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Abstract

The purpose of this paper is to construct an algorithm for approximating a common element of the set of solutions of a
finite family of generalized mixed equilibrium problems, the set of f-fixed points of a finite family of f-pseudocontractive
mappings and the set of solutions of a finite family of variational inequality problems for Lipschitz monotone mappings
in real reflexive Banach spaces.
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1 Introduction

Let F be a reflexive real Banach space with its dual E*. Let C be a nonempty, closed and convex subset of F. Let
F :C x C — R be a bifunction, ¢ : C' — R be a real valued function, and B : C' — E* be a nonlinear mapping. The
Generalized Mized Equilibrium Problem (GMEP) (Ceng and Yao [§] ) is to find # € C such that

H(z,y) = F(z,y) + ¢(y) — o(z) + (Br,y — ) > 0,vy € C. (1.1)

The set of solutions of (1.1)) is denoted by GMEP(F, ¢, B). In particular, if ¢ = 0, the problem (1.1)) reduces to the
Generalized Equilibrium problem (GEP) (Mouda and Thera [13]) which is to find « € C such that

H(x,y) := F(z,y) + (Bx,y —z) > 0,Vy € C. (1.2)

The set of solutions of (1.2)) is denoted by GEP(F, B).
If in (1.1, we consider F' = 0, then problem (1.1)) reduces to finding = € C such that

¢(y) — (@) + (Bz,y —z) > 0,Vy € C, (1.3)
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which is called the Mized Variational Inequality of Browder type (MVI) [7]. The set of solutions to (1.3)) is denoted
by MVI(C, B, ).
If F=0and p(y) =0 for all y € C, problem (L.1)) reduces to finding x € C such that

(Bx,y —z) > 0,Vy € C, (1.4)

which is the classical Variational Inequality Problem (VIP). The set of solutions to is denoted by VI(C, B).
If in (1.2)), B = 0, then problem reduces to the Equilibrium problem (EP) (Blum and Oettli [3]) which is to find
z € C such that

F(z,y) >0,Vy € C. (1.5)

The set of solutions to is denoted by EP(F).

We say that a bi-function F' satisfies “Condition A” if the following four properties hold:
(Al) F(z,z) =0,Yx € C,

(A2) F is monotone, i.e., F(z,y) + F(y,z) < 0,Vz,y € C,

(A3) limyyo F(tz+ (1 —t)z,y) < F(z,y),Vz,y,z € C;

(A4) for each x € C,y — F(x,y) is convex and lower semicontinuous.

Some of the applications of the equilibrium problem are given below.
Optimization: Let ¢ : C — R be a convex and lower semi-continuous function. The minimization problem is to find
x* € C such that

(") < ¢(y),Vy € C. (1.6)

Setting F'(z,y) = ¢(y) — ¢(x), problem coincides with (L.5).
Saddle Point Problem: Let ¢ : C; x Cy — R. Then a* = (2}, 23) is called a saddle point of the function ¢ if and only
if for «* = (7, z3),

o(x1,y2) < o(y1,23),Y(y1,92) € C1 x Ca. (1.7)

If C:=C) xCs,and F : C x C' — R is defined by

F((z1,22), (Y1,92)) = @(y1, 22) — (1, 92),

then z* = (zf, 23) is a solution of (1.5) if and only if z* = (z7, x}) satisfies (|1.7).
Nash Equilibrium in Non-cooperative Games: Let I be a finite set of players and let C; be a strategy set of the it"

player, for each ¢ € I. Let f; : C := HC’Z- — R be a loss function of the i*” player depending on the strategies of
i€l

all players, for all i € I. For x = (2;)cr € C, we find x_; = (2;);er)j»- The point 2* = (2*);es € C is called Nash

Equilibrium if for ¢ € I, the following holds:

fil@™) < fil@Z;,9:), Vyi € Gy, (1.8)

(that is, no player can reduce his loss by varying his strategy alone). If F': C' x C' — R is given by

F(x7y) = Z(fl($—uyz) - fl(‘x))7
il
then z* € C is a Nash equilibrium if and only if * satisfies (|1.5).

Let f: E — (—00,+0c0] be a proper, lower semi-continuous and convex function. We denote the domain of f by
domf ={x € E: f(z) < oo}. The subdifferential of f at x is the convex set given by

of(z) ={z" € E": f(y) — f(z) = (y —z,27) ,Vy € E}.
The Fenchel conjugate of f is a function f* : E* — (—o00, +00], defined by
fr(@") = sup{(z,2") — f(z) : 2 € E}.
A function f : E — (—o00,400] is called strongly coercive if

flz) _

lzl—+oo [z[
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For any x € int(domf) and any y € E, we denote by f°(x,y) the right-hand derivative of f at z in the direction of y,
that is,

The function f is called Gateauz differentiable at x if lim,_,o+ w exists for any y € E. In this case, the
gradient of f at z, Vf(x), coincides with fO(x,y) for all y € E. It is called Gateaur differentiable if it is Gateaux
differentiable at every point x € int(domf). We note that if the subdifferential of f is single-valued, then df = Vf.
The function f : E — R is called uniformly convex if there exists a continuous increasing function g : [0, +00) — R,
g(0) = 0, such that

[z + (1 =t)y) <tf(z) + 1 =1)f(y) —t(1 = t)g(lz —yl), (1.9)
for all x,y € domf. The function g is called a modulus of convexity of f. If f is a uniformly convex and Gateaux
differentiable function in dom f with modulus of convexity g, then (x —y, V f(z) =V f(y)) > 29(||lx —y||), Y,y € domf,
or equivalently, f(y) > f(x)+ (y — =, Vf(z)) +g(||lz —y||), Vx,y € domf. The functional f is called strongly convez if
f is uniformly convex with the modulus of convexity g(t) = ct?, ¢ > 0. If a function f is strongly convex with constant
u > 0 and Gateaux differentiable in (domf), then (x —y, Vf(z) — Vf(y)) > pullx — y||?,Vz,y € domf, or equivalently,
fly) > f(x)+ (y — 2, V() + §llz — yl|?,Vo,y € domf. If E is a smooth and strictly convex Banach space, the
function f(z) = ||z||?,Vz € E is strongly convex with constant p € (0,1] (see, Phelps [15]).

A mapping A : D(A) C E — E*, is said to be monotone if for each z,y € D(A), the following inequality holds:
(x —y, Az — Ay) > 0. (1.10)

A mapping A : D(A) C E — E*, is said to be y-inverse strongly monotone if there exists a positive real number
such that

(x —y, Az — Ay) > || Az — Ay|]%. (L11)
If A is v-inverse strongly monotone, then it is Lipschitz continuous with constant %, that is,
|Az — Ayl < %Hx —y||,Vz,y € D(A), and hence uniformly continuous.

Closely related to the class of monotone mappings is the class type of f-pseudocontractive mappings.

A mapping T : E — E*, is said to be f-pseudocontractive mapping (see, Zegeye and Wega [25]) if for each x,y € E,
we have

=y, T(z) =T(y) < {z -y, Vf(x) = VI(y)). (1.12)
A mapping T is said to be ~-strictly f-pseudocontractive if for all z,y € C, there exists v > 0 such that
(z—y,T(x) = T(y)) < (x—y,VI(z) = Vi) —I(VI(@) = V) - (Tz—Ty)|* (1.13)

The f-fized point problem with respect to T is to find a point p € C such that Tp = V f(p). The set of f-fixed points
of T is denoted by Fy(T), that is, Fy(T) ={p € C:Tp=Vf(p)}. A mapping T is said to be semi-pseudocontractive
if (v —y,T(x)—T(y)) < {x—y,J(x)— J(y)), Yo,y € E. We remark that if E is smooth and strictly convex and
flx) = % |z||? for all z € E, then Vf = .J, where J is the normalized duality mapping from E into 2¥"| and the
notion of f-pseudocontractive mapping reduces to the notion of semi-pseudocontractive mapping and f-fixed point of
T reduces to semi-fixed point of T'. If, in addition, E = H, a real Hilbert space, then f-pseudocontractive mapping
becomes pseudocontractive mapping. The mapping T is f-pseudocontractive if and only if A = V f — T is monotone
and T is strictly f-pseudocontractive if and only if A = V f — T is y-inverse strongly monotone. In this case, the zero
of A corresponds to f-fixed point of T'. In fact, if T" and V f are continuous on E then A is maximal monotone and
the set of zeros of A and hence the set of f-fixed points of an f-pseudocontractive mapping T is closed and convex (
see, Zegeye and Wega [25]).

The above formulation of fixed point problem was treated as equilibrium problem as follows.
Fized Point Problem: Let T : E — E be a given mapping. If F(x,y) = (x — T(z),y — z), Va,y € E, then p is a
solution of (L.5)) if and only if it is a fixed point of T

A method for solving the fixed point problem of pseudocontractive mapping with the use of the resolvent mapping
was introduced by Zegeye [24] in Hilbert spaces. Let f be a self contraction on C, and let {2, } be a sequence generated
by z1 € C and

Tpy1 = anf(x) + (1 —a,) KK, (1.14)

where {an,} C [0,1] with limy, o0 an =0, 307 1 o = 00,207 |ag1 — | < 00, Kt and K> with {r,,} C (0, 00),
liminf, oo 0 > 0, Y07 [Pyt —7n| < cowhere Kz = {2 € C: (y— 2,Tiz)— = (y — z,(1 + my)z — ) < 0,Vy € C},
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where T;’s, i = 1,2, are continuous pseudocontractive mappings. He proved that if F = ﬂ?zl Fiz(T;) # 0, then the
sequence {z,} converges strongly to z = IIxf(z).
Recently, several authors have proposed algorithms for approximating a common solution of a variational inequality,

an equilibrium problem, and semi-fixed points of a continuous semi-pseudocontractive mapping in the framework of
Hilbert spaces and Banach spaces (see, [9, [11]).

In 2019, Shahzad and Zegeye [2I] proved the following convergence theorem for a common solution of fixed point,
equilibrium and variational inequality problems in Hilbert spaces.

Theorem 1.1. Let C be a nonempty closed and convex subset of a real Hilbert space H. Let A : C — H be a
Lipschitz monotone mapping with Lipschitz constant L > 0, F': C' x C' = R be a bi-functional satisfying Condition
A, and T : C — H be a continuous pseudocontractive mapping with F := F(T)VI(A,C)(EP(F) # §. Let the
sequence {z,} be generated by

u,xg € C,
zn = Po(x, — Auzy,), (1.15)
Tnt1 = ant+ (1 — o) (Byn + (1 = B)uy),

where P¢ is the metric projection from H onto C, y,, = KZ ) Tf; T, with TTI:: ~and K;q‘n ~ as the resolvent mappings for I’
and T, respectively, {r,} C [a,00), for some a > 0, u, = Pc(x,, — Az,), A € [a,b] C (0, 1) and {a,,} C (0,¢] C (0,1)
with lim,, e @, =0 and 3 o, = 0o0. Then, the sequence {x, } converges strongly to a point Pru.

In 2019, Khonchaliew et al. [I0] studied two shrinking extragradient algorithms for finding a common solution set of
equilibrium problems for a finite family of pseudomonotone bifunctions and set of fixed points of quasinonexpansive
mappings in real Hilbert spaces.

In 2020, Nnakwe and Okeke [I4] constructed a new Halpern-type iterative algorithm and proved the following
result in uniformly smooth and uniformly convex real Banach spaces. Let B; : C' — E*, i = 1,2 be a continuous and
monotone mappings, F; : C x C' — R, i = 1,2 be a bi-functionals satisfying Condition A, and T; : C' — E*, i =1,2
be a continuous semi-pseudocontractive mappings with F := ﬂ?zl (Fs(T;) YGEP(F;, B;)) # 0. Let the sequence
{z,} be generated by

xr1 € C,
f = T T, (1.16)
Tng1 =J oz + (1 — o) JKP K 22,]),Vn > 1,

Tn
where T,.ﬁn i and Kg; are the resolvent mappings for H; and T}, i = 1,2, respectively, and {a,} C (0,1) with
lim,, 00 @, = 0 and > a, = 0o. Then, the sequence {x,} converges strongly to a point IIrx;.
In 2021, Bello and Nnakwe [2] studied a new Halpern-type subgradient extragradient iterative algorithm and proved
strong convergence in a uniformly smooth and 2-uniformly convex real Banach space. Let A : C' — E* be a Lipschitz
monotone mapping with Lipschitz constant L > 0, F : C' x C' — R be a bi-functional satisfying Condition A, and

T : C — E* be a continuous semi-pseudocontractive mapping with F := F,(T)(VI(C,A)(\EP(F) # 0. Let the
sequence {z,} be generated by

xo € C,

2 = o J Y (Jx, — NAzy,),
T,={we€E:(w—z,,Jor, — Nz, — Jz,) <0},
Tni1 = J HanJzo + (1 — o) [BJvn + (1 = B)Jwy)),

(1.17)

where v,, = TTI“:L K;‘Fn Ty, With Tf; and Krsn are the resolvent mappings of F' and T, respectively, {r,} C [a, o), for some
a>0, w, =g, J ' (Jon, — Az,), A € (0,1) with A < £ and {a,,} C (0,1) with lim, o @ = 0 and > @y, = oo.
Then, the sequence {x,} converges strongly to a point ITrzg.

Motivated and inspired by the above results, it is our purpose in this paper to propose an algorithm for approx-
imating a common element of the set of solutions of a finite family of generalized mixed equilibrium problems, the
set of f-fixed points of a finite family of f-pseudocontractive mappings and the set of solutions of a finite family of
variational inequality problems for Lipschitz monotone mappings in real reflexive Banach spaces.



Convergence Theorem 1073

2 Preliminaries

Let f: E — (—00,+00]| be a Gateaux differentiable convex function. The function D : domf x int(domf) —
[0, +00), defined by
Dy(y,x) = f(y) = f(x) = {y — 2,V [(2)),Vr,y € E. (2.1)
is called the Bregman distance with respect to f (see, Bregman [5]).
The Bregman distance has the following two important properties (see, Reich and Sabach [16]), called the three-point
identity: for any x € domf and y, z € int(domf),

Dy(x,y) + Dy(y,2) = Dy(w,2) = {x =y, Vf(2) = V(y)), (2.2)

and the four-point identity: for any y,w € domf and z,z € int(domf),

Df(y,l‘) _Df(yaz) —Df(w,x)+Df(w,z) = (y—w,Vf(z) —Vf(l‘» (23)

Let f: E — (—o00,+00] be a Gateaux differentiable convex function. The function vy : int(domf) x RT — R defined
by

t) = inf D : —yll =t
vi(e.)= _int {(Dy(a.a): o~y =1}

is called the Modulus of total convezity of f at x € int(domf) and f is called totally convez if
vi(z,t) >0, for all (z,t) € int(domf) x RT.

We remark that f is totally convex on bounded subsets of E if and only if f is uniformly convex on bounded subsets
of E (see, Butnariu and Resmerita [6], Theorem 2.10, Page 9).
The Bregman projection of = € int(domf) onto the nonempty, closed and convex set C' C domf is the unique vector
Pé(x) € C satisfying

Dy(PL(x),x) = inf{Ds(y,2) : y € C}.

If E is a smooth and strictly convex Banach space and f(z) = 1||z||? for all z € E, then we have that V f = J, where

J is the normalized duality mapping from E into 22" and the Bregman distance with respect to f, D , reduces to the
Lyapunov functional ¢ : E x E — [0, +00) defined by

¢y, x) = yll* — 2y, Jx) + |l2|*, Va,y € E. (2.4)
The function f is called Legendre if it satisfies the following two properties:

(L1) the interior of the domain of f, int(domf), is nonempty, f is Gateaux differentiable and dom(V f) = int(dom f);

(L2) the interior of the domain of f*, int(domf*), is nonempty, f* is Gateaux differentiable and dom(V f*) =
int(domf*);

Since E is reflexive, (9f)~! = df*. This, with (L1) and (L2), imply the following equalities:
Vf=(Vf) L R(VS)=dom(Vf*) = int(domf*),
and
R(Vf*) = dom(V f) = int(domf),
where R(V f) denotes the range of Vf.

If a function f : E — (—o00, +00] is a Legendre function and E is a reflexive Banach space, then V f* = (V f)~!(see,
Bonnans and Shapiro [4]).

One of the important and interesting Legendre function in a smooth and strictly convex Banach space is f(z) =

%Hx”p (1 < p < o0) with its conjugate function f*(z) = %Hx”q (1 < g < o0) (see, for example, Bauschke et al. [1] ),

where % + % = 1. In this case, the gradient of f, V f, coincides with the generalized duality mapping, J,, of E; that
is, Vf = J,, where J, : E — 2F" is defined by

Tp(@) ={y" € B* : (w,y") = |l«|”, | /]| = ="~} Yz € E.
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If p = 2, we write Jo = J, called the normalized duality mapping and if E = H, a real Hilbert space, then J = I,
where I is the identity mapping on H.
Let f: E — R be a Legendre function. We make use of the function Vy : E x E* — R defined by

Vi(z,2*) = f(z) — (x,2") + f*(«), for all z € E and 2™ € E”.
We note that V is a nonnegative function which satisfies (see, Senakka and Cholamjiak [20])
Vi(z,2*) = Dy(x,Vf*(z*)) for all z € E and =™ € E*, (2.5)

and
Vi(x,z*) +(Vf*(z") —z,y") < Vi(z, 2" +y*), for all 2 € E and 2™, y" € E*. (2.6)

Lemma 2.1. (Phelps [15]) If f : E — (—o00,400] is a proper, lower semi-continuous and convex function, then
f*: E* = (—o00,+00] is a proper, weak* lower semi-continuous and convex function and for any x € E, {yk}ﬁzl CFE
and {c;}N_, C (0,1) with Zszl ¢, = 1 the following holds:

N N
Dy (x,Vf* (chVf(yk )) Z ceDy(z,yr). (2.7)
k=1

k=1

Lemma 2.2. (Reich and Sabach [I7]) If f : E — R is uniformly Fréchet differentiable and bounded on bounded
subsets of E, then V f is norm-to-norm uniformly continuous on bounded subsets of E' and hence both f and V f are
bounded on bounded subsets of F.

Lemma 2.3. (Bunariu and Resmerita [6]) Let f : E — R be a totally convex and Géteaux differentiable function,

and x € FE. Let C be a nonempty, closed and convex subset of E. The Bregman projection Pg. from E onto C has
the following properties:

(i) z= Pé(x) if and only if (y — 2, Vf(z) — Vf(2)) <0, Vy € C;
(i) Ds(y, PL(x)) + Dy(Pl(x),x) < Ds(y,x), Vy € C.

Lemma 2.4. (Reich and Sabach [I8]) Let f : E — R be a Géteaux differentiable and totally convex function. If
x € E and the sequence {D¢(z,,x)} is bounded, then the sequence {z,} is also bounded.

Lemma 2.5. (Reich and Sabach [I§]) Let f : E — R be a Gateaux differentiable function which is uniformly convex
on bounded subsets of E. Let {x,} and {y,} be bounded sequences in E. Then, the following assertions are equivalent:

(i) lim D¢(zp,yn) =0;

n—oo

(i) lim fzn =yl =0

Lemma 2.6. (Wega and Zegeye [23]) Let f be a strongly convex function with constant x> 0. Then, for all y € dom f
and z € int(domf),

Dy(y,x) 2 Sl — P,
where Dy (y, ) is a Bregman distance with respect to f.
Lemma 2.7 (Darvish [9]). Let f : E — (—o00,+00] be a coercive and Géteaux differentiable function. Let C be a
closed and convex subset of a real reflexive Banach space E. Assume that B : C — E* is a continuous and monotone

mapping, ¢ : C — R is a lower semi-continuous and convex function and let F': C'x C' — R be a bi-function satisfying
Condition A. For r > 0 and « € E, define a mapping T{I’T : E — C as follows:

THw = {2 € Ot Hizy) + % Wy — 2 Vf(z) - V(z)) > 0,¥y € C}, (2.8)

where H(z,y) := F(z,y) + ¢(y) — ¢(2) + (y — 2, Bz). Then, T}" () # 0, and the following hold:
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(1) Tf " is single-valued;

2) F (Tf ") = GMEP(F, , B);

(3) MEP(F7 ©, B) is closed and convex;
(4) T

(5)

G
" is quasi-Bregman nonexpansive;
Df(p,Tf7 x) + Dy (T x,x) < Ds(p,x),¥p € F(TLT).

Lemma 2.8. Let f : E — (—00,+00] be a coercive and Gateaux differentiable function. Let E* be the dual space
of a real reflexive Banach space E and C be a closed and convex subset E. Let T : C — E* be a continuous
f-pseudocontractive mapping. For » > 0 and = € F, define a mapping K{JT : E— C as follows:

K"z ={2€C:(y—2T(z)) - % (y—2z,(14+nr)Vf(z)—Vf(x) <0,Vy e C}. (2.9)

Then, Kf’r(x) # (), and the following hold:

(1) Ky " is single-valued;

2) F (Kf’ ) = F5(T)

(3) F ( ) is closed and convex;

(4) K5" is quasi-Bregman nonexpansive;

() Dyp. KE"2) + Dy (Kf72,2) < Dy(p.2).¥p € PUKET).

Proof. Let B := Vf—T. Then, B is monotone and continuous. Putting F' =0 and ¢ = 0 in Lemma[2.7] Then, there
exists z € C such that

(y—2B)) + -y — 2, V() - V() > 0,y € C.
Equivalently,
(v~ 2 T() — -y~ 2 (1 + V() ~ V() <0 Wy € C.
Furthermore, applying Lemma we get the results (1)-(5) of Lemma[2.8] This completes the proof.

Lemma 2.9. (Xu [22] ) Let {a,} be a sequence of nonnegative real numbers satisfying the following relation:

ant+1 < (1 —ay)an + apby,n > ng,

where {a,} C (0,1) and {b,} C R satisfying the following conditions: Z oy, = 00, and hm supb <0, or Z lanbn| <

n=1 n=1

0o. Then lim a, = 0.
n—oo

Lemma 2.10. (Maingé [12]) Suppose {s,} is a sequence of real numbers such that there exists a subsequence {s;} of
{n} such that s,, < s,,41 for all i € N. Let the sequence of {my} be defined by mj, = max{j < k:s; < s;41}. Then,
{my} is a nondecreasing sequence satisfying mj — oo as k — oo and the following properties hold:

mi S Smp+1 and Sk S Smp+1,
for all £ > Ny, for some Ny > 0.
Lemma 2.11. (Rockafellar [19]) Let C' be a nonempty, closed and convex subset of a real Banach space E and let A

be a monotone and hemicontinuous mapping from C into E* with C' = D(A). Let B : E — 2" be a mapping defined
as follows:

0 ifvéeC,

where Ng(v) :== {w € E* : (v—wu,w) > 0,Yu € C} is called the normal cone to C at v € C. Then B is maximal
monotone and B~1(0) = VI(A, C).

Bv:{ Av+ Nev ifv e C,
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3 Main Results

The following assumptions will be used in the sequel.
Assumption 3.1.

Let C' be a nonempty, closed and convex subset of a reflexive real Banach space F with its dual E*;
Let T; : E— E*,i=1,2,--- , N be continuous f-pseudocontractive mappings;
Let By : C — E*, t=1,2,--- , M be continuous monotone mappings;

(B1)
(B2)
(B3)
(B4) Let F; : CxC —> R, t=1,2,--- , M be bi-functionals satisfying Condition A;
(B5)
(B6)
(B7)

B5) Let ¢ : C - R, t =1,2,--- , M be real valued functions;
B6) Let A; : C' — E* be Lipschitz monotone mappings with Lipschitz constants L;, for j =0,1,2,..., K.
B7) Let the common set of solutions, denoted by F, be nonempty, that is
N K M
Fi= | Fy(T, (VVIC Aj)| 0 |[)GMEP(Fi,¢:,By)| # 0.
i=1 j=0 t=1

(C1) Let f be a strongly coercive, bounded and uniformly Fréchet differentiable Legendre function which is strongly
convex with constant g > 0 on bounded subsets of E.

Let {z,} be the sequence generated by the iterative scheme:

u,xg € C,

Zn = PéVf*(Vf(wn) — M Anty),

dn = Pg'vf*(vf(xn - )‘nAnzn)a

o = T T oo T o T,

on = K o KJ 0o Ky o K,

Tni1 = VI (anVf(u) + 0.V f(20) + BV f(dn) + 7V f(vn)),

where A, = A, mod (k+1) and Vf is the gradient of f on E; {r,} C [c1,00) for some ¢; > 0, o, 0p, Bny Yo € (0,1),
Vn > 0 such that a,, + 6, + 8, + 7 = 1, hm o, = 0 with Z _1a, =00 and By, € [c,1) for some ¢ > 0, and

_ pf * o < < m _ )
dp = PLVf*(Vf(zn — AAnzn), 0 <a < )\n < b < &, for L = orgn%)% L;.

Lemma 3.1. Assume that Conditions (B1) — (B7), and (C1) hold. Then, the sequence {z,} generated by is
bounded.

Proof. Let ag = by = I, where I is the identity mapping on F, a; = K{{" oK%i”l o-- ~oK{{" oK{JIT" fori=1,2,...,N
and , by = T{I’:" o Tgffl o0---0 Tffl’;” o TI{CI’:” fort =1,2,...,M. Let p € F. Then, by Lemma and we get

)

Di(p,un) < Di(p,by—1(zn)) = Dy (un,bar—1(zn))
< Dy(p,byr—2(xn)) — Dy(bar—1(xn), bar—2(x0n)) — Dy (un, bar—1(2n)),

and, by induction we obtain

M—-1
Df(paun) < Df b, :L'n Z Df bt+1 fL'n bt(xn)) (32)
t=0

Similarly,
N-1

Dy(p.va) < Dy(pown) = 3 Dylares (uwn).ar(un). (3.3)
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Thus, from (3.2)), (3-3) and Lemma [2.6] we obtain

N-1
D¢(p,vn) < Dy(p,an) — Z Dy(bit1(xn), be(zn)) Z Dy(ai11(un), ai(un))
=0

0
I
) <Z [be41 () = be(n) || + Z llaiv1(un) — ai(u n)||2>

IA
S
5

8

:

< Df(p7 xn)

Let w, = Vf*(Vf(xn) — MpAnz,). By Lemma and the fact that A, < %, we get

Dy(p,dn) = Dy(p, Plwn) < Dy(p,wn) — Dy(dn, wy)
= 1) — f(wn) — (p— wn, V(wy)) = [f(dn) — f(wn) = {dn — wy, Vf(wn))]
= f(p) = (p— du, V. (wn)) — f(dy)
= f(p) <p dmvf(xn) AnAnzn>_ (dn)
= f(p) = (p—dn,V(xn) + (P — dn, \nAn2zn) — f(dn)
= ()~ (p— 20, VI(20)) — f(2n) = [f(dn) = (dn — 20, Vf(@n)) — f(20)]

+(p—dn, \pAnzn)
= Dy(p,azn) — Di(dn,zn) + (p — dn, A Anzn)
— Dy(dp,n) + (P — 2ns M Anzn) + (zn — dn, A Anzn)
- Df(dna Tn) + A (D — 2Zn, Anzn — Anp)
+An (P — 2n, Anp) + (2n — din, A Anzn)
Dy(p, @) — Dy(dn,n) + (20 — dy AnAn2n) -

Il

>

<
o~ o~

=

8

S
— — —

IN

Now, from (2.2)), we obtain
Df(dmxn) = Df(dna Zn) + Df(zmxn) +(dn = 20, Vf(2n) = V().
Thus, from (3.6)), (3.7) and Lemma we get

Df(p7 dn)

A IN

U
> Df(pa Tp) — 9 [”dn - Zn||2 + [|zn — ZnHz}
+ <Zn - dny AnAnZn + Vf(Zn) - Vf(ﬂfn» .

Using the fact that A; is Lipschitz monotone for i = 0,1,2,..., K and Lemma [2.3] we have that

(zn — dpy M Anzn + Vf(zn) = V(zn) = (dn— 20, MAnTn — A\Anzy)

+{dp — 2n, V(Tn) — MAnzn — Vf(2,))
An (dy, — 2py AnTn — Anzn)

Alldn — 2o |l An®n — Apzal|

LAn|ldn = zn|[|l2n — 2zl

1

IAIACIA

IA

L, [”dn - Zn||2 + ||z — Zn||2] .

Thus, from (3.8), (3.9) and the fact that A, < &, we get

—_

Dy(p, dn) (1= LAn) [lldn = 20l + ll2n = 2al]

IA

Dg(p,xn) —
Df(p, ZEn)

2

IN

Df(p, xn) - Df(dn7 Zn) - Df(Zn, xn) + <Zn - dna AnAn 2y, + Vf(zn) - Vf(xn»

1077

(3.4)

(3.5)
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By (3.4), (3.10), A, < % and Lemma [2.1} we obtain

Df(p, xn-&-l) = Df(p7 Vf* (ozan(u) + Han(xn) + ﬁnvf(dn) + ’anf(vn)))
aan(p> U) + aan(I% xn) + Ban(pa dn) + ’Yan(]% Un)
anDy(p,u) + (1 = an)Ds(p, an) (3.12)

1
_5/8”(“ - L/\n) [”dn - ZnH2 + Hwn - Zn||2]

IAIA

M—1 N-1
—%% ; 1Be41(2n) = be(aa)|* + ; lai1(un) = ai(un)|®
< anDy(p) + (- a)Dylpan)
< wax{D;(p,u), Dy(p, )} (3.13)
Therefore, by induction, we get
D¢ (p, zp) < max{Dy(p,u), Ds(p,x0)}, for all n > 0. (3.14)

This implies that {D¢(p, z,)} is bounded. Therefore, by Lemma we have, {z,} is bounded and also the sequences
{zn}, {dn}, {un} and {v,} are bounded.

Theorem 3.2. Assume that Conditions (B1) — (B7) and (C1) hold. Then, the sequence {z,} generated by (3.1
converges strongly to p in F which is nearest to u with respect to the Bregman distance.

Proof. Let p = P]f_-u. From , , , and Lemma we obtain

Dy(p,xny1) = Dy(p, V" (anVf(u) + 0,V f(xn) + BV f(dn) + 7V f(vn)))
= Vf(pa anV f(u) + 0,V f(x) + BV f(dn) + 7V f(vn))

< Vf(p, Oéan(p) + envf(xn) + ﬁan(dn) + 'anf(vn))
—a (Tnt1 = p, VI(p) — Vf(u))
= Dy(p, VI (nVf(p) + 0.V f(zn) + BV f(dn) + 7V f(vn)))
—y (Tnt1 —p, V() = VI(u)
< anDs(p,p) + 0nDs(p,n) + BuDy (P dn) + 1Dy (p; vn)
—ap (Tny1 —p, VI(p) = VF(w)
= (1 —an)Ds(p,xn) — %Bn(ﬂ = LAy) [Hdn — zn|* + [l — ZnHQ} (3.15)
M-1 N-1
—’Yn% Z [bt41(2n) — bt(xn>||2 + Z @it (un) — ai(un)||2
t=0 =0
+an (Tnt1 —p, V() = VI(p))
< (1=an)Ds(p,zn) + ay (xn — p, VI (u) — VI(p))
tan (Tpt1 — Tp, VF(u) = VI(p))
< (1 —an)Ds(p,xn) + an (zn — p, V(u) — VF(p)) (3.16)

tanl[tnt — 2 [V (w) = Vi)

Now, we divide the rest of the proof into two parts as follows.
Case 1. Assume that there exists ng € N such that {D¢(p,z,)} is decreasing for all n > ng. It then follows that
{Ds(p,xn)} is convergent and hence Dy(p, zn) — Ds(p,2n+1) — 0 as n — oo. Thus, from and the conditions
on &y, Bn, Yn, and \,, we get

lim ||dn — 2n||? + |20 — 20> = 0, (3.17)
n— oo
and
M—1 N-1
lim | > b1 (@a) = be(@a)lIP + Y Naiva (un) = aiun)[?| =0, (3.18)

n—00
t=0 =0
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which imply

lim ||d,, — z,|| = lim ||z, — 2z,| =0, and hence, lim ||z, —d,| =0, (3.19)
n—oo n—oo n—oo
1i_>m [bt41(zn) — be(zn)]| =0, 0<t< M—1, and hence, li_>m llun — 20| =0, (3.20)
and
lim |laj+1(un) —ai(un)|| =0, 0<i<N —1, and hence, lim [jv, —u,| = 0. (3.21)
n—oo n—oo
Now,
IVf(@ni1) = V)l = (anVF(u) + 0.V (@n) + BuV f(dn) + 70V f(vn)) = V()]
< | VI(w) = V@)l + BullV(dn) = V() (3.22)

IV f(vn) = V()

and from (3.19), (3.20), (3.21)), the fact that o, — 0 as n — oo and uniform continuity of V f, we get ||V f(@nt1) —
Vf(x,)|| = 0 as n — oo. Moreover, the uniform continuity of V f* implies that

lm ||@nr1 — 2,] = 0. (3.23)

n—oo

Now, for j =0,1,..., K, we have

n+j—1
ldnts = @all < ldnty = @agsll + Y ze — . (3.24)
l=n
Then, from (3.19)), (3.23) and (3.24)), we obtain that
ILm ldnt; —xn| =0, for j=0,1,..., K. (3.25)

Since {z,} is bounded in E, there exists ¢ € FE and a subsequence {zy,} of {z,} such that z,, — ¢ and

limsup (z, = p, V() = V() = lim (@, = p. VS () = V() (320)

n—oo

Then, from (3.20), (3.21) and (3.25), we have that b.(z,,) — ¢, ai(un,) = ¢, dn,4; — g for t € {1,2,..., M},
i€{1,2,...,N}and j € {1,2,..., K}. Now, we show that ¢ € F.
K

Step 1. First we show that ¢ € ﬂ VI(C,A)).
§=0
bet A ifvedC
o jv+ Ngv, ifved,
Biv= { 0 ifv¢C,
where N¢ is the normal cone to C at v € C given by No = {w € E* : (v—x,w) > 0,Vz € C}. Then, by Lemma
, B, is maximal monotone and Bj_l(()) = VI(C,Aj). Let w € Bjv. Then, we have w € A;v + Ncv and hence
w — Ajv € Ncv. Thus, we obtain that
(v—a,w—Ajv) >0,Vr e C. (3.27)
Let {ns + j},s > 1 be such that A, y; = A; for all s € N where j = 0,1,2,...,K. Then, since d, 4; =
PéVf*(Vf(mnsﬂ') — AnotjAjZn,+5), and v € C, we have

<”U - dns—O—ja Vf(dns-&-j) - (vf(xns+j) - )‘ns+jAjZn,g+j)> > Oa

and so

<v S Vf(dns+j) - vf(wnerj)

+ Ajzn5+j> > 0. (328)
/\ns+j
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From ([3.27), (3.28) and A; is monotone mapping, we get that

(v —dn,jw) > (v—dnp,1j, Ajv)

Vf dns )=V f Lng+j
> <v—dns+j,AjU>—<v—dns+j, ( H/i " (n.s) +Ajzns+j>
NsTJ

= (v —dn, 45, Ajv — Ajdy y5) + (v —dn ), Ajdn,+j — Ajzn,+5)
_< g V) = Vf<wns+j>>
v ns+35»

Angtj

Vf dnS j _vf Tng+j
2 <v_dns+j7Ajdns+j_Ajzns+j>_<v_dn5+j7 (G +5) ( +j)>

/\ns+j
Vf dnS i _vf Tn,+j
2 <U — dns+jaAjdnS+j - AjZnerj) - ||’U — dnSJer || ( l+]))\ » ( +])H
ns+j
Vf(dn,+5) — Vf(Tn,+;
> (v —dp4j, Ajdn, 15 — Ajzn,4j) ~ plI¥AL '+J))\ » ( ‘ﬂ)”, (3.29)
ns+7

where R = [ax sup lv — dn,+;||. Taking limits on both sides of the inequality (3.29) as s — oo and using the fact
=] 5>0

that A\, > a >0, for all n > 0, Vf is uniformly continuous, and (3.19), we get that (v — ¢, w) > 0 as s — oo for each
K

J. Therefore, the maximality of B; gives that ¢ € Bj_l(O) = VI(C, A;) for each j. Therefore, g € ﬂ VI(C,Aj).

§=0
Step 2. We show that ¢ € ﬁ Fy(T)). Let a;(un,) = K3 a;_1(uy,). By Lemma (2), we get that
j=1
(= 40, ). Tua,)) = 2 (= 0 ). (1 1)V ) = ¥ fics () < 0.5y € C.
Since C is convex, yy = Ay + (1 — \)g € C, where A € [0,1] and y € C. Thus,
(@i(un,) =y, Tiyx) > (ai(un,) — yx, Tiya) + (Yn — ai(un, ), Tiai(un, ))
o (i), () T @i )) = V@i (un, )
= (ai(tn,) — v T — Toas(un,))
g = s ) (14 70V S0, )) = @i ()
> (ai(un,) — 90 VF() — VF(@i(un,)))
o (= (), () V@i )) = V@i (un,))
= (ai(un.) — y2, V()
o (g a3, ), VI @) = Va1 (wn,)
> (ailun,) — 2 VI (2)
s o T 0i02)) = S
> (ai(n,) — 2 VF(ya) (3.30)
IV @i,) ~ Vfaa(un,)

)
Tn

s

where W = max sup llyx — a;(uy,)||. From the facts that a;(u,,) — ¢, Vf is uniformly continuous, (3.21), r, > ¢1,
SISV >0

for all n > 0 and taking the limits on both sides of the inequality (3.30) as s — 0o, we obtain that

(@—ynTiya) = (@ —yn, VI(yn) - (3.31)



Convergence Theorem 1081

Thus, from inequality (3.31]), we obtain

(a—vy,Tilg+ My —q)) > {a—yVflg+ANy—q) Yy € L. (3.32)

Using the fact that 7T; is continuous and V f is uniformly continuous on bounded subset of E and letting A | 0 , we
have from inequality (3.32) that

(¢—v.Ti0) > (¢~ y,VI(0),Vy€C 0> (q-y,Vf(qg) —Tig),Vy € E. (3.33)
Now, set y = Vf*(T;q). Since FE is reflexive and V f* is monotone, we get that
(¢ = V[ (Tig), Vf(a) — Tig) = 0, (3.34)

N
which implies that T;¢g = V f(q). Hence ¢ € F¢(T;), for each ¢ =1,2,...,N and ¢ € ﬂ Fi(Ty).

i1
Step 3. We show that ¢ € (Aﬁ GMEP(F,, 1, By).
-
Set by(z,.) = ng"sbt_l(xnz). Then,
Hb(0):9) + = (0 = bl ). VB, )) = Vb (2,)) 2 0.y € C:
Thus, by Condition (A2), we have S
H b)) S ~FulbuCon,)y) S = Gy = b, ), Vb, ) = V(b1 ()
byt L) Vs,
PV - Vil .

Tn

s

where P =  max sup lly — be(xn,)|l. From the facts that b (z,,) — ¢, Condition A (A4), r, > ¢, for all n > 0 and
St s>0
taking limits on both sides of the inequality (3.35) as s — co, we obtain that
Hi(y,q) <0,Vy € C. (3.36)

Set yx = Ay + (1 — Mg, A € (0,1] and y € C. Consequently, we get y) € C. From (3.36) and Condition A (A1), we
obtain

0 = Hi(yx,yn) < AHe(ya,y) + (1 = N Hi(ya, ) (3.37)
< Hi(g+MNg—9),9)-

If A ] 0, using Condition A (A3), we have

M
Hence, g € GMEP(F}, o1, By), for each t =1,2,...... , M. Therefore, q € ﬂ GMEP(F, ¢, By).
t=1
Finally, we show that {x,} converge strongly to the point p.
From ([3.26) and Lemma we obtain that
limsup (z,, — p, Vf(u) —Vf(p)) = lim (z,, —p,Vf(u)—Vf(p)) (3.38)

n— o0 §—00

= (¢—p,Vf(u)=Vf(p) <0.

Thus, using (3.16), (3.23), (3.38) and Lemma we conclude that

lim D¢(p,z,) =0.

n—oo
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Hence, Lemma [2.5] implies that =, — p as n — oo.

Case 2. Suppose that there exists {ns} of {n} such that Ds(p,zn,) < Ds(p, Zn,+1), for all s > 0. It follows from
Lemma that there exists a nondecreasing sequence{ks} C N such that ks — oo as s — oo and

maX{Df(pvxks)va(paxS)} < Df(p’xks+1)v (3'39)

for all s > 0. Thus, from (3.15)) and the conditions on «,, B, Vn, and A,, we get

ILm ||d1€s — 2k, 2y ||$ks — 2k, 2= 0, (3.40)
and
M-1 N-1
Jan | 2 Moera(o) = b )l + 2 Naira(ur,) = aica ()P =0 (3.41)
t= i=
Then
lim ||dg, — 2x. ]| = lim ||z, — 2k, || = 0 and hence lim ||z, — dg_ || =0, (3.42)
§— 00 S§—00 §— 00
tim b (a,) — bi(ew) =0, 0 << M1, lim flug, @, =0, (3.43)
and
ILm lai(uk,) —ai—1(ux,)]| =0, 0<i<N-—1, lim lvg, — uk. || = 0. (3.44)
Moreover, following the methods used in Case 1, we get
limsup (x4, — p, Vf(u) — VI(0) < 0. (3.45)
S§—00
Therefore, from (3.16)), (3-23), (3.47) and Lemma [2.9} we obtain that
Slggo D¢ (p,zi,) = 0. (3.46)
This together with (3.16]) imply that
lim D¢(p,xp,41) =0. (3.47)

Thus, from (3.39), and (3.47)) we have that

Slggo Dy(p,xzs) = 0.
This together with Lemma [2.5| imply that s — p as s — oo. Therefore, from Case 1 and Case 2, we can conclude
that {z,} converges strongly to the point p in F. The proof is complete.

We note that the method of proof of Theorem [3.2] provides the following theorem for approximating a common
solution of f-fixed point, variational inequality and generalized mixed equilibrium problems in real Banach spaces.

Theorem 3.3. Assume that Conditions (B1) — (B7) and (C1) are satisfied with N = K = M = 1. Then, the
sequence {x,} generated by (3.1) with N = K = M = 1 converges strongly to p in F which is nearest to u with
respect to the Bregman distance.

If, in Theorem we assume that A; =0, for j =0,1,2,..., K, then Theorem provides the following corollary.

Corollary 3.4. Assume that Conditions (B1) — (B5), and (C1) hold.
Let F := {ﬂfil Ff(Ti)} n {ﬂi\il GMEP(F, ¢, Bt)] # (. Let {z,} be a sequence generated from arbitrary ug,zg € C
by
Uy, = TIJ;]’C;L o TI]—}LH,I 0--+0 T[J;,;’n o TI{I’:".’En,
U = K4 o KT oo KA o KAy, (3.48)
Tpy1 = V(@ V(u) + 0,V f(zn) + 7V f(vn)),
where V f is the gradient of f on F; {r,} C [c1,00) for some ¢1 > 0, oy, 0, v € (0,1), Vi > 0 such that a,, +6, +v, =
1, lim a, =0 with 72 a;, = 00 and v, € [¢,1) for some ¢ > 0. Then, the sequence {z,} converges strongly to p
n—oo

in F which is nearest to w with respect to the Bregman distance.
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If, in Corollary [3:4] we assume that F; =0, for i = 1,2,..., K, then Corollary [3:2] provides the following corollary
for approximating the common solution of a finite family of mixed variational inequality of Browder type problems for
continuous monotone mappings and f-fixed point problems for continuous f-pseudocontractive mapping in a reflexive
real Banach space.

Corollary 3.5. Let {z,} be a sequence generated from arbitrary ug,z¢ € C by

)

— firn firn fiTn firn
Up =Ty 0Ty " 00Ty ™ oTy "ay,
v = KE o KT 00 K™ o K4y, (3.49)

Tni41 = Vf*(Oéan(U) + Qan(.’En) + 'VHVf('Un))v

where V f is the gradient of f on F; {r,} C [c1,00) for some ¢1 > 0, o, 0, v € (0,1), Vn > 0 such that o, +6, +v, =

1, lim a, =0 with >_,2 | a,, = oo and v, € [¢,1) for some ¢ > 0. If the Conditions (B1) — (B3), (B5) and (C1) are
n—oo

satisfied and F := [ﬂf\il Ff(n):| N [ﬂtj\il VI(By, ¢4, C’)} # (), then the sequence {z,} converges strongly to p in F

which is nearest to w with respect to the Bregman distance.

If we assume that E is smooth and strictly convex, then f(z) = 1| z||? is strongly coercive, bounded and uniformly

Fréchet differentiable Legendre function which is strongly convex with constant 4 = 1 and conjugate f*(z*) = 1|2*|2.
In this case, we have Vf = J, Vf* = J~! and for r > 0 and = € E, we have

The={2€C:H(z,y)+ % (y—2,J(z) — J(x)) > 0,Vy € C}, (3.50)
where H(z,y) := F(z,y) + ¢(y) — ¢(2) + (y — 2, Bz), and
Kre={z€C:{y—2T(2))— % (y—2z,(1+r)J(z)— J(x)) <0,Vy € C}. (3.51)
In this case, Theorem reduces to the following corollary:

Corollary 3.6. Let C' be nonempty, closed and convex subset of a smooth and strictly convex reflexive real Banach
space E with its dual E*. Assume that Conditions (B1)— (B7) hold. Let {x,} be a sequence generated from arbitrary
ug, g € C' by
2n = o N J(2n) — MAny)
dp = e Y J (2 — AnAnzn),
Uy =Ty, 0Ty oo Ty 0Ty ay, (3.52)
vp = Kt o Ky o0 Ky o Kyl up,
Tnpr = J N an I (w) + 0, (20) + B (dn) + Y (v0)),
where A, = A, mod (k+1), and Il¢ is the generalized metric projection from E onto C; {r,} C [c1,00) for some
c1 > 0, an, by, 8o,y € (0,1), Yn > 0 such that o, + 0, + Bn + 7 = 1, lim «,, = 0 with 270:;1 o, = oo and
n—oo
BrsYn € [¢,1) for some ¢ >0, and 0 <a < A\, <b < %, for L = max L;. Then, the sequence {x,} converges strongly

0<i<K
to p in F which is nearest to u with respect to the generalized metric projection.

If, in Corollary we assume that E = H, a real Hilbert space, and f(z) = %]z, then we have Vf = J =

I and Vf* = J= = I, were [ is identity mapping on H. Moreover, f-pseudocontractive mapping reduces to
pseudocontractive mapping. In this case, for 7 > 0 and = € E, we have

T}flx:{zeC’:H(z,y)—i—%(y—z,z—x)207Vy€C}, (3.53)
where H(z,y) := F(z,y) + ¢(y) — ¢(2) + (y — 2, Bz), and
Kre={z€C:{y—2zT(z)) — % (y—2z,1+r)z—2)<0,Vy e C}. (3.54)

Thus, we have the following corollary.
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Corollary 3.7. Let C' be a nonempty, closed and convex subset of a real Hilbert space H and let T; : H — H,
t = 1,2,--- N be continuous pseudocontractive mappings. Let {z,} be a sequence generated from an arbitrary
u, g € C by
zn = Po(xn — AnAnzy)
dn = PC(xn - )\nAnZn)v
up =Ty Ty 0w 0Ty o Tj ay, (3.55)
v = Kt o Ky o0 Ky o Kyl up,
Tp+1 = QU + enxn + 6ndn + YnUn,
where A,, = A;, mod (k+1), and P¢ is metric projection of H onto C; {r,} C [c1,00) for some ¢y > 0, an, O, Br, Yn €
(0,1), ¥n > 0 such that o, + 0, + B + 7, = 1, lim a, =0 with > 7 | a,, = 00 and S, 79, € [¢, 1) for some ¢ > 0,
n—oo
and0<a< )\, <b< %, for L = [max L;. If Conditions (B3) — (BT7) are satisfied, then the sequence {x,} converges
K3

strongly to p in F which is nearest to u with respect to the metric projection.

4 Numerical Example

In this section, we present an example to illustrate the main result of our paper.

Example 4.1. Let E = L5([0,1]) with norm [zl = (fol |z(s)|2ds)2, for z € E and C = {z € E : zllLz < 1}

Define f : E — R by f(z) = 5|z|2z, then Vf = J = I and Vf* = J = I, where I is identity mapping on E. Let
2

Aj, T;, By : C — E be defined by A;(z)(s) = (1 +j)Vf(z)(s), 5 =0,1,...,K; Ty(z)(s) = =s'V f(z)(s),i=1,...,N
and Bi(z)(s) = %Vf(w)(s), t =1,...,M, for all 2(s) € C,s € [0,1], respectively. Let F; : C x C — R be
defined by Fi(z,y) = ﬁ (y — 2,V f(z)),Ve,y € C. Then Aj, for j =0,1,..., K are Lipschitz monotone mappings
with ﬂf:o VI(C,A;) = {0}; T;, for i = 1,..., N are continuous f-pseudocontractive with ﬂf\il Fr(T;) = {0}; By,
for t =1,..., M are continuous monotone mappings, and F;, for t = 1,..., M are bi-function satisfying Condition
A. Thus, a common solution set of the generalized equilibrium problems is ﬂi\il GMEP(F;, ¢, B) = {0}, where
@¢ = constant. Now, for implementation, we choose K =0, N = M = 1,7, =1, 0, = B = 7 = (1 — ay),

3
An = 0.00001 + 155, for n > 0 and we compute the (n + 1) iteration as follows:

zn(s) = min{1, m}wn(s)7
dp(s) = min{l, m}hn(s)7
(8) = 7z n(s),
)=

1
Un(S 147, (1+s) Un,
Tp41(8) = anu(s) + 0p2n(8) + Badn(s) + Ynvn(s),

where w,(8) = 2, (8) — An(1 4 8)zn(s) and hy,(s) = 4 (s) — A (1 + 8)zn(9).

(4.1)

Unp

Now, taking different initial points, xo(s) = 2s, zo(s) = 25°, zo(s) = 250 and fixed ug(s) = 252 in C and «,, =
m, the numerical experiment result provides that the sequence {||,, — p||} approaches zero as n — oo (see,
Figure 1 below), where p = 0. In this case, we observe that the sequence {z,} converges faster when the power of s
gets large.

Next, we obtain the same numerical tests of algorithm by taking initial points ug(s) = 252, zo(s) = 25! and
different control parameters, a,, = 1 In this case, we observe that the rate

ay, = T ——
100n+10° ¥ = (@00)2n+10° @7 = (T00)3n+10°
of convergence looks the same through out (see, Figure 2).

5 Conclusion

In this paper, we constructed a new algorithm to approximate a common element of the set of solutions of a finite
family of generalized mixed equilibrium problems, the set of f-fixed points of a finite family of f-pseudocontractive
mappings and the set of solutions of a finite family of variational inequality problems for a finite family of Lipschitz
monotone mappings in reflexive real Banach spaces. We proved a strong convergence theorem for the developed
algorithm in reflexive real Banach spaces. In addition, a numerical example is given to illustrate the implementability
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Figure 1: Figure 1: Convergence of the sequence {||zn — p||} as n gets large.
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Figure 2: Figure 2: Convergence of the sequence {||zn — p||} as n gets large.

of our algorithm. Specifically, the result of our method improve the result obtained by Shahzad and Zegeye [21] from
a Hilbert spaces to a reflexive Banach spaces, from continuous pseudocontractive to continuous f-pseudocontractive
and from equilibrium problem to generalized mized equilibrium problem. In addition, Theorem extends Theorem
3.1 of Bello and Nnakwe [2] from 2-uniformly convex and uniformly smooth spaces to reflexive Banach spaces, from
continuous semi-pseudocontractive to continuous f-pseudocontractive and from equilibrium problem to generalized
mized equilibrium problem.
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