=1 aiyi for some complex scalars a1, a2, . . . , an such that for arbitrary
i ̸= j, 

⟨yi, yj⟩A = 0

or

⟨aiyi, ajyj⟩A = | ⟨aiyi, ajyj⟩A | and |ai| = |aj |.

In the following corollary, we give the Bombieri type inequality on semi-Hilbertian spaces.

Corollary 2.4. Let H be a Hilbert space and y1, . . . , yn not in N (A). If x ∈ H then

n∑
i=1

| ⟨yi, x⟩A |2 ≤ ∥x∥2A

 max
1≤i≤n

n∑
j=1

| ⟨yi, yj⟩A |

 .

As a corollary, we have the following Boas-Bellman type inequality on semi-Hilbertian spaces.

Corollary 2.5. Let H be a Hilbert space and y1, . . . , yn not in N (A). If x ∈ H then

n∑
i=1

| ⟨yi, x⟩A |2 ≤ ∥x∥2A

{
max
1≤i≤n

||yi||2A + (n− 1)max
i̸=k

| ⟨yi, yj⟩A |
}
.

With the following theorem we gave a refinement of Selberg inequality on semi-Hilbertian spaces.

Theorem 2.6. Let H be a Hilbert space, y1 . . . yn be vectors such that yj /∈ N (A) for all j = 1, . . . , n and y be a
vector such that ⟨y, yj⟩A = 0 for j = 1, . . . , n. If x ∈ H then

| ⟨y, x⟩A |2 +
n∑

i=1

| ⟨x, yi⟩A |2∑n
j=1 | ⟨yi, yj⟩A |

∥y∥2A ≤ ∥x∥2A ∥y∥2A . (2.9)

Proof . u = x−
∑n

i=1 aiyi . Then we have

∥u∥2A =

∥∥∥∥∥x−
n∑

i=1

aiyi

∥∥∥∥∥
2

A

≤ ∥x∥2A − 2Re

n∑
i=1

ai ⟨x, yi⟩A +

n∑
i=1

|ai|2
n∑

j=1

| ⟨yi, yj⟩A |


= ∥x∥2A −

n∑
i=1

| ⟨x, yi⟩A |2∑n
j=1 | ⟨yi, yj⟩A |

.

Hence it follows that

∥y∥2A

(
∥x∥2A −

∑
i=1

| ⟨x, yi⟩ |2∑n
j=1 | ⟨yi, yj⟩A |

)
≥ ∥y∥2A∥u∥2A ≥ | ⟨y, u⟩A |2

=

∣∣∣∣∣
〈
y, x−

n∑
i=1

⟨x, yi⟩A∑n
j=1 | ⟨yi, yj⟩A |

〉
A

∣∣∣∣∣
2

= | ⟨y, x⟩A |2.

□
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Theorem 2.7. Let H be a Hilbert space, A be an injective bounded positive operator and y, y1 . . . yn be non zero
vectors in H such that ⟨y, yj⟩A = 0 for j = 1, . . . , n. If x ∈ H then

| ⟨y, x⟩A |2 +
n∑

i=1

| ⟨x, yi⟩A |2∑n
j=1 | ⟨yi, yj⟩A |

∥y∥2A ≤ ∥x∥2A∥y∥2A.

The next theorem give an extension of the inequlity (2.9). For this, we will need the following lemma.

Lemma 2.8. Let R denote the set of real numbers. If f : [0,∞) → R is a derivable convex function on [0,∞) and
f(0) = 0, then

f(x− y) ≤ f(x)− f(y) (2.10)

for all x, y ∈ [0,∞) and x ≥ y ≥ 0.

Proof . Assume that f : [0,∞) → R is a convex function with f(0) = 0. Let φ : [a,∞) → R be a function defined by
φ(x) = f(x−a)−f(x)+f(a) for all x ∈ [a,∞) and a ≥ 0 is fixed. It is clear that φ(a) = 0 and φ′(x) = f ′(x−a)−f ′(x).
As f is a convex function, then f ′ is non-decreasing on [0,∞). So, φ′(x) ≤ 0 for all x ∈ [a,∞), i.e., φ is non-increasing
on [a,∞), this implies that φ(x) ≤ φ(a) = 0 for all x ∈ [a,∞). The proof of the Lemma is complete. □

Theorem 2.9. Let H be a Hilbert space, y1, . . . , yn be vectors such that yj /∈ N (A) for all j = 1, . . . , n and y a vector
such that ⟨y, yj⟩A = 0 for j = 1, . . . , n. If the function f : [0,∞) → R is derivable and non-decreasing convex on [0,∞)
with f(0) = 0, then

f
(
| ⟨y, x⟩A |2

)
+ f

(
n∑

i=1

| ⟨x, yi⟩A |2∑n
j=1 | ⟨yi, yj⟩A |

∥y∥2A

)
≤ f

(
∥x∥2A ∥y∥2A

)
for all x ∈ H.

We end the paper with two examples of applications of Theorem 2.9.

Example 2.10. Let H be a Hilbert space, y1, . . . , yn be vectors in H such that yj /∈ N (A) for all j = 1, . . . , n and y
be a vector such that ⟨y, yj⟩A = 0 for j = 1, . . . , n. Then

| ⟨y, x⟩A |2p +

(
n∑

i=1

| ⟨x, yi⟩A |2∑n
j=1 | ⟨yi, yj⟩A |

)p

∥y∥2p ≤ ∥x∥2pA ∥y∥2pA

for all x ∈ H and p ≥ 1.

Proof . It suffice to take f(x) = xp for all x ∈ [0,∞) and p ≥ 1 in Theorem 2.9. □

Example 2.11. Let H be a Hilbert space, y1, . . . , yn be vectors in H such that yj /∈ N (A) for all j = 1, . . . , n and y
be a vector such that ⟨y, yj⟩A = 0 for j = 1, . . . , n. Then

exp
(
| ⟨y, x⟩A |2

)
+ exp

(
n∑

i=1

| ⟨x, yi⟩A |2∑n
j=1 | ⟨yi, yj⟩A |

∥y∥2
)

≤ exp
(
∥x∥2A ∥y∥2A

)
+ 1

for all x ∈ H.

Proof . It suffice to take f(x) = exp(x)− 1 for all x ∈ [0,∞) in Theorem 2.9. □
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