
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,028 |
تعداد مشاهده مقاله | 67,082,893 |
تعداد دریافت فایل اصل مقاله | 7,656,361 |
Feature fusion of fruit image categorization using machine learning | ||
International Journal of Nonlinear Analysis and Applications | ||
دوره 13، Special Issue for selected papers of ICDACT-2021، خرداد 2022، صفحه 71-76 اصل مقاله (384.45 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2022.6332 | ||
نویسندگان | ||
Shameem Fatima؛ M. Seshashayee* | ||
Department of Computer Science, GITAM University, Visakhapatnam, India | ||
تاریخ دریافت: 20 مرداد 1400، تاریخ بازنگری: 29 آذر 1400، تاریخ پذیرش: 27 دی 1400 | ||
چکیده | ||
Fruit Categorization is a classification problem that the agricultural fruit industry needs to solve in order to reduce the post-harvesting losses that occur during the traditional system of manual grading. Fruit grading which involves categorization is an important step in obtaining high fruit quality and market demand. There are various feature selection challenges in agriculture produced especially fruit grading to build an appropriate machine learning approach to solve the problem of reducing losses. In this paper, we describe different features, a machine learning technique that has been recently applied to different fruit classification problems producing a promising result. We discuss the feature extraction method, technique used in image classification applications for fruit prediction. A proposed multiclass fruit classification model is theoretically described and their most distinguishing features and technique is then presented at the end of this paper. | ||
کلیدواژهها | ||
Fruit Classification؛ Feature Fusion؛ Feature Extraction؛ Multiclass SVM | ||
مراجع | ||
[1] S. Ghazal, W.S. Qureshi, U.S. Khan, J. Iqbal, N. Rashid and M.I. Tiwana, Analysis of visual features and classifiers for fruit classification problem, Comput. Electron. Agricul. 187 2021, 106267. [2] https://www.tradeindia.com/manufacturers/fruit-grading-machine.html accessed on 31-07-2021. [3] R.S.S. Kumari and V. Gomathy, Fruit classification using statistical features in svm classifier, 4th Int. Conf. Electric. Energy Syst. IEEE, 2018, p. 526–529. [4] S. Fatima and M. Seshashayee, Healthy fruits image label categorization through color shape and texture features based on machine learning algorithm, Int. J. Innov. Technol. Explor. Eng. 9 (2020), no. 3, 34–40. [5] A. Bhargava and A. Bansal, Automatic detection and grading of multiple fruits by machine learning, =Food Anal. Meth. 13 (2020), no. 3, 751–761. [6] M. Zeeshan, A. Prabhu,C. Arun and N.S. Rani, Fruit classification system using multiclass support vector machine classifier, Int. Conf. Electron. Sustain. Commun. Syst. IEEE, 2020, p. 289–294. [7] S. Fatima and M. Seshashayee, Hybrid color feature image categorization using machine learning, 3rd Int. Conf. Intell. Sustain. Syst., IEEE, 2020, p.687–692. [8] R. Alzu’bi and A. Anushya, E. Hamed, E.A. Al Sha’ar and B.S.A. Vincy, Dates fruits classification using SVM, AIP Conf. Proc., 2018 no. 1, p. 020078. [9] H.A. Wibawa, Snake fruit classification by using histogram of oriented gradient feature and extreme learning machine, 3rd Int. Conf. Inf. Comput. Sci. IEEE, 2019, p. 1–5. [10] E. Rachmawati, I. Supriana and M.L. Khodra, Multiclass fruit classification of RGB-D images using color and texture feature, Int. Conf. Soft Comput. Intell. Syst. Inf. Technol. Springer, 2015, p. 257–268. [11] M. Oltean, Fruits 360 dataset: New research directions, 2021. [12] S. M. Iqbal, A. Gopal, P.E. Sankaranarayanan and A.B. Nair, Classification of selected citrus fruits based on color using machine vision system, Int. J. Food Propert. 19 (2016), no. 2, 272–288.[13] H. Toylan and H. Kuscu, A real-time apple grading system using multicolor space, Sci. World J. 2014 (2014). [14] C.-J. Du and D.-W. Sun, Comparison of three methods for classification of pizza topping using different colour space transformations, J. Food Engin. 68 (2005), no. 3, 277–287. [15] F. Mendoza and P. Dejmek and J.M. Aguilera, Calibrated color measurements of agricultural foods using image analysis, Postharvest Bio. Technol. 41 (2006), no. 3, 285–295. [16] W. Castro, J. Oblitas, M. De-la-Torre, C. Cotrina, K. Baz´an and H. Avila-George, Classification of cape gooseberry fruit according to its level of ripeness using machine learning techniques and different color spaces, IEEE Access 7 (2019), 27389–27400. [17] D. Chandrakala and S. Sumathi, Image classification based on color and texture features using frbfn network with artificial bee colony optimization algorithm, Int. J. Comput. Appl. 98 (2014), no. 14. [18] A. Nosseir and S.E.A. Ahmed, Automatic classification for fruits’ types and identification of Rotten ones using k-NN and SVM., Int. J. Online Biomed. Engin., 15 (2019), no. 3. [19] M. Shepperd, D. Bowes and T. Hall, Researcher bias: The use of machine learning in software defect prediction, IEEE Trans. Software Engin. 40 (2014), no. 6, 603–616. [20] Z. Wen, B. Li, R. Kotagiri, J. Chen, Y. Chen and R. Zhang, Improving efficiency of SVM k-fold cross-validation by alpha seeding, Thirty-First AAAI Conf. Artific. Intell., 2017. | ||
آمار تعداد مشاهده مقاله: 15,797 تعداد دریافت فایل اصل مقاله: 1,412 |