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Abstract

The main motive of this paper is to discuss coupled coincidence points in the setting of the newly established concept
Y-cone metric spaces. We obtain coupled coincidence point theorems through mixed monotone mappings in ordered
Y-cone metric spaces. We give an illustrative example, which constitutes the main theorem.
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1 Introduction

Banach contraction principle (BCT) provides uniqueness and existence of a solution of an operator equation
Gz = x. Many authors have established contractive mappings to obtain the fixed points of this class of mappings in
complete metric spaces. A number of extensions and generalizations of BCT have appeared in the literature, for more
results, we refer to ([3, 4, [5 [6] O] [T0] [T, [15]).

On the other hand, metric spaces present a significant idea to the study of Functional Analysis and Topology. To
establish an appropriate concept of a metric space, numerous techniques are available in this phenomena. A number of
extension of the concept of metric spaces have then turned up in other papers (see [2, 7, 8, [14]). Recently, cone metric
spaces were introduced by Huang and Zhang [8], they described convergence in cone metric spaces and presented
the completeness. To apply this concept, the role of cone metric spaces have developed by number of authors (see
1, 12, 13, [16]).

The study of a coupled fixed point results were initiated by Bhaskar and Lakshmikantham [4] in ordered metric
spaces, they execute their concept to show the existence and uniqueness of a solution of boundary value problem
which is periodic in nature. It is observed that the interplay between the metrical structure of the space and order
is very fruitful. Due to this significance, many researchers have obtained results for different contractive conditions
[2, [ [6, 10, 13} [15].
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Motivated by above results, we present some coupled common fixed point results in the setting of Y-cone metric
spaces. To illustrate the usability of our results, we furnish an example.

2 Preliminaries

The concept of b-metric space were initiated by Czerwik [7]. For more details about the following definitions,
reader see [7].

Definition 2.1. [7] Presume S be a set which is nonempty and s > 1 be a real number. A mapping d: S x S — R*
is a b-metric on S if, the following conditions satisfy, for all s, s2,s3 € S:

(1) d(s1,82) =0 <= s1 = $9,
(2) d(s1,s2) = d(s2, 1),

(3) d(s1,s2) < sld(s1,s3) + d(s3, 52)].

Here, the pair (5, d) is known as a b-metric space.

Definition 2.2. [2] Let S be a set which is nonempty. A mapping A : S™ — [0,00) is known as an A-metric on S if,
for all s;,a € S,9=1,2,--- ,n, conditions mentioned below hold:

(Al) A(817527837' o 7Sn—175n) > 07
(A2) A(s1,82,83, " 18n—1,8,) =0 <= 8] =89 =83 ="+ =Sp_1 = Sp,
(A3)

A(51,323537"' ;Sn—lasn) S A(Shslasla"' 7(81)11—170')

+ A(327 §2,82, ", (82)n—1a Cl)

+ A(Snfla Sn—1,8n—1,""" (S(nfl))nfla a)

+ A(Sn, SnySny (Sn)nflﬂ a)'

The pair (S, A) is known as an A-metric space.

3 Y-cone Metric Spaces

Throughout this paper, we take E is a Banach space and P is a cone in E together intP # () and < with respect
to P is a partial ordering .

Definition 3.1. [14] Let S be a set which is nonempty and k& > 1 be a real number. Suppose a function Y : S™ — E
is called a Y-cone metric on S if, for all s;,a € S,i =1,2,--- ,n, the conditions mentioned below hold:

(Yl) Y(81782a837 e 7871717871) 2 0;
(Y2) Y(s1,82,83, " ,8p—1,8,) =0 <= 81 =83 =83 ="+ =831 = Sp,
(Y3)

Y (s1,82,83, s Sn—1,5n) < k[Y(s1,51,81, , (81)n-1,0)

+ Y(827 52,82, , (82)717170/)

+ Y(Sn—la Sn—1,8n—1,""", (S(n—l))n—la a)
+ Y(8n7 SnySny (Sn)n—la Cl)]
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The pair (5,Y) is called an Y-cone metric space.
It is noted that cone b- metric space becomes a special case of Y-cone metric space with n = 2.

Proposition 3.2. [14] If (S,Y") is Y-cone metric space, then for each u,v € S, we have

Example 3.3. [I4] Presume S ={1,2,3,4,5}, P={s € E : s > 0} where, F = R and. Define Y : S™ — E by:

Y(sla527s3a e

Sn—1,8n) = ls1 = so| 7' 4 |s2 — s34 A s —sa| Thf i # Sj,
e 0 lfSlZS]

Vi,j7=1,2,-+- ,n. Thus (5,Y) is a Y-cone metric space together coefficient k = 1—72

Example 3.4. [14] Let S = [0,1] and E = C£[0,1] with || v || =[] v |l +]|V [lscs v € E and Suppose P = {v € E :
v(t) >0 on [0,1]}. It is already known that cone is solid but it is not normal. A Y-cone metric Y : S™ — FE defined
by
Y (s1,82, 83,7, Sn—1,8n) =[|s1 — 52>+ [s1 — s3> + -+ + |51 — s |?
+ [so — s3* + [s2 — sa® 4 - + [s2 — |
R |5n—1 - Sn‘Q]et

n
SIS

i=1 i<j

Thus (5,Y) is a complete Y-cone metric space together the coefficient k = 2.

Lemma 3.5. [I4] Presume S be a Y-cone metric space, for every s,u € S we have, Y(s,s,---,s,2) < k[(n —
DY (s,8,- - ,8,u)+Y(z2,2,---,z,u)] and Y(s,s,---,8,2) <k[(n—1)Y(s,s,- - ,s,u) + Y(u,u,- - ,u,z)].

Definition 3.6. [14] Presume (S,Y) be a Y-cone metric space along with coefficient k¥ > 1. For every s € S and
0 < p, take By (s,p) ={w € S:Y(s,s,-- ,s,w) < p} and take B = {By(s,p): s € S and 6 < p}. Therefore, B is
a subbase for some topology 7 on S.

Remark 3.7. [14] Presuppose (S,Y) be a Y-cone metric space. Here, 7 represents the topology on S, B represents
a subbase for the topology on 7 and By (s, p) represents the Y-ball in (S,Y"), which are expressed in Definition
Also, Y represents the base generated by subbase B.

Definition 3.8. [14] Let (S,Y) be a Y-cone metric space. A sequence {s,} in S converges to s if for every c € E
with 6 < ¢, there is a natural number N such that for all n > N, Y(s,, sy, -, $n,s) < ¢ for some fixed s in X.
Hence s is called the limit of a sequence {s,} and is denoted by lim, o S, = S Or s, = s as n — oo.

Definition 3.9. [I4] Let (S,Y) be a Y-cone metric space. A sequence {s,} in S is called a Cauchy sequence if for
every ¢ € E with § < ¢, there is a natural number N such that for all n,m > N, we have Y (sn, Sn, -, $n, Sm) < C.

Definition 3.10. [I4] The Y-cone metric space S is said to be complete if every Cauchy sequence in S is convergent
in S.

Lemma 3.11. [I4] Presuppose (S,Y) be a Y-cone metric space. Existence of sequences {s,}, {w,} such that s, —
S, Wy, — w, then limy, 00 Y(Sp, Spyc -+ 4 Snywn) =Y (s,8,-++, s,w).

Remark 3.12. [I4] Let (S,Y) be a Y-cone metric over the ordered Banach space E defined on R with a cone P.
Now the subsequent attributes are often used:

(1) If by < by and by < b3, then by < bs.
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(2) If 0 < v < ¢ for every ¢ € intP, thus v = 6.
(3) If c € intP, 0 < b, and b, — 0, then there I ny for every n > ng we have b, < c.

(4) If E is a Banach space on real R with cone P and if b < A b where b € P and § < )\ < 1, then b = 6.

Definition 3.13. [4] An element (s,w) € S x S is known as coupled fixed point for the map F : S x § — S if
F(s,w)=s, F(w,s) =w.

Definition 3.14. [6] An element (s,w) € S x S is known as coupled coincident point for the map F : S x S — S
and g : S — S if F(s,w) = gs, F(w,s) = gw.

Definition 3.15. [6] Let (S, <) be a partially ordered set and let F': Sx S — S and g : S — S be two mappings. We
say F has the mixed g-monotone property if F(s,w) is g-non-decreasing in its first argument and is g-non-increasing
in its second argument, for any s,w € .S

81,82 € 5,981 < gsa = F(s1,w) < F(s2,w)

<
> F(s,ws).

wi,we € S, gwy < gwe = F(s,wn)

4 Coupled Common Fixed Point Results

Now, we provide the results on coupled coincidence point fulfilling in the framework of partially ordered Y'-cone
metric spaces for more general contractive conditions. We start with the subsequent result.

Theorem 4.1. Presume (5, <,Y) be a partially ordered complete Y-cone metric space together the coefficient k > 1
relative to a solid cone P. Presuppose F' : Sx.5 — Sand g : S — S be the continuous mappings possesses the condition
of mixed g monotone on S. Assuming that 3 a,,, >0, m =1,2,---,10 with a1 +as+az+as+as+as+2k(ar+ag) < 1
and Z:szl @y, < 1 such that

Y(F(s,w), F(s,w), -, F(s,w), F(u,v))
< a1Y(gs,gs, -+, s, gu) + a2Y (gw, gw, -+ , gw, gv)
+azY(gs,gs,--- 95, F(s,w)) + aaY (gw, gw, -+, gw, F(w, 5))
+asY (gu, gu, - - - , gu, F(u,v)) + agY (gv, gv, - -+ , gv, F(v,u))
+a7Y(gs,gs, -+ ,gs, F(u,v)) + asY (gw, gw, - - -, gw, F(v,u)),
+ agY (gu, gu,- -, gu, F(s,w)) + a10Y (gv, gv,- -+ , gv, F(w, s)

(4.1)

YV s,w,u,v € S with gs < gu and gw > gv. Suppose that there exists sg,wg € S such that gsg < F(so,wo),
gwo > F(wo, sg), furthermore F (S x S) C ¢g(S) then F and g in S have a coupled coincidence point.

Proof . Choose sg, wp € S, one can construct the sequences {s, } and {w, } such that gsan+1 = F(San, Wan), gWant1 =
F(wan, s2n) and gsani2 = F(S2n11, Want1), gWant2 = F(w2n11,52n11) for alln > 0.

Observing that F' posses the property of mixed g-monotone on S. We have

950 <951 <+ < g8y < gSpt1 <o+ and gwg > gwy > - > gy > GWry1 > 0
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Then by (4.1), we have

Y (9S2n+1,952n+1," " »9S2n+1, 952n+2)
= Y(F(SZn; Wan ), F(82n, wan), -+, F(82n, wan ), F(s2n41, w2n+1))
S aIY(gSQ’r“gSZTM c 5, 952n;, 932n+1) + (IgY(g’lUgn, gWan, -, GW2n, ngTL-’rl)

+a3Y(952n7952n7 e 7952n7F(52n7w2n)> + Q4Y<gw2m9w2m o 7gw2n,F(w2m52n))

+G5Y(952n+1,952n+17 o gSamt1, F(S2nt1, w2n+1))
+a6Y<ngn+17 GW2n115 " JWan+1, F(wany1, 52n+1)>
+a7Y(g52n, 9Son, s 9San, F(S2n41, wgn_,_l)) + agY(gwgn, JWaon,*+ y GWap, F(wapi1, 52n+1)>
+G9Y<982n+1, 1982415 982041, F(S2m, wzn))
—i—aloY(gwgnH, JW2nt1,° s GWant1, F(Wan, Sgn)). (4.2)
In similar way, we get
Y (gwon+1, gWant1, "+ GW2pt1, Wan42)
= Y(F(w2n752n)vF(w2nv52n)v Tt 7F(w2nv52n)vF(w2n+1a52n+1))
< a1Y (gwan, gWan, -+, GWan, GWant1) + a2Y (gS2n; GS2n, -+ GS2n, JS2n+1)

+ asY(ngmngn, “ee ,ngn,F(wzn,SQn)) + a4y(952n7982n7 “e 7gs2n7F(52n7w2n))
+ G5Y(gw2n+179w2n+1, o, gWonta, F(w2n+1, 82n+1)) + a6Y(952n+17 g9S2n+1," " ,952n+1, F(82n+1, w2n+1))
+azY (gw2n7gw2na cr, gWan, F(w2n+17 52n+1)> + aSY(gSQTM gs2n, " ,952n, F(52n+17 w2n+1))

+ agY | gwan+1, gWany1,- - agw2n+17F(w2n752n>) + alOY(gS2n+17952n+17 e ,982n+1,F(82n,w2n)>
(4.3)

Adding (4.2) and (4.3)), we get

Y (982n+1,952n41," " » 952041, 9S2n+2) + Y (GWant1, JWoni1, -+, GWany1, JWont2)
< a1Y (9520, 9S2n, "+ » 9S2ns 9S2m+41) + a2Y (gWan, gWan, - , GWan, GWap41)
+ asY (9520, gS2ns*** » 9S2ns GS2n+1) + a1y (GWan, GWan, + , GW2n, GW2p41)
+ a5Y (952n+1,952n+1, "+ > 9S2m41, 9Smt2) + a6Y (GWant1, GYans1s -+ » GY2n+1, GY2nt2)
+ azY (9520, gS2ns*** » 9S2ns 9S2n+2) + asY (qWan, GWan, -+ , GWan, GWan42)
+ GQY(982n+17952n+17 5 982n+1, 982n+1) + aloy(gw2n+1,gw2n+1, T ,gw2n+1,gw2n+1)
+ a1Y (qwan, gwan, -+, gWan, GWant1) + a2Y (gS2n, GS2n, -+ , 9S2n, GS2n+1)
+ azY (qwan, gwan, -+, gWan, GWan+1) + asY (gS2n, G52, , 9S2n, YS2n+1)
+ 05Y(9w2n+179w2n+1, T 7gw2n+1vgw2n+2) + G6Y(982n+1, gSon+1," ", 9S2n+1, 982n+2)
+ a7Y (qwan, gWan, -+, GWan, GWant2) + asY (9S2n, GS2m, -+, GS2n, GS2n+2)
+ agY (gWant1, JWant1,- -+ 5 JWont1, GWant1) + a10Y (952n41, 95241, » 952011, 9S2n+1)
< (a1 +az +az + aq)Y (gS2n: 9520, -+ » 952m, gS2n+1) + (a1 + a2 + a3z + aq)Y (gwan, gWon, -+ , JWan, GW2n41)
+ (a5 + GG)Y(QS%H, 982n+1, - a952n+17952n+2) + (a5 + GG)Y(gw2n+1, JWan41," " s JWan+1, 9w2n+2)
+ (kar + kag)Y(gs%, GS2m, 5 GSom, 932n+1) + (ka7 + kaS)Y(gwgn, GWop, ,gwgn,gw2n+1)
+ (kar + kas)Y (952n+1, 9S2n+1, "+ GS2n41, GSant2) + (kaz + kas)Y (gWant1, gWan+1, -+ G021, GWan+2)

= (a1 + a2 + a3 + as + kag + kas) (Y (9520, 952, -+, 952n: gS2n+1) + Y (gWon, gWan, - -+, GWan, GWan41))

+ (a5 + ag + ka7 + kag) (Y (9S2n+1, 9S2n+15 -+ > 9S2n+1, 952n+2) + Y (GWans1, gWany1, -+ gWant1, JWani2))
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Thus, we have

Y (952n+1, 952041, » 952041, 952n+2) + Y (gWan i1, GWoni1, -+ 5 GWont1, YW2n42)
< (a1 +az + a3z + ag + kar + kag) (Y(QSQn, 952, 1 952n, 9S2n+1) T Y (gWan, gWan, - -+ , GWan, gw2n+l)) (4.4)
+ (a5 + ag + kag + kas) (Y (9S2n+1, 9S2n+15 -+ 5 9S2n415 952n42) + Y (GWont1, Wans1, -+ » GWant1, JWani2))

It follows from (4.4)) that

[Y(gSQH-i-la gS2n41," " ags2n+17g*92n+2) + Y(gw2n+1; gWan+1,"** , JWan+41, gw2n+2)}
< (a1 +a2+a3+a4+ka7+kag)
- 1 — (a5 + ag + kar + kag)

(Y (gS2n: 9S2ns -+, §S2n; GS2n+1) + Y (qWan, GWan, - - - , gWan, GWan41)).

_ (a1t+aztasz+tastkar+kas)
Let 6 = 1=(as+haotharthas) then 0 <0 < 1 and

[Y(982n+17982n+17 ©r 5, 9S82n41, 952n+2) + Y(ngnﬂ, JWan41," " , gWan+1, gw2n+2)]

(4.5)
S 5[Y(g’92n’952n7 c 5, 9S82n, 952n+1) + Y(ngn, gWan, agw2n7gw2n+1)]~
It follows from (4.5)) that
[Y(932n+1, gSan41, " a952n+17g$2n+2) + Y(gw2n+1,gw2n+1, s 7gw2n+lygw2n+2)]
< O0[Y(952n, 952n, -+, 9520, 9S2n+1) + Y (gWan, gWan, - - - , gW2n, GW2n 1))
< 5(5(}/(9527171793271717 <, g82n—1,952n) + Y (qwan—_1, gWan_1,- - - ,ngnq,ngn)))
< 6(6(5(Y(952n—27952n—27 ev L gSan—2,9S2n—1) + Y (qWan—_2, gWan_2, - - - ,gw2n—2,gw2n—1)))>-
This implies
[Y(g‘92n+17 gSo2n41," " 7982n+17982n+2) + Y(gw2n+17gw2n+17 T 79w2n+179w2n+2)}
< 83V (gs2n—2,952n—2," " » gS2n—2,9S2n—1) + Y (gWan_2, gWan_2, - , gWan_2, G2, _1)]
(4.6)
S 62n+1(y(9807 gso, - 79807981) + Y(nga gwo, - ,gWo, gwl)
By Lemma [3.5] we have for all n,m € N with n <m
Y (g2n+1, 9520415 5 9S2n+1, GS2m+1) + Y (GWon41, JWant1, -+ » GWan+1, JW2m+1)
< k[(n - 1)Y(982n+17952n+17 s 7952n+17g32n+2) + Y(982n+27952n+27 T 7952n+2a932m+1)]
+k[(n — 1)Y (gWant1, gWont1, " » GW2n41, GW2n+2)) + Y (gW2ny2, GW2nt2, -+ 5 GWan+2, W2m41))
< (k(n - 1)Y(982n+17 gSan+1," 3982n+1»952n+2) + k(n - 1)Y(gw2n+1, JWan41," " , gWan+1, gw2n+2))
+ (k*(n — 1)Y (952042, 952042, * * » GS2n+2, IS2n+3)
+ kz(n - 1)Y(gw2n+2a gWan42,° - , JWan+42, gw2n+3))
R (k2m71(n - 1)}/(952m—1a g9Som—1,""" 7932m—17952m)
+ " (n = 1)Y (gWam—1, Wam—1,"** » GW2m—1, W2y ))
+ kPN (Y (952 9S2ms 5+ 952ms GS2m41) + Y (GWam, G2, + + , GW2p, GW2p41))
< (k(n —1)Y(gS2nt1,952n+1," " 1 952n+1, 952n42) + k(n — 1)Y (gwani1, gWany1, -+ 5 GWant1, GWani2))
+ (k*(n — 1)Y (gS2n+2, §S2n+2, s §S2n42, 9S2n+3) + k(0 — )Y (qWant2, gWans2, -+ , GW2nt2, GW2n+3))
+:

+ (kZm(n - I)Y(gSQTnv gsam, - ,952m, 952m+1) + ka(n - 1)Y(gw2m,gw2m, cr L, JWam, gw2m+1))
S k(n - 1)62n+1(1 + ko + k262 + - )(Y(95079807 T a9807gsl> + Y(gw07gw07 o agw())gwl))‘
This implies
Y(g52n+1,952n+1," 5 9S2m+1, 9S2mt1) + Y (gWang1, gWans1, -+, GW2nt1, GWornt1)
k62n+1

<=7 "7%5

(Y(gSOagSO7 o 798()’981) + Y(ngagw(h e 7gw0agw1))'
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Similarly, we get

Y (952n, 9S2n: -+ 982, §S2m+1) + Y (9Wan, GWon, - - - , gWan, GW2m+1)
k(52n
S (Tl - 1)m(y(98079507 T a9807gsl) + Y(gw07gw07 e ,gwo,gwl)),
and
Y (952n, 9S2n: -+ 5 GS2n, §S2m) + Y (gWan, GWon, - -+, gWan, GWarm,)
k.52n
= (n - 1) 1— k(s(y(gs(thOa e 79307951) + Y(g’ll)o,g’ll}o, T ,gIU(),g’U)l))
and
Y (952041, 952041, » 9S2n+1, 9S2m) + Y (GWont1, gWant1,- - -, GWan+1, GWam)
k(52n+1
S (n - 1)m(y(930a9807 e 798()’.951) + Y(gw0a9w07 o ,g’LUO,g’LUl))-

Hence, for all n,m € N with n < m and k § < 1 imply that

Y(gsnagsna U 79371795771) + Y(gwnagwny U agwnagwm)

n

1—ké

< (n - ]-) [Y(gSO,gSO, T 79807981) + Y(gw07gw07 o 7gw01gw1)] — fasn — oo

According to Remark 3.10(3), and for any ¢ € F with § < ¢, there esists ng such that for any

ko™
1—ké

n > no, (TL - 1) (Y<g‘907.980> o u9807981) + Y(gw07gw07 e 7gw07gw1)) <e.

Furthermore, for any m > n > ng, Remark (3.12)) (1) shows that Y (gso, gso, - ,9%0,951) + Y (gwo,gwo,--- ,gwo, gwr) <
c. Hence, by Definition (3.9), {gs.} and {gw, } are Cauchy sequences in S. By the completeness of S, 3 s,w € S such
that

lim gs, =s and lim gw, = w.
n— 00 n— o0

Now we show that (s,w) is a coupled coincidence point of F' and g.

Suppose F' is continuous, then we have

gs = lim gs,y1 = lim F(s,,w,)
= F(lim s,, lim w,) = F(s,w).
Again,
gw = lim gw,y1 = lim F(wy,s,)

= F(nhﬂn;O wn,nlirgo sn) = F(w, s).

This completes the proof. [

Theorem 4.2. Suppose all the conditions of Theorem are satisfied. Moreover, assume that S has the following
properties

(a) if a sequence{s,} in S which is non-decreasing converges to some point s € S, then s,, < s, ¥n,

(b) if a sequence {wy,} in S which is non-increasing converges to some point w € S, then w,, > w, Vn.

Then the conclusion of Theorem [4.1] also hold.
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Proof . Applying the proof of Theorem {.1|it is required only to prove gs = F(s,w), gw = F(w, s).

In fact, since {s,} is non-decreasing and s, — s and {w,} is non-increasing and w, — w, by our assumption,
$n, < sand w, > wVn.

Applying the contractive condition we have

Y(gS,gS, 0, 98, F(va))

(4.7)
< k[(n - 1)Y(93a93, ce ,987982n+2) + Y(952n+2a982n+25 cee a982n+27F(37w))]
Similarly
Y(gw’ng angF(w7s)) (4 8)
S k[(n - 1)Y(gw7 qguw, - - ,gw, gw2n+2) + Y(gw2n+27 guwan42, ", JWan4+2, F(wa 5))} ’
From and ( .7 we have
Y(gs,gs,~-~ ,gS,F(S,UJ)) +Y(gwagw7 c,gw, F( w, ))
S k[(’I’L - 1)Y(g$,g$7 e 5987982n+2) (n - 1)Y(gw7 gw,---,guw, gw2n+2>
+ Y (g52n+2, 9S2n42, "+ » gSant2, F(5,w)) + Y (gwany2, GWani2, -+, gWany2, F(w, 3))] (4.9)
= k[(n - 1)Y(957957 e 5957952n+2) (TL - I)Y(gw’ gw,:- .- ,guw, gw2n+2)
+ Y (F(s2n+1, Won+1), F(Son+1, Want1), -+ s F(S2n+1, Wan+1), F(s,w))
+ Y (F(want1,82n+1), F(Want1, Sant1), -+ » F(Wani1, S2n41), F(w, 5))].
By using (4.1)), we obtain
Y (F(52n+1, Won+1)s F(S2n41, Want1), -+ 5 F(S2p41, Wany1), F(s,w))
< a1Y(952n+17982n+17 o, 052041, 95) + G2Y(9w2n+1)79w2n+1), s 7gw2n+1),9w>
+ a3Y (952n41,952n+15 5 952041, G(S2n+1, Want1)) + @aY (W11, gWant1, - » GWan+1, G(Wan1, S2n+t1))
+ a5Y(gs,gs, 98, F(s, w))) + agY(gw,gw, o, guw, F(W, 5))
+arY (gs2n+1, 952011, 5 GS2nt1, F(s,w)) + agY (gwans1, gWant1, -+ -, gWant1, F'(w, s))
+agY (gs,gs, -, 98, G(Sant1, Wan+1)) + a10Y (gw, gw, - - - , gw, G(Wan41, S2n+1))
= G1Y(982n+1, g82n+1," " y9S2n+1, 93) + G2Y(9w2n+1,gw2n+1, o, gWanga, w)
+azY ((982n+1,952n+1, "+ » 9S2n+1, 9S2n+2) + aaY (gWant1, GW2nt1, 5 GWant1, GWan+2)
+asY(gs,9s, - ,98, F(s,w)) + agY (gw, gw, - - -, gw, F(w, s))
+ a7Y (9S2n+1, 9S2n+1, > gSon+1, F(s,w)) + agY (gwan41, gWan41, -+, gWant1, F(w, s))
+ GQY(QS,gsa e ags,gs?nJrQ) + alOY(gw’gwa s, guw, gw?nJrQ)
(4.10)
Similarly, we have
Y(F(w2n+1, 32n+1)7 F(w2n+1> 32n+1)7 te ,F(w2n+1, 32n+1)7 F(’lU, 8))
= a1Y (gW2n11, gWont1," " 5 GWant1, gW) + a2Y (gS2n+1, 9S2n+1, "+ IS2n+1, 95)
+ a3Y ((gWan+1, GWant1, s JW2n41, GW2n2) + aaY (952041, 952n+1:" "+ » 952041, YS2n+2) (411)
+ a5Y(g’LU, guw,:---,guw, F(wv S)) + GGY(gS, gs, -+ ,9s, F(87 U))) .
+ a7Y(gw2n+17 gWan41, - , gWan+1, F(’UJ, S)) + aSY(g$2n+17952n+1a o, 982041, F(87 U)))
+ agy(ng quw, - - - agw7gw2n+2) + alOY(957957 e 7952n+2)
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It follows (4.9), (4.10) and (4.11)) that

Y(gs,gs, 598, F(S,U))) + Y(gw,gw, o, 9w, F(’UJ, S))
S k[(n - 1)Y(g8’ gs, --,9s, 982n+2) + (n - 1)Y(nggw7 e 7gwagw2n+2)

+a1Y (982n+1, 952n+1, 5 952041, 95) + a2Y (gWant1, gWony1, -+ GWant1, gw)

+azY (9S2n+1,952n+1, " » 952041, 9S2n+2) + aaY (GWani1, GWant1, -+ JW2ny1, JW2ny2)

+asY(gs,gs, - ,gs, F(s,w)) + agY (qw, gw, - - - , gw, F(w, s))

+arY (gs2n+1, 9S2n+1, " 5 9S2n+1, F(8,w)) + asY (gwant1, gWant1, - gWany1, F(w, s))
(4.12)

+agY (gs,gs, -+ ,gs,gSan+2) + a10Y (qw, gw, - -+ , gw, gwan12)

+ a1Y (gwani1, gWant1, -+ gWant1, gW) + a2Y (982011, 952041, , 952n+1, g5)

+ a3Y ((gW2nt1, GW2nt1, "+ W41, GWont2) + a4Y (82041, GS2n+15 ", IS2n+1, IS2n+2)

+asY (gw, gw, -, gw, F(w, s)) + agY (gs, 95, -, gs, F (s, w))

+ arY (gwan+1, gWant1, -+, GWant1, F(w, 8)) + asY (gs2n+1, gS2n+1,+++ , gSa2n+1, F(s,w))

+ agY (gw, gw, -+, gw, gwan+2) + a10Y (gs, gs, - -, 95, gsan+2)].

Taking the limit as n — oo in above inequality, we have

Y(gs,gs, - ,gs, F(s,w)) + Y (gw,gw, -, gw, F(w,s))

< klasY (gs,gs, -+ ,gs, F(s,w)) + agY (gw, gw, - - - , gw, F(w, s

+a7Y (gs,98, -+ ,98, F(s,w)) + agY (gw, gw, - - - , gw, F(w, s
+asY (gw, gw, - -+, gw, F(w, s)) + agY (gs,9s,- -, gs, F (s,

+ a7Y (gw,gw, - -, gw, F(w, s)) + asY (gs, gs, -, gs, F(s,

Y(gs,gs, e 3957F(3vw)) + Y(nggw7 e agw7F(w7S))
< k(a’5 +ac + a7+ ag)[Y(gS,gS, o ,gS,F(S,U})) + Y(gwagwa o 7gw7F(w7 S))]

Since, 0 < k(a5 + ag + a7 + as) < 1, Remark [3.12(4) shows
Y(gs,gs, T, 98, F(S,’U})) + Y(gwagwa T, guw, F(’LU, S)) =0

that is, F'(s,w) = gs and F(w, s) = gw. This proves that (s,w) is a coupled common fixed point of F' and ¢ and this
finishes the proof. (I

for (s,w), (u,v) € S x S there exists (z,t) € S x S which is comparable to (s, w) and (u, v). (4.13)
Note that in .S x S we consider the partial order relation given by

(s,w) < (u,v) <= s<wandw >wv.

Theorem 4.3. Using condition (4.13) to the hypotheses of Theorem (resp. Theorem we get uniqueness of
the coupled coincidence point of F' and g. Furthermore, any fixed point is common for F' and g.

Proof . Suppose F has (s, w) and (s',w’) coupled coincidence points , that is, F(s,w) = gs, F(w, s) = gw, F(s',w') =
gs’ and F(w',s") = gw’. We shall prove that gs = gs’, gw = guw’.

Let (s,w) and (s',w’) are not comparable. Then by assumption there exist (z,t) € S x S comparable with both of
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them. Suppose that (gs, gw) < (gs’, gw’) without loss of generality, it follows from Theorem |4.1
g

Y(gs, 95, ,9s,95") + Y (gw,gw, -, gw, gu’)
=Y (F(s,w), F(s,w), -, F(s,w), F(s',w")) + Y(F(w,s), F(w,s), -+, F(s,w), F(w',s"))
< a1Y(gs, g5, ,9s,98") + a2Y (gu, g, -+, gw, gu’)
+asY(gs,gs, -+ ,gs, F(s,w)) + a Y (gw, gw, - - - , gw, F(w, s))
+asY(gs', 95, , g8, F(s',w")) + agY (gu', gw" - -+, guw', F(w',s"))
+a7Y(gs,gs,--+ ,g9s, F(s',w") + agY (gw, gw, - - - , gw, F(w', s"))
+agY(gs',gs', -+, 98, F(s,w)) + aoY (gw', gw’ -+, gw’, F(w,s))
= a1Y(gs,9s, - ,gs,95') + a2Y (gw, guw, -+, gw, gu’)
+asY(gs,gs, -+ ,9s,95) +asY (gw, gw, - - , gw, gw)
+asY(gs', g5, .95, 95") + agY (gw', gu', -+, g, gu')
+arY(gs,gs, -+, 98, 95') + asY (qu, gw, -+ , gw, gu’)
+agY (gs’,gs',- -+ . g, gs) + aroY (g, gw', -+, g, gu)

Thus,
Y(987987 e 19879‘9/)
- (al + ar + ag)Y(957957 e 795795/) + (a2 + as + alO)Y(gwa guw,: .- ,gquw, gw/)
Similarly,
Y(nggwa e 7gwagw/)
= (a1 + a7 + a9)Y (gw, gw, - - , gw, gw') + (as + ag + a10)Y (gs, gs, -+ , gs,gs’).
From above two inequalities, we have

Y(gsvgsv e 798798/) + Y(gw7 guw, - -+, guw, gw/)
= (al +az + ar + as + ag + alO)[Y(gwang e 7gwagw/) + Y(gS,gS, e 595795/)]'
Since, 0 < (a1 ++as+ar+as+agtaig) < 1, Remark|3.12(4) shows that Y (gs, gs, - ,gs,gs")+Y (gw, gw, - - - , gw,gw’) =
0, which implies gs = gs’ and gw = gw'.

Now, we show that any fixed point of F is a fixed point of g. Applying Theorem [£.1] we get

Y(gs,gs, -+ ,g9s8,gw) =Y (F(s,w), F(s,w), -, F(s,w), F(w,s))
< a1Y(gs,gs, -+, g9s, gw) + a2Y (gw, gw, - - -, gw, gs)
+asY(gs,gs, -+ ,gs, F(s,w)) + a Y (qw, gw, - - - , gw, F(w, s))
+a5Y (gw,gw, -+, gw, F(w, s)) + agY (gs, gs,- -+ , gs, F(s,w)) (4.14)
+a7Y(gs,gs, -+ ,gs, F(w,s)) + asY (qw, gw, - - , gw, F(s,w))
+ agY (gw, gw, -+, gw, F(s,w)) + a10Y (95,95, , gs, F(w, 5))
= (a1 +ay + a10)Y (gs,9s, -, gs, gw) + (az + as + a9)Y (qw, gw, - - - , gw, gs).

In similar way
Y(ngng e ,gw,gs) = Y(F(wv S)v F(wv 5)7 T 7F(w7 s),F(s,w))
= (GQ + ag + GQ)Y(gsagS7 e a937gw) + (al + a7 + alO)Y(gwagwa e 7gwags)'
Adding (4.14) and (4.15), we obtain

Y(gS,gS, o agsmgw) + Y(gw»gw7 U 7gw,gs)
= (al +az +ar+ag+ag + alO)[Y(957957 e ,gS,g'LU) + Y(gwagwa e 7nggs)]'

(4.15)

Since, 0 < (a1 + a2 + a7 +as+ag +aio) < 1, Remark 4) shows Y (gs, gs, -+ ,gs, gw)+ Y (qw, gw,- -+ ,gw, gs) = 0,
which implies gs = gw. The coupled common fixed point of F' and g is unique. This finishes the proof. [
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Example 4.4. Let (S, <,Y) be a totally ordered complete Y-cone metric space with Y-cone metric defined as in
Examplem Let F: SxS— Sas F(s,w) = @ for all s,w € S.

Suppose that g: S — S as gs=s
Y(F(s,w), F(s,w), -, F(s,w), F(u,v))
[(n — 1)|F(s,w) — F(u,v)]* + (n — 1)|F(w,s) — F(v, u)|2} et

- s+3w  u+3v, w+3s  v+3u ],
= [ -1 =2 (n— 1) e
s u 3w 3v w v 3u  3s
= [e-DIE-D+(F - PP+ @-DIF - )+ (5 - PP
s u 3w 3v w v 3u  3s
<2 _1 272 D ] =2 o Y22 t
<2n-D)|l - P +I15 - TP HIE - P+ 1F - 2P
2(n—1)

9
5[Y(gs, gs, -+, g8, gu) + Y (gw, gw, - - - , gw, gv)].

where a1 = % = ag,a3 = a4 = a5 = ag = ay = ag = ag = a1o = 0. Hence, the properties of Theorem (4.1]) are satisfied.
Further, (0,0) is the unique coupled coincidence point of F' and g.

If ¢ is an identity mapping,we have the results.

Corollary 4.5. Presume (S, <,Y) be a partially ordered complete Y-cone metric space with the coefficient k& > 1
relative to a solid cone P. Presuppose F' : S x S — S be the continuous mappings posseses the property of mixed

monotone on S. Suppose that 3 a,, > 0, m = 1,2,--- 10 with a; + as + a3z + a4 + a5 + ag + 2k(a7 + ag) < 1 and
10
Zm:l am < 1 such that

Y(F(s,w), F(s,w), -, F(s,w), F(u,v))
<a1Y(s,8,-,8,u) + aY(w,w, -+ ,w,v)
+aszY(s,s,-+,8,F(s,w)) + asY (w,w, -+ ,w, F(w,s))
+asY (u,u, -+ ,u, F(u,v)) + agY (v,v,-- -, v, F(v,u))
+a7rY (s, s, ,8, F(u,v)) + agY (w,w, - ,w, F(v,u)),
+ agY (u,u, - u, F(s,w)) + aoY (v,v,- - v, F(s,w))

(4.16)

vV s,w,u,v € S with s <w and w > v. Suppose either F' is continous or S has the following properties

(a) if a sequence{s, } in S which is non-decreasing converges to some point s € S, then s, < s, Vn,

(b) if a sequence {wy} in S which is non-increasing converges to some point w € S, then w,, > w, Vn.

If there exists s, wp € S such that sg < F(sp,wp) and yo > F(wy, so), then F has a coupled fixed point.

Corollary 4.6. Let (S, <,Y) be a partially ordered complete Y-cone metric space with the coefficient k > 1 relative
to a solid cone P. Let F': S x S — S be the mappings such that F' has the mixed monotone property on S. Suppose
that there exist K € [0,1) such that

Y(F(s,w), F(s,w), -, F(s,w), F(u,v))
+Y(F(w,s), F(w,s), -, F(w,s), F(v,u)) (4.17)
< K(Y(s,8,-+,8u)+Y(w,w,- - ,w,v))

YV s,w,u,v € S with s <wu and w > v. Suppose either F' is continuous or S has the following properties

(a) if a sequence {s,} in S which is non-decreasing converges to some point s € S, then s, < s, Vn,
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(b) if a sequence {wy} in S which is non-increasing converges to some point y € S, then w,, > w, Vn.

If there exists s, wp € S such that sg < F(sp,wp) and wy > F(wo, So), then F has a coupled fixed point.

Proof . Applying a1 = K, a3 = a3 = a4 = a5 = ag = 0 in Theorems (4.1]) and (4.2]), we obtain the corollary. [J

5 Conclusions

In this paper, we establish the existence and uniqueness of coupled coincidence theorems on complete Y-cone

metric spaces. Lastly, we provide the example to support our result.
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