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Abstract

In this chapter, we investigate the global attractivity of the recursive sequence {Un} ⊂ P(N) defined by

Un+k = Q+
1

k

k−1∑
j=0

A∗ψ(Un+j)A, n = 1, 2, 3 . . . ,

where P(N) is the set of N ×N Hermitian positive definite matrices, k is a positive integer, Q is an N ×N Hermitian
positive semidefinite matrix, A is an N ×N nonsingular matrix, A∗ is the conjugate transpose of A and ψ : P(N) →
P(N) is a continuous. For this, we first introduce FG-Prešić contraction condition for f : X k → X in metric spaces
and study the convergence of the sequence {xn} defined by

xn+k = f(xn, xn+1, . . . , xn+k−1), n = 1, 2, . . .

with the initial values x1, . . . , xk ∈ X . We furnish our results with some examples throughout the chapter. Finally,
we apply these results to obtain matrix difference equations followed by numerical experiments.

Keywords: fixed point approximation, iterative method, matrix difference equation, equilibrium point, global
attractivity.
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1 Introduction and preliminaries

Consider the k-th order nonlinear difference equation:

xn+k = f(xn, xn+1, . . . , xn+k−1), n = 1, 2, . . . (1.1)

with the initial values x1, . . . , xk ∈ X , where xn is the value of x in generation n and where the recursion function f
depends on nonlinear combinations of its arguments (f may involve quadratics, exponentials, reciprocals, or powers
of the xn’s, and so forth). A solution is again a general formula relating xn to the generation n and to some initially
specified values, e.g., x0, x1, and so on.
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The study of nonlinear difference equations, which has a significant role in the modelling of various problems that
emerge in genetics, psychology, sociology, probability theory, economics, biology, and ecology, amongst other fields of
knowledge. The study of difference equations of order greater than one is a topic of significant interest, and numerous
writers have contributed to the field via their research. For detail, one can refer [8, 10, 13, 14, 15] and the references
that are cited within.

The following are some well-known difference equations that may be found in citations [21, 26], as well as their
references.

� the generalized Beddington-Holt stock recruitment model:

xn+1 = axn +
bxn−1

1 + cxn−1 + dxn
;x0, x1 > 0, n ∈ N;

where a ∈ (0, 1), b ∈ R∗
+ and c, d ∈ R+ with c+ d > 0;

� the delay model of a perennial grass:

xn+1 = axn + (b+ cxn−1)e
xn , n ∈ N;

where a, c ∈ (0, 1) and b ∈ R+;

� the our beetle population model:

xn+3 = axn+2 + bxne
−(cxn+2+dxn), n ∈ N;

where a, b, c, d ≥ 0 and c+ d > 0.

In the context of difference equations, a steady-state solution x is defined to be the value that satisfies the relations
xn+1 = xn = x, so that no change occurs from generation n to generation n+ 1.

Equation (1.1) can be studied by means of fixed point theory in view of the fact that x in X is a solution of (1.1)
if and only if x is a fixed point of mapping T : X → X given by

T (x) = f(x, x, . . . , x) for all x ∈ X .

An interesting and important result as a generalization of Banach fixed point theorem [2, Theorem 1], in this direction,
is due to Prešić [19], which can be stated as :

Theorem 1.1. [19] Let (X , d) be a complete metric space, k a positive integer. If a mapping f : X k → X satisfies
the following contractive condition :

d(f(x1, x2, . . . xk), f(x2, . . . , xk, xk+1)) ≤
k∑

i=1

qid(xi, xi+1),

for every x1, . . . xk+1 ∈ X , where q1, q2, . . . qk are non-negative constants such that q1 + q2 + . . .+ qk < 1. Then there
exists a unique point ν∗ ∈ X such that f(ν∗, . . . ν∗) = ν∗. Moreover, for any arbitrary points x1 . . . , xk ∈ X , the
sequence (1.1) converges to ν∗.

It is noted that, for k = 1, Theorem 1.1 reduces to the Banach contraction principle[2]. Theorem 1.1 is generalized by
Ćirić and Prešić [7] as follows:

Theorem 1.2. [7] Let (X , d) be a complete metric space, and k a positive integer. If f : X k → X satisfies the
following contractive condition:

d(f(x1, x2, . . . xk), f(x2, . . . , xk, xk+1)) ≤ qmax{d(xi, xi+1), 1 ≤ i ≤ k}, (1.2)

for any x1, x2, . . . xk+1 ∈ X , where 0 < q < 1.Then there exists ν∗ ∈ X such that f(ν∗, . . . , ν∗) = ν∗. Moreover, for
any arbitrary points x1, . . . , xk ∈ X , the sequence (1.1) is convergent and

lim
n→∞

xn = f( lim
n→∞

xn, . . . , lim
n→∞

xn).

If in addition,
d(f(ϑ∗, . . . , ϑ∗), f(ν∗, . . . , ν∗)) < d(ϑ∗, ν∗)

holds for all ϑ∗, ν∗ ∈ X , with ϑ∗ ̸= ν∗, then ν∗ is the unique point in X with f(ν∗, . . . , ν∗) = ν∗.
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Chen (2009) published a work in which he employed the above conclusions to solve the global asymptotic stability of
the equilibrium of a nonlinear difference equation, which can be found at [6].

The following are the convergence findings for Prešić-Kannan operators that were obtained by Pǎcurar [18]:

Theorem 1.3. [18] Let (X , d) be a complete metric space, k a positive integer and f : X k → X a given mapping.
Suppose that there exists a constant a ∈ R with 0 < ak(k + 1) < 1 such that

d(f(x1, . . . , xk), f(x2, . . . , xk+1)) ≤ a

k+1∑
i=1

d(xi, f(xi, . . . , xi)), (1.3)

holds for all (x1, . . . , xk+1) ∈ X k+1. Then,

1. f has a unique fixed point ν∗ ∈ X ;
2. for any arbitrary points x1, . . . , xk ∈ X , the sequence {xn} defined by (1.1) converges to ν∗.

In the work [1], Abbas et al. extended the previous conclusions using the following idea given by Wardowski [28].

Let F be the collection of all mappings F : R+ → R that satisfy the following conditions:

(F1) F is strictly increasing,that is, for all α, β ∈ R+ such that α < β implies that F(α) < F(β).

(F2) For every sequence αn of positive real numbers, lim
n→∞

αn = 0 and lim
n→∞

F(αn) = −∞ are equivalent.

(F3) There exists h ∈ (0, 1) such that lim
α→0+

αhF(α) = 0.

Definition 1.4. [1] Let (X , d) be a metric space and F ∈ F. A mapping f : X k → X is said to be a Prešić type
F−contraction if there exists τ > 0 such that

d(f(x1, . . . , xk), f(x2, . . . , xk+1) > 0

implies that
τ + F(d(f(x1, . . . , xk), f(x2, . . . , xk+1))) ≤ F(max{d(xi, xi+1) : 1 ≤ i ≤ k}) (1.4)

for all (x1, . . . , xk+1) ∈ X k+1.

Note that, for F(α) = lnα, Prešić type F-contraction condition becomes

d(f(x1, . . . , xk), f(x2, . . . , xk+1)) ≤ e−τ max{d(xi, xi+1) : 1 ≤ i ≤ k} (1.5)

for all (x1, . . . , xk+1) ∈ X k+1, f(x1, . . . , xk) ̸= f(x2, . . . , xk+1).
Furthermore, for (x1, . . . , xk+1) ∈ X k+1 such that f(x1, . . . , xk) = f(x2, . . . , xk+1), the inequality (1.5) also holds, that
is, f is a Ćirić-Prešić contraction.

Theorem 1.5. [1] Let (X , d) be a complete metric space, and f : X k → X a Prešić type F-contraction, where k is a
positive integer. Then for any arbitrary points x1, . . . , xk ∈ X , the sequence {xn} defined by (1.1) converges to ν∗ ∈ X
and ν∗ is a fixed point of f . In addition, if

d(f(ϑ∗, . . . , ϑ∗), f(ν∗, . . . , ν∗)) > 0

implies that
τ + F(d(f(ϑ∗, . . . , ϑ∗), f(ν∗, . . . ,∗ ))) ≤ F(d(ϑ∗, ν∗))

for all ν∗, ϑ∗ ∈ X with ν∗ ̸= ϑ∗, then f has a unique fixed point.

In this regard, researchers have worked for a map or a pair of maps using various forms of Prešić contraction type
mappings. Some of these works are referred to in [3, 4, 12, 17, 22, 24, 23, 25] and the sources listed therein. In this
paper, we use a slightly modified family of functions (than to F) by Parvaneh et al. [20] to define a new concept called
FG-Prešić contractive mapping and prove basic fixed point results. We illustrate our work with illustrative examples
and show the superiority of FG-Prešić contractive mapping over Ciric-Prešić (1.2) and Prešić-Kannan (1.3) mapping.
In addition, we use this result to construct global attractivity results for a class of matrix difference equations, and
we explore its convergence behaviour with regard to three alternative initializations with graphical representations in
MATLAB.
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2 FG-Prešić contractive mapping and based results

We begin with the idea attributed to Parvaneh et al. [20].

Definition 2.1. [20] The collection of all functions F : R+ → R satisfying:

(F1) F is continuous and strictly increasing;

(F2) for each {ξn} ⊆ R+, lim
n→∞

ξn = 0 iff lim
n→∞

F(ξn) = −∞,

will be denoted by F.
The collection of all pairs of mappings (G, β), where G : R+ → R, β : R+ → [0, 1), satisfying:

(F3) for each {ξn} ⊆ R+, lim sup
n→∞

G(ξn) ≥ 0 iff lim sup
n→∞

ξn ≥ 1;

(F4) for each {ξn} ⊆ R+, lim sup
n→∞

β(ξn) = 1 implies lim
n→∞

ξn = 0;

(F5) for each {ξn} ⊆ R+,
∑∞

n=1 G(β(ξn)) = −∞,

will be denoted by Gβ .

Definition 2.2. Let f : X k → X , where k ≥ 1 is a positive integer. A point x∗ ∈ X is called a fixed point of f if
x∗ = f(x∗, . . . , x∗).

Now, we introduce a notion of FG-Prešić contraction for a map in metric space.

Definition 2.3. Let (X , d) be a metric space. A mapping f : X k → X is said to be a FG-Prešić contraction if there
exist F ∈ F and (G, β) ∈ Gβ such that

d(f(x1, . . . , xk), f(x2, . . . , xk+1) > 0

implies that

F(d(f(x1, . . . , xk), f(x2, . . . , xk+1))) ≤ F(max{d(xi, xi+1) : 1 ≤ i ≤ k})
+ G(β(max{d(xi, xi+1) : 1 ≤ i ≤ k})) (2.1)

for all (x1, . . . , xk+1) ∈ X k+1.

Theorem 2.4. Let (X , d) be a complete metric space, and f : X k → X a FG-Prešić-contraction and continuous,
where k is a positive integer. Then, for any arbitrary points x1, . . . , xk ∈ X , the sequence {xn} defined by (1.1)
converges to ν∗ ∈ X and ν∗ is a fixed point of f . In addition, if

d(f(ϑ∗, . . . , ϑ∗), f(ν∗, . . . , ν∗)) > 0 implies that

F(d(f(ϑ∗, . . . , ϑ∗), f(ν∗, . . . , ν∗))) ≤ F(d(ϑ∗, ν∗)) + G(β(d(ϑ∗, ν∗)))

for all ϑ∗, ν∗ ∈ X with ϑ∗ ̸= ν∗, then f has a unique fixed point.

Proof . Begin by assuming that x1, . . . , xk is a random k element in X . Define the sequence {xn} in X by

xn+k = f(xn, xn+1, . . . , xn+k−1), n = 1, 2, . . . ·

If for some n0 ∈ {1, 2, 3, . . . , k}, we have xn0
= xn0+1 = xn0+2 = . . . = xn0+k = ν∗, then we have

xn0+k = f(xn0 , xn0+1, . . . , xn0+k−1) = f(ν∗, ν∗, . . . , ν∗) = ν∗,

that is, ν∗ is a fixed point of f and the proof is completed. Therefore, we assume that x1, x2,. . ., xk, xk+1 are not all
equal. So let, xn+k ̸= xn+k+1 for all n ∈ N. Denote γn+k = d(xn+k, xn+k+1) for n = 1, 2, . . . and
θ = max{d(x1, x2), d(x2, x3), . . . , d(xk, xk+1)}, then we have γn+k > 0 for all n ∈ N and θ > 0.



Global attractivity results for a class of matrix difference equations 5

Now for n ≤ k, we have the following inequalities:

F(γk+1) = F(d(xk+1, xk+2)) = F(d(f(x1, x2, . . . , xk), f(x2, x3, . . . , xk+1)))

≤ F(max{d(xi, xi+1) : 1 ≤ i ≤ k}) + G(β(max{d(xi, xi+1) : 1 ≤ i ≤ k}))
= F(θ) + G(β(θ))

F(γk+2) = F(d(xk+2, xk+3)) = F(d(f(x2, x3, . . . , xk+1), f(x3, x4, . . . , xk+2)))

≤ F(max{d(xi, xi+1) : 2 ≤ i ≤ k + 1}) + G(β(max{d(xi, xi+1) : 2 ≤ i ≤ k + 1}))
= F(θ) + 2G(β(θ)).

Continuing this process, we get

F(γk+n) = F(d(xn+k, xn+k+1)) = F(d(f(xn, xn+1, . . . , xn+k−1), f(xn+1, xn+2, . . . , xn+k)))

≤ F(max{d(xi, xi+1) : n ≤ i ≤ n+ k − 1}) + G(β(max{d(xi, xi+1) : n ≤ i ≤ n+ k − 1}))

= F(θ) +

n∑
i=1

G(β(θ)). (2.2)

Owing to the properties of (G, β) ∈ Gβ and from (2.2), we get F(γk+n) → −∞ as n→ ∞. Thus, from the property
(F2), we have limn→∞ γk+n = 0, that is,

lim
n→∞

d(xn+k, xn+k+1) = 0. (2.3)

Next, we must demonstrate that the sequence {xn} is a Cauchy sequence in (X , d). Assume the opposite; then there
is ε > 0 and two subsequences {xni

} and {xmi
} of {xn} such that mi is the smallest index for which mi > ni > i and

d(xmi+k, xni+k) ≥ ε. (2.4)

This means that mi > ni > i and
d(xmi−1+k, xni+k) < ε. (2.5)

On the other hand for 1 ≤ j ≤ k − 1, we get

ε ≤ d(xmi+j , xni+j) ≤ d(xmi+j , xmi−1+j) + d(xmi−1+j , xni+j))

≤ d(xmi+j , xmi−1+j) + ε.

Taking i→ ∞ and using (2.3), we get
lim
i→∞

d(xmi+j , xni+j) = ε, (2.6)

and hence
lim
i→∞

d(xmi+j+1, xni+j+1) = ε. (2.7)

Using (2.1), we get

F(lim sup
i→∞

d(xmi+k+1, xni+k+1))

= F(lim sup
i→∞

d(f(xmi+1, . . . , xmi+k), f(xni+1, . . . , xni+k))

≤ F(lim sup
i→∞

max{d(xmi+j , xni+j) : 1 ≤ j ≤ k})

+ lim sup
i→∞

G(β(max{d(xmi+j , xni+j) : 1 ≤ j ≤ k})). (2.8)

Making use of (2.3), (2.6) and (2.7) in (2.8), we get

F(ε) = F(lim sup
i→∞

d(xmi+k+1, xni+k+1))

≤ F(lim sup
i→∞

max{d(xmi+j , xni+j) : 1 ≤ j ≤ k})

+ lim sup
i→∞

G(β(max{d(xmi+j , xni+j) : 1 ≤ j ≤ k}))

= F(ε) + lim sup
i→∞

G(β(max{d(xmi+j , xni+j) : 1 ≤ j ≤ k})),
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which implies that lim supi→∞ G(β(d(xmi+j , xni+j))) ≥ 0 for 1 ≤ j ≤ k, which gives lim supi→∞ β(d(xmi+j , xni+j)) ≥
1, and taking in account that β(ξ) < 1 for all ξ ≥ 0, we have lim supi→∞ β(d(xmi+j , xni+j)) = 1. Therefore,
lim supi→∞ d(xmi+j , xni+j) = 0, a contradiction. Hence, {xn} is Cauchy sequence in X .

Since (X , d) is complete, there exists ν∗ in X such that

lim
n,m→∞

d(xn+j , xm+j) = lim
n→∞

d(xn+j , ν
∗) = 0.

Now by the continuity of f , we have

ν∗ = lim
n→∞

xn+k = lim
n→∞

f(xn, xn+1, . . . , xn+k−1)

= f( lim
n→∞

xn, lim
n→∞

xn+1, . . . , lim
n→∞

xn+k−1)

= f(ν∗, ν∗, . . . , ν∗).

Finally, we assert that f has just one fixed point. Indeed, if ν∗, ϑ∗ ∈ X such that ν∗ = f(ν∗, . . . , ν∗) and ϑ∗ =
f(ϑ∗, . . . , ϑ∗) with ν∗ ̸= ϑ∗. Thus d(f(ν∗, . . . , ν∗), f(ϑ∗, . . . , ϑ∗)) > 0. We therefore have by presumption

F(d(ν∗, ϑ∗)) = F(d(f(ν∗, . . . , ν∗), f(ϑ∗, . . . , ϑ∗)))

≤ F(d(ν∗, ϑ∗)) + G(β(d(ν∗, ϑ∗)))

which gives G(β(d(ν∗, ϑ∗)) ≥ 0 implies β(d(ν∗, ϑ∗) ≥ 1 a contradiction. Therefore ν∗ = ϑ∗. □

3 Consequences

We may get various classes of FG-Prešić contractive conditions in a complete metric space by considering a variety
of concrete functions F ∈ F and (G, β) ∈ Gβ in the condition (2.1) of Theorems 2.4.

Corollary 3.1. Let (X , d) be a complete metric space, k positive integer and f : X k → X a given continuous mapping.
Suppose that there exist τ > 0 and F ∈ F such that

τ + F(d(f(x1, . . . , xk), f(x2, . . . , xk+1))) ≤ F(max{d(xi, xi+1) : 1 ≤ i ≤ k}), (3.1)

for all (x1, . . . , xk+1) ∈ X k+1 with f(x1, . . . , xk) ̸= f(x2, . . . , xk+1). Then, for any arbitrary points x1, . . . , xk ∈ X ,
the sequence {xn} defined by (1.1) converges to ν∗, and ν∗ is a fixed point of f . Moreover, if

τ + F(d(f(ϑ∗, . . . , ϑ∗), f(ν∗, . . . , ν∗))) ≤ F(d(ϑ∗, ν∗))

holds for all ϑ∗, ν∗ ∈ X with ϑ∗ ̸= ν∗, then ν∗ is the unique fixed point of f .

Proof . Put G(t) = ln t (t > 0), β(t) = λ ∈ (0, 1) and τ = − lnλ > 0 in the (2.1) of Theorem 2.4, we have
Wardowski-type [28] condition (3.1), that is, Theorem 1.2 due to Abbas et al. [1]. □

Corollary 3.2. Let (X , d) be a complete metric space, k positive integer and f : X k → X a given continuous mapping.
Suppose that there exists λ ∈ (0, 1) such that

d(f(x1, . . . , xk), f(x2, . . . , xk+1))) ≤ λ(max{d(xi, xi+1) : 1 ≤ i ≤ k}), (3.2)

for all (x1, . . . , xk+1) ∈ X k+1 with f(x1, . . . , xk) ̸= f(x2, . . . , xk+1). Then, for any arbitrary points x1, . . . , xk ∈ X ,
the sequence {xn} defined by (1.1) converges to ν∗, and ν∗ is a fixed point of f . Moreover, if

d(f(ϑ∗, . . . , ϑ∗), f(ν∗, . . . , ν∗)) ≤ λ d(ϑ∗, ν∗)

holds for all ϑ∗, ν∗ ∈ X with ϑ∗ ̸= ν∗, then ν∗ is the unique fixed point of f .

Proof . Put F(t) = G(t) = ln t (t > 0), β(t) = λ ∈ (0, 1) in the (2.1) of Theorem 2.4, we have Banach-type contraction
condition (3.2), that is, Theorem 1.2 due to Ćirić and Prešić [7]. □
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Corollary 3.3. Let (X , d) be a complete metric space, k positive integer and f : X k → X a given continuous mapping.
Suppose that there exists (G, β) ∈ Gβ such that

d(f(x1, . . . , xk), f(x2, . . . , xk+1)))

≤ β(max{d(xi, xi+1) : 1 ≤ i ≤ k})max{d(xi, xi+1) : 1 ≤ i ≤ k}, (3.3)

for all (x1, . . . , xk+1) ∈ X k+1 with f(x1, . . . , xk) ̸= f(x2, . . . , xk+1). Then, for any arbitrary points x1, . . . , xk ∈ X ,
the sequence {xn} defined by (1.1) converges to ν∗, and ν∗ is a fixed point of f . Moreover, if

d(f(ϑ∗, . . . , ϑ∗), f(ν∗, . . . , ν∗)) ≤ β(d(ϑ∗, ν∗))d(ϑ∗, ν∗)

holds for all ϑ∗, ν∗ ∈ X with ϑ∗ ̸= ν∗, then ν∗ is the unique fixed point of f .

Proof . Put F(t) = G(t) = ln t (t > 0) in the (2.1) of Theorem 2.4, we have Geraghty-type [11, 9] condition (3.3). □

Corollary 3.4. Let (X , d) be a complete metric space, k a positive integer and f : X k → X a given continuous
mapping. Suppose that there exists τ > 0 such that

d(f(x1, . . . , xk), f(x2, . . . , xk+1)) ≤
max{d(xi, xi+1) : 1 ≤ i ≤ k}

(1 + τ
√
max{d(xi, xi+1) : 1 ≤ i ≤ k})2

, (3.4)

for all (x1, . . . , xk+1) ∈ X k+1 with f(x1, . . . , xk) ̸= f(x2, . . . , xk+1). Then, for any arbitrary points x1, . . . , xk ∈ X , the
sequence {xn} defined by (1.1) converges to ν∗, that is ν∗ = f(ν∗, . . . , ν∗). Moreover, if

d(f(ϑ∗, . . . , ϑ∗), f(ν∗, . . . , ν∗)) ≤ d(ϑ∗, ν∗)

(1 + τ
√
d(ϑ∗, ν∗))2

,

holds for all ϑ∗, ν∗ ∈ X with ϑ∗ ̸= ν∗, then ν∗ is the unique fixed point of f .

Proof . Put F(t) = − 1√
t
, G(t) = ln t (t > 0) and β(t) = λ ∈ (0, 1), τ = − lnλ > 0 in the (2.1) of Theorem 2.4, we

have new Prešić rational type contraction condition (3.4). □

Corollary 3.5. Let (X , d) be a complete metric space, k a positive integer and f : X k → X a given continuous
mapping. Suppose that there exist τ > 0 and (G, β) ∈ Gβ such that

d(f(x1, . . . , xk), f(x2, . . . , xk+1))

≤ max{d(xi, xi+1) : 1 ≤ i ≤ k}
[1− τ

√
max{d(xi, xi+1) : 1 ≤ i ≤ k}ln(β(max{d(xi, xi+1) : 1 ≤ i ≤ k}))]2

, (3.5)

for all (x1, . . . , xk+1) ∈ X k+1 with f(x1, . . . , xk) ̸= f(x2, . . . , xk+1). Then, for any arbitrary points x1, . . . , xk ∈ X , the
sequence {xn} defined by (1.1) converges to ν∗, that is ν∗ = f(ν∗, . . . , ν∗). Moreover, if

d(f(ϑ∗, . . . , ϑ∗), f(ν∗, . . . , ν∗)) ≤ d(ϑ∗, ν∗)

(1− τ
√
d(ϑ∗, ν∗)ln(β(d(ϑ∗, ν∗))))2

,

holds for all ϑ∗, ν∗ ∈ X with ϑ∗ ̸= ν∗, where λ ∈ [0, 1), then ν∗ is the unique fixed point of f .

Proof . Put F(t) = − 1√
t
, G(t) = ln t (t > 0) in the (2.1) of Theorem 2.4, we have another Prešić rational type

contraction condition (3.5). □

Remark 3.6. 1. Theorem 2.4 extends and generalizes [1, Theorem 2.1], [7, Theorem 2.1] and [19, Theorem 1.1].

2. If k = 1, Corollary 3.1 reduces to [28, Theorem 2.1].

3. If k = 1, Corollary 3.2 reduces to [2, Theorem 1].

4. If k = 1, Corollaries 3.3 reduces to the theorem of Boyd and Wong [5].
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4 Illustrations

Example 4.1. (Inspired by Abbas et al. [1].) Let X =
{
xn = n(n+1)

2 : n ∈ N
}

with the usual metric, k = 2. Then

(X , d) is a complete metric space. Define the mapping f : X 2 → X by

f(x, y) =

{ xn−1+ym−1

2 , if x = xn, y = ym for n,m > 1,
x1+y1

2 , otherwise.

Moreover, take F(t) = − 1√
t
, G(t) = ln t (t > 0) and β(t) = λ ∈ (0, 1), τ = − lnλ > 0 (Corollary 3.4). Then it is easy

to see that all the conditions of Theorem 2.4 are fulfilled—just the condition (2.1).

For f(xi, xi+1) ̸= f(xi+1, xi+2), i = 1, 2, . . ., we consider two cases:

(i) If x = x1, y = x2, then

d(f(x1, x2), f(x2, x3)) ≤
max{d(x1, x2), d(x2, x3)}

(1 + τ
√
max{d(x1, x2), d(x2, x3)})2

, (4.1)

for all (x1, x2, x3) ∈ X 3.
Then (4.1) becomes

1 ≤ 3

(1 + τ
√
3)2

,

true for τ > 0.

(ii) If x = xn, y = xn+1 with n > 1, we have

d(f(xn, xn+1), f(xn+1, xn+2)) ≤
max{d(xn, xn+1), d(xn+1, xn+2)}

(1 + τ
√
max{d(xn, xn+1), d(xn+1, xn+2)})2

, (4.2)

for all (xn, xn+1, xn+2) ∈ X 3.
Now

d(f(xn, xn+1), f(xn+1, xn+2)

=
1

2

∣∣∣∣( (n− 1)n

2
+
n(n+ 1)

2

)
−
(
n(n+ 1)

2
+

(n+ 1)(n+ 2)

2

)∣∣∣∣
=

∣∣∣∣n22 − 2n2 + 4n+ 2

4

∣∣∣∣ = n+
1

2

and

max{d(xn, xn+1), d(xn+1, xn+2)}

= max

{∣∣∣∣n(n+ 1)

2
− (n+ 1)(n+ 2)

2

∣∣∣∣ , ∣∣∣∣ (n+ 1)(n+ 2)

2
− (n+ 2)(n+ 3)

2

∣∣∣∣}
= max{n+ 1, n+ 2} = n+ 2.

Then (4.2) becomes

n+
1

2
≤ n+ 2

(1 + τ
√
n+ 2)2

,

true for τ > 0.

Thus f is the FG-Prešić contraction on X and (1, 1) is a unique fixed point of f .

Next, we demonstrate that the requirement (1.3) of Theorem 1.3 is not met. To demonstrate this, we compute the
following: When k = 2, 0 < ak(k + 1) < 1 implies 0 < a < 1/6. Also

d(xn, f(xn, xn) =
1

2

∣∣∣∣n(n+ 1)

2
− 1

2

(
(n− 1)n

2
+

(n− 1)n

2

)∣∣∣∣
= n,



Global attractivity results for a class of matrix difference equations 9

d(xn+1, f(xn+1, xn+1) =
1

2

∣∣∣∣ (n+ 1)(n+ 2)

2
− 1

2

(
n(n+ 1)

2
+
n(n+ 1)

2

)∣∣∣∣
= n+ 1

and

d(xn+2, f(xn+2, xn+2)

=
1

2

∣∣∣∣ (n+ 2)(n+ 3)

2
− 1

2

(
(n+ 1)(n+ 2)

2
+

(n+ 1)(n+ 2)

2

)∣∣∣∣
= n+ 2.

Then (1.3) implies that

d(f(xn, xn+1), f(xn+1, xn+2))

d(xn, f(xn, xn) + d(xn+1, f(xn+1, xn+1) + d(xn+2, f(xn+2, xn+2)

=
n+ 1

2

3(n+ 3)
≥ 1

6
for n > 1.

Thus the condition (1.3) is not true for n > 1.

Finally, we demonstrate that the condition (1.2) of Theorem 1.2 is not met when n > 2. To demonstrate this, we
compute the following: For n > 2

d(f(xn−2, xn−1), f(xn−1, xn)

=
1

2

∣∣∣∣( (n− 3)(n− 2)

2
+

(n− 2)(n− 1)

2

)
−
(
(n− 2)(n− 1)

2
+

(n− 1)n

2

)∣∣∣∣
= n − 3

2

and

max{d(xn−2, xn−1), d(xn−1, xn)}

= max

{∣∣∣∣ (n− 2)(n− 1)

2
− (n− 1)n

2

∣∣∣∣ , ∣∣∣∣n(n− 1)

2
− n(n+ 1)

2

∣∣∣∣}
= max{n− 1, n} = n.

lim
n→∞

d(f(xn−2, xn−1), f(xn−1, xn))

max{d(xn−2, xn−1), d(xn−1, xn)}
= lim

n→∞

n− 3/2

n
= 1.

Thus
d(f(xn−2, xn−1), f(xn−1, xn)) ̸≤ qmax{d(xn−2, xn−1), d(xn−1, xn)}

for q ∈ (0, 1). Hence the condition (1.2) of Theorem 1.1 does not satisfied.

As a result, all of the requirements of Theorem 2.4 are met, and f has a unique fixed point (1, 1), that is, f(1, 1) = 1.

Example 4.2. Let X = [0,∞) with the usual metric, k = 2 and the operators f : [0, 1]2 → [0, 1] defined by

f(x, y) =

{
x−y
5 , x ≥ y

0, x < y
.

Let us first determine whether or not f satisfies condition (2.1) for F(t) = − 1√
t
, G(t) = ln t (t > 0), β(t) = λ ∈ (0, 1),

τ = − lnλ > 0. In our specific example, k = 2, and as a result, the preceding condition (2.1) becomes

d(f(x1, x2), f(x2, x3)) ≤
max{d(x1, x2), d(x2, x3)}

(1 + τ
√
max{d(x1, x2), d(x2, x3)})2

, (4.3)

for all (x1, x2, x3) ∈ [0, 1]3.

We will look at four different scenarios:
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Case (I): When x1 ≥ x2 ≥ x3.

d(f(x1, x2), f(x2, x3)) =

∣∣∣∣x1 − x2
5

− x2 − x3
5

∣∣∣∣ = ∣∣∣∣x1 − 2x2 + x3
5

∣∣∣∣ ,
d(x1, x2) = |x1 − x2|, d(x2, x3) = |x2 − x3|.

� If |x1 − x2| > |x2 − x3|, then max{d(x1, x2), d(x2, x3)} = |x1 − x2| and (4.3) implies that∣∣∣∣x1 − 2x2 + x3
5

∣∣∣∣ ≤ |x1 − x2|
(1 + τ

√
|x1 − x2|)2

.

� If |x1 − x2| < |x2 − x3|, then max{d(x1, x2), d(x2, x3)} = |x2 − x3| and (4.3) implies that∣∣∣∣x1 − 2x2 + x3
5

∣∣∣∣ ≤ |x2 − x3|
(1 + τ

√
|x2 − x3|)2

.

For τ > 0, both of the instances listed above are correct.

Case (II): When x1 ≥ x2 < x3.

d(f(x1, x2), f(x2, x3)) =

∣∣∣∣x1 − x2
5

− 0

∣∣∣∣ = |x1 − x2|
5

,

d(x1, x2) = |x1 − x2|, d(x2, x3) = |x2 − x3|.

� If |x1 − x2| > |x2 − x3| ≠ 0, then max{d(x1, x2), d(x2, x3)} = |x1 − x2| and (4.3) implies that

|x1 − x2|
5

≤ |x1 − x2|
(1 + τ

√
|x1 − x2|)2

,

that is,

τ ≤
√
5− 1√

|x1 − x2|
.

� If |x1 − x2| < |x2 − x3| ≠ 0, then max{d(x1, x2), d(x2, x3)} = |x2 − x3| and (4.3) implies that

|x1 − x2|
5

≤ |x2 − x3|
(1 + τ

√
|x2 − x3|)2

.

Both of the above examples are valid when τ > 0.

Case (III): When x1 < x2 ≥ x3.
Similar to Case (II).

Case (IV): When x1 < x2 < x3.
Then d(f(x1, x2), f(x2, x3)) = 0, and (4.3) is obviously true.

As a result, all of the criteria of Theorem 2.4 are met, and f has a unique fixed point at the coordinates (0, 0).

5 Application

Specifically, in this part, we explore the global attractivity of the recursive sequence {Un} ⊂ P(N) formed by the
formula

Un+k = Q+
1

k

k−1∑
j=0

A∗ψ(Un+j)A, n = 1, 2, 3 . . . , (5.1)

where P(N) is the set of N ×N Hermitian positive definite matrices, k is a positive integer, Q is an N ×N Hermitian
positive semidefinite matrix, A is an N ×N nonsingular matrix, A∗ is the conjugate transpose of A and ψ : P(N) →
P(N) is a continuous.

To finish this, we need to consider the following ideas.
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Definition 5.1. Let k be a positive integer, ∆ a nonempty set and f : ∆k → ∆. For given ν1, ν2, . . . , νk ∈ ∆,
consider the recursive sequence {νn} ⊂ ∆ defined by

νn+k = f(νn, νn+1, . . . , νn+k−1), n = 1, 2, . . . , (5.2)

The equilibrium point ν of the equation (5.2) is the point that satisfies the condition:

ν = f(ν, . . . , ν).

Definition 5.2. Let (∆, d) be a metric space and ν an equilibrium point of equation (5.2). The equilibrium point ν
is called a global attractor if for all ν1, ν2, . . . , νk ∈ ∆, we have d(νn, ν) → 0 as n→ ∞.

We denote by P(N)( for N ≥ 2), the open convex cone of all N ×N Hermitian positive definite matrices. We endow
P(N) with the Thompson metric defined by

A,B ∈ P(N), d(A,B) = max{ln∆(A/B), ln∆(B/A)},

where
∆(A/B) = inf{θ > 0 : A ≤ θB} = θ+(B−1/2AB−1/2),

the maximal eigenvalue of B−1/2AB−1/2. Here C ≤ D (C < D) means that D − C is positive semidefinite and positive
definite respectively. From Nussbaum [16], P(N) is a complete metric space with respect to the Thompson metric d
and d(A,B) = ∥ ln(A−1/2BA−1/2)∥, where ∥.∥ stands for the spectral norm. The Thompson metric occurs on every
open normal convex cone of a real Banach space [16, 27]; specifically, the open convex cone of positive definite operators
of a Hilbert space. Now we will briefly discuss the Thompson metric’s beautiful characteristics. It is invariant by
matrix inversion and congruence transformations, which means it does not change. Moreover,

d(A,B) = d(A−1,B−1) = d(W∗AW,W∗BW), (5.3)

for any nonsingular matrix W. The other useful result is the nonpositive curvature property of the Thompson metric

d(Cp,Dp) ≤ p d(C,D), p ∈ [0, 1]. (5.4)

According to (5.3) and (5.4), we have

d(W∗CpW,W∗DpW) ≤ |p|d(C,D), p ∈ [−1, 1]. (5.5)

Lemma 5.3. For any A,B, C,D ∈ P(N),

d(A+ B, C +D) ≤ max{d(A, C), d(B,D)}.

Furthermore, for all positive semidefinite A and B, C ∈ P(N)

d(A+ B,A+ C) ≤ d(B, C).

Theorem 5.4. Consider the problem described by (5.1). Assume that ψ : P(N) → P(N) be an FG-contraction
mapping with respect to the Thompson metric d, that is, for all K,L ∈ P(N), there exist F ∈ F and (G, β) ∈ Gβ such
that d(ψ(K), ψ(L)) > 0 implies that

F(d(ψ(K), ψ(L))) ≤ F(d(K,L)) + G(β(d(K,L))). (5.6)

Then the equation (5.1) has a unique equilibrium point U ∈ P(N) and thus, U is a global attractor.

Proof . Define a mapping f : P(N)k → P(N) by

f(U1,U2, . . . ,Uk) = Q+
1

k
[A∗ψ(U1)A+A∗ψ(U2)A+ . . .+A∗ψ(Uk)A],

for all U1,U2, . . . ,Uk ∈ P(N).
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Let U1,U2, . . . ,Uk+1 ∈ P(N). Owing Lemma 5.3, we have

d(f(U1,U2, . . . ,Uk), f(U2,U3, . . . ,Uk+1)

= d

Q+
1

k

k∑
i=1

A∗ψ(Ui)A,Q+
1

k

k+1∑
j=2

A∗ψ(Uj)A


≤ d

1

k

k∑
i=1

A∗ψ(Ui)A,
1

k

k+1∑
j=2

A∗ψ(Uj)A


= d

 k∑
i=1

(
1√
k
A
)∗

ψ(Ui)

(
1√
k
A
)
,

k+1∑
j=2

(
1√
k
A
)∗

ψ(Uj)

(
1√
k
A
) .

Denote V = 1√
k
A. Then, using Lemma 5.3, we have

d(f(U1,U2, . . . ,Uk), f(U2,U3, . . . ,Uk+1))

≤ d

 k∑
i=1

V∗ψ(Ui)V,
k+1∑
j=2

V∗ψ(Uj)V


= d

(
V∗ψ(U1)V + V∗ψ(U2)V + . . .+ V ∗ψ(Uk)V,
V ∗ψ(U2)V + V∗ψ(U3)V + . . .+ V∗ψ(Uk+1)V

)
≤ max

{
d(V∗ψ(U1)V,V∗ψ(U2)V), d(V∗ψ(U2)V,V∗ψ(U3)V), . . . ,

d(V∗ψ(Uk)V,V∗ψ(Uk+1)V)

}
= max{d(V∗ψ(Ui)V,V∗ψ(Ui+1)V) : i = 1, 2, . . . , k}.

As A is nonsingular, the matrix V is also nonsingular. Using property (5.3), for all i = 1, 2, . . . , k, we have

d(V∗ψ(Ui)V,V∗ψ(Ui+1)V) = d(ψ(Ui), ψ(Ui+1)).

By virtue of FG-contraction of ψ, for all i = 1, 2, . . . , k, we have

F(d(V∗ψ(Ui)V,V∗ψ(Ui+1)V)) = F(d(ψ(Ui), ψ(Ui+1)))

≤ F(d(Ui,Ui+1)) + G(β(d(Ui,Ui+1))),

that is,

F(d(f(U1,U2, . . . ,Uk), f(U2,U3, . . . ,Uk+1))

≤ F(max{d(Ui,Ui+1) : i = 1, 2, . . . , k}) + G(β(max{d(Ui,Ui+1) : i = 1, 2, . . . , k}))

for all U1,U2, . . . ,Uk+1 ∈ P(N).

Following Theorem 2.4, there exists the existence of a global attractor equilibrium point U ∈ P(N). To see the
uniqueness of U ∈ P(N), let W ∈ P(N) be another equilibrium point such that d(f(U ,U , . . . ,U) ̸= f(W,W, . . . ,W)).
Then we have

F(d(f(U ,U , . . . ,U), f(W,W, . . . ,W))) = F(d(Q+A∗ψ(U)A,Q+A∗ψ(W)A))

≤ F(d(A∗ψ(U)A,A∗ψ(W )A))

= F(d(ψ(U), ψ(W)))

≤ F(d(U ,W)) + G(β(d(U ,W))).

Applying Theorem 2.4, it confirm that the equilibrium point U ∈ P(N) is unique. □

Example 5.5. We construct an example with given X1,X2,X3 ∈ P(N), and sequence of matrices given by the
equation for 0 < p < 1

Xn+3 = Q+
1

3
(A∗X p

nA+A∗X p
n+1A+A∗X p

n+2A), n = 1, 2, ·
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The residual error Error(k) = ∥Xk − (Q + A∗X p
kA)∥. In our example A∗ represents the conjugate transpose of the

matrix A. We conducted this experiment using the high-level machine language MATLAB 2020b (available online),
and the following is our system configuration: macOS Mojave version 10.14.6 CPU @1.6 GHz intel core i5 8GB.

We take τ = 0.1; tolerance or error = 1× 10−10; Matrix Dimension= 5.

A =


0.4173 0.4893 0.7803 0.1320 0.2348
0.0497 0.3377 0.3897 0.9421 0.3532
0.9027 0.9001 0.2417 0.9561 0.8212
0.9448 0.3692 0.4039 0.5752 0.0154
0.4909 0.1112 0.0965 0.0598 0.0430

 ,Q =


0.0109 0.0070 0.0132 0.0097 0.0035
0.0070 0.0128 0.0163 0.0088 0.0017
0.0132 0.0163 0.0327 0.0185 0.0066
0.0097 0.0088 0.0185 0.0152 0.0058
0.0035 0.0017 0.0066 0.0058 0.0027

 ,

X1 =


0.5002 0.0002 0.0003 0.0002 0.0001
0.0002 0.5002 0.0003 0.0002 0.0001
0.0003 0.0003 0.5006 0.0004 0.0001
0.0002 0.0002 0.0004 0.5003 0.0001
0.0001 0.0001 0.0001 0.0001 0.5000

 ,X2 =


1.4397 0.4054 0.4182 0.3372 0.3752
0.4054 1.5017 0.5212 0.5059 0.4256
0.4182 0.5212 1.6597 0.5775 0.5052
0.3372 0.5059 0.5775 1.6408 0.4433
0.3752 0.4256 0.5052 0.4433 1.5043

 ,

X3 =


0.4916 0.4868 0.4348 0.3592 0.4397
0.4868 0.6350 0.4556 0.3462 0.6118
0.4348 0.4556 0.4658 0.3339 0.4896
0.3592 0.3462 0.3339 0.2702 0.3378
0.4397 0.6118 0.4896 0.3378 0.7297

 ,
with det(A) = −0.0384, min(eig(Q)) = 3.0962e− 05, min(eig(X1)) = 0.4999, min(eig(X2)) = 1.0177,min(eig(X3)) =
7.2571e−04 which ensures the basic requirement of our matrices such as non-singularity of A, and positive definiteness
of the remaining matrices. We have encountered three different functions with same matrix accessories. In Table 1,
we arranged all the experimental data including number of iteration( Iter. No.), Error(i) = ∥Xi− (Q+A∗X p

i A)∥ with
∥.∥ as spectral norm, i.e.; largest singular value and CPU Time ( T). The Equilibrium point X̄ with its minimum
eigenvalue λ (to confirm its positive definiteness) also shown in fifth and sixth column of the Table 1. Figure 1 shows
convergence behavior of the experiment.

Table 1. Analysis for three different values of ψ(X ).

ψ(X ) Iter.No. Error T Equilibrium Point, X̄ λ

X 0.3 45 9.2047 0.020424


3.4288 2.6496 2.3034 3.1573 1.6802
2.6496 2.2644 1.9031 2.6298 1.5339
2.3034 1.9031 1.8975 2.1742 1.1714
3.1573 2.6298 2.1742 3.2807 1.8020
1.6802 1.5339 1.1714 1.8020 1.1296

 0.0063

X 0.4 60 6.9374 0.023718


4.8826 3.8595 3.4740 4.5963 2.4499
3.8595 3.2199 2.8339 3.7712 2.1193
3.4740 2.8339 2.7313 3.2979 1.7686
4.5963 3.7712 3.2979 4.5846 2.4960
2.4499 2.1193 1.7686 2.4960 1.4682

 0.0056

X 0.5 80 7.9138 0.029695


8.2630 6.6148 6.0688 7.8598 4.1987
6.6148 5.4178 4.9171 6.3866 3.4914
6.0688 4.9171 4.6343 5.7874 3.0984
7.8598 6.3866 5.7874 7.6479 4.1257
4.1987 3.4914 3.0984 4.1257 2.3044

 0.0050
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Figure 1. Convergence behaviour for three different initial values.
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Conclusions

In this work, we have introduced a new FG-Prešić contraction condition for f : X k → X in metric spaces and
study the convergence of the sequence {xn} defined by xn+k = f(xn, xn+1, . . . , xn+k−1), n = 1, 2, . . .. We have
supplied sufficient instances to confirm the fixed-point conclusions as well as the significance of related work. This
finding was used to explore the global attractivity of the recursive sequence {Un} ⊂ P(N) using a graphical depiction
of convergence analysis.
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[7] L.B. Cirić and S.B. Prešić, On Prešić type generalization of the Banach contraction mapping principle, Acta
Math. Univ. Comenianae. 76 (2007), no. 2, 143-147.

[8] R. Devault, G. Dial, V.L. Kocic and G. Ladas, Global behavior of solutions of xn+1 = axn + f(xn, xn−1), J.
Difference Eq. Appl. 3 (1998), 311–330.
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Univ. Comenianae. 79 (2010), no. 1, 77–88.
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