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Abstract

The purpose of this paper is to construct an algorithm for approximating a common element of the set of solutions of a
finite family of generalized mixed equilibrium problems, the set of f -fixed points of a finite family of f -pseudocontractive
mappings and the set of solutions of a finite family of variational inequality problems for Lipschitz monotone mappings
in real reflexive Banach spaces.
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1 Introduction

Let E be a reflexive real Banach space with its dual E∗. Let C be a nonempty, closed and convex subset of E. Let
F : C × C → R be a bifunction, φ : C → R be a real valued function, and B : C → E∗ be a nonlinear mapping. The
Generalized Mixed Equilibrium Problem (GMEP) (Ceng and Yao [8] ) is to find x ∈ C such that

H(x, y) := F (x, y) + φ(y)− φ(x) + ⟨Bx, y − x⟩ ≥ 0,∀y ∈ C. (1.1)

The set of solutions of (1.1) is denoted by GMEP (F,φ,B). In particular, if φ ≡ 0, the problem (1.1) reduces to the
Generalized Equilibrium problem (GEP) (Mouda and Thera [13]) which is to find x ∈ C such that

H(x, y) := F (x, y) + ⟨Bx, y − x⟩ ≥ 0,∀y ∈ C. (1.2)

The set of solutions of (1.2) is denoted by GEP (F,B).
If in (1.1), we consider F ≡ 0, then problem (1.1) reduces to finding x ∈ C such that

φ(y)− φ(x) + ⟨Bx, y − x⟩ ≥ 0,∀y ∈ C, (1.3)
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which is called the Mixed Variational Inequality of Browder type (MVI) [7]. The set of solutions to (1.3) is denoted
by MV I(C,B,φ).
If F ≡ 0 and φ(y) ≡ 0 for all y ∈ C, problem (1.1) reduces to finding x ∈ C such that

⟨Bx, y − x⟩ ≥ 0,∀y ∈ C, (1.4)

which is the classical Variational Inequality Problem (VIP). The set of solutions to (1.4) is denoted by V I(C,B).
If in (1.2), B ≡ 0, then problem (1.2) reduces to the Equilibrium problem (EP) (Blum and Oettli [3]) which is to find
x ∈ C such that

F (x, y) ≥ 0,∀y ∈ C. (1.5)

The set of solutions to (1.5) is denoted by EP (F ).
We say that a bi-function F satisfies “Condition A” if the following four properties hold:

(A1) F (x, x) = 0,∀x ∈ C;

(A2) F is monotone, i.e., F (x, y) + F (y, x) ≤ 0,∀x, y ∈ C;

(A3) limt↓0 F (tz + (1− t)x, y) ≤ F (x, y),∀x, y, z ∈ C;

(A4) for each x ∈ C, y 7−→ F (x, y) is convex and lower semicontinuous.

Some of the applications of the equilibrium problem are given below.
Optimization: Let ϕ : C → R be a convex and lower semi-continuous function. The minimization problem is to find
x∗ ∈ C such that

ϕ(x∗) ≤ ϕ(y),∀y ∈ C. (1.6)

Setting F (x, y) := ϕ(y)− ϕ(x), problem (1.6) coincides with (1.5).
Saddle Point Problem: Let φ : C1 ×C2 → R. Then x∗ = (x∗

1, x
∗
2) is called a saddle point of the function φ if and only

if for x∗ = (x∗
1, x

∗
2),

φ(x∗
1, y2) ≤ φ(y1, x

∗
2),∀(y1, y2) ∈ C1 × C2. (1.7)

If C := C1 × C2, and F : C × C → R is defined by

F ((x1, x2), (y1, y2)) := φ(y1, x2)− φ(x1, y2),

then x∗ = (x∗
1, x

∗
2) is a solution of (1.5) if and only if x∗ = (x∗

1, x
∗
2) satisfies (1.7).

Nash Equilibrium in Non-cooperative Games: Let I be a finite set of players and let Ci be a strategy set of the ith

player, for each i ∈ I. Let fi : C :=
∏
i∈I

Ci → R be a loss function of the ith player depending on the strategies of

all players, for all i ∈ I. For x = (xi)i∈I ∈ C, we find x−i = (xj)j∈I|j ̸=i. The point x∗ = (x∗)i∈I ∈ C is called Nash
Equilibrium if for i ∈ I, the following holds:

fi(x
∗) ≤ fi(x

∗
−i, yi),∀yi ∈ Ci, (1.8)

(that is, no player can reduce his loss by varying his strategy alone). If F : C × C → R is given by

F (x, y) :=
∑
i∈I

(fi(x−i, yi)− fi(x)),

then x∗ ∈ C is a Nash equilibrium if and only if x∗ satisfies (1.5).

Let f : E → (−∞,+∞] be a proper, lower semi-continuous and convex function. We denote the domain of f by
domf = {x ∈ E : f(x) < ∞}. The subdifferential of f at x is the convex set given by

∂f(x) = {x∗ ∈ E∗ : f(y)− f(x) ≥ ⟨y − x, x∗⟩ ,∀y ∈ E}.

The Fenchel conjugate of f is a function f∗ : E∗ → (−∞,+∞], defined by

f∗(x∗) = sup{⟨x, x∗⟩ − f(x) : x ∈ E}.

A function f : E → (−∞,+∞] is called strongly coercive if

lim
∥x∥→+∞

f(x)

∥x∥
= ∞.
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For any x ∈ int(domf) and any y ∈ E, we denote by f0(x, y) the right-hand derivative of f at x in the direction of y,
that is,

f0(x, y) = lim
t→0+

f(x+ ty)− f(x)

t
.

The function f is called Gâteaux differentiable at x if limt→0+
f(x+ty)−f(x)

t exists for any y ∈ E. In this case, the
gradient of f at x, ∇f(x), coincides with f0(x, y) for all y ∈ E. It is called Gâteaux differentiable if it is Gâteaux
differentiable at every point x ∈ int(domf). We note that if the subdifferential of f is single-valued, then ∂f = ∇f .
The function f : E → R is called uniformly convex if there exists a continuous increasing function g : [0,+∞) → R,
g(0) = 0, such that

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)− t(1− t)g(∥x− y∥), (1.9)

for all x, y ∈ domf . The function g is called a modulus of convexity of f . If f is a uniformly convex and Gâteaux
differentiable function in domf with modulus of convexity g, then ⟨x−y,∇f(x)−∇f(y)⟩ ≥ 2g(∥x−y∥),∀x, y ∈ domf ,
or equivalently, f(y) ≥ f(x) + ⟨y− x,∇f(x)⟩+ g(∥x− y∥),∀x, y ∈ domf . The functional f is called strongly convex if
f is uniformly convex with the modulus of convexity g(t) = ct2, c > 0. If a function f is strongly convex with constant
µ > 0 and Gâteaux differentiable in (domf), then ⟨x− y,∇f(x)−∇f(y)⟩ ≥ µ∥x− y∥2,∀x, y ∈ domf , or equivalently,
f(y) ≥ f(x) + ⟨y − x,∇f(x)⟩ + µ

2 ∥x − y∥2,∀x, y ∈ domf . If E is a smooth and strictly convex Banach space, the
function f(x) = ∥x∥2,∀x ∈ E is strongly convex with constant µ ∈ (0, 1] (see, Phelps [15]).

A mapping A : D(A) ⊂ E → E∗, is said to be monotone if for each x, y ∈ D(A), the following inequality holds:

⟨x− y,Ax−Ay⟩ ≥ 0. (1.10)

A mapping A : D(A) ⊂ E → E∗, is said to be γ-inverse strongly monotone if there exists a positive real number γ
such that

⟨x− y,Ax−Ay⟩ ≥ γ∥Ax−Ay∥2. (1.11)

If A is γ-inverse strongly monotone, then it is Lipschitz continuous with constant 1
γ , that is,

∥Ax−Ay∥ ≤ 1
γ ∥x− y∥,∀x, y ∈ D(A), and hence uniformly continuous.

Closely related to the class of monotone mappings is the class type of f -pseudocontractive mappings.

A mapping T : E → E∗, is said to be f -pseudocontractive mapping (see, Zegeye and Wega [25]) if for each x, y ∈ E,
we have

⟨x− y, T (x)− T (y)⟩ ≤ ⟨x− y,∇f(x)−∇f(y)⟩ . (1.12)

A mapping T is said to be γ-strictly f -pseudocontractive if for all x, y ∈ C, there exists γ > 0 such that

⟨x− y, T (x)− T (y)⟩ ≤ ⟨x− y,∇f(x)−∇f(y)⟩ − γ∥(∇f(x)−∇f(y))− (Tx− Ty)∥2. (1.13)

The f -fixed point problem with respect to T is to find a point p ∈ C such that Tp = ∇f(p). The set of f -fixed points
of T is denoted by Ff (T ), that is, Ff (T ) = {p ∈ C : Tp = ∇f(p)}. A mapping T is said to be semi-pseudocontractive
if ⟨x− y, T (x)− T (y)⟩ ≤ ⟨x− y, J(x)− J(y)⟩, ∀x, y ∈ E. We remark that if E is smooth and strictly convex and
f(x) = 1

2∥x∥
2 for all x ∈ E, then ∇f = J , where J is the normalized duality mapping from E into 2E

∗
, and the

notion of f -pseudocontractive mapping reduces to the notion of semi-pseudocontractive mapping and f -fixed point of
T reduces to semi-fixed point of T . If, in addition, E = H, a real Hilbert space, then f -pseudocontractive mapping
becomes pseudocontractive mapping. The mapping T is f -pseudocontractive if and only if A = ∇f − T is monotone
and T is strictly f -pseudocontractive if and only if A = ∇f − T is γ-inverse strongly monotone. In this case, the zero
of A corresponds to f -fixed point of T . In fact, if T and ∇f are continuous on E then A is maximal monotone and
the set of zeros of A and hence the set of f -fixed points of an f -pseudocontractive mapping T is closed and convex (
see, Zegeye and Wega [25]).

The above formulation of fixed point problem was treated as equilibrium problem as follows.
Fixed Point Problem: Let T : E → E be a given mapping. If F (x, y) = ⟨x− T (x), y − x⟩, ∀x, y ∈ E, then p is a
solution of (1.5) if and only if it is a fixed point of T .

A method for solving the fixed point problem of pseudocontractive mapping with the use of the resolvent mapping
was introduced by Zegeye [24] in Hilbert spaces. Let f be a self contraction on C, and let {xn} be a sequence generated
by x1 ∈ C and

xn+1 = αnf(x) + (1− αn)K
T1KT2xn, (1.14)

where {αn} ⊂ [0, 1] with limn→∞ αn = 0,
∑∞

n=1 αn = ∞,
∑∞

n=1 |αn+1 − αn| < ∞, KT1
rn and KT2

rn with {rn} ⊂ (0,∞),
lim infn→∞ rn > 0,

∑∞
n=1 |rn+1−rn| < ∞ where KTi

rnx = {z ∈ C : ⟨y − z, Tiz⟩− 1
rn

⟨y − z, (1 + rn)z − x⟩ ≤ 0,∀y ∈ C},
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where Ti’s, i = 1, 2, are continuous pseudocontractive mappings. He proved that if F =
⋂2

i=1 Fix(Ti) ̸= ∅, then the
sequence {xn} converges strongly to z = ΠFf(z).

Recently, several authors have proposed algorithms for approximating a common solution of a variational inequality,
an equilibrium problem, and semi-fixed points of a continuous semi-pseudocontractive mapping in the framework of
Hilbert spaces and Banach spaces (see, [9, 11]).

In 2019, Shahzad and Zegeye [21] proved the following convergence theorem for a common solution of fixed point,
equilibrium and variational inequality problems in Hilbert spaces.

Theorem 1.1. Let C be a nonempty closed and convex subset of a real Hilbert space H. Let A : C → H be a
Lipschitz monotone mapping with Lipschitz constant L > 0, F : C × C → R be a bi-functional satisfying Condition
A, and T : C → H be a continuous pseudocontractive mapping with F := F (T )

⋂
V I(A,C)

⋂
EP (F ) ̸= ∅. Let the

sequence {xn} be generated by 
u, x0 ∈ C,

zn = PC(xn − λAxn),

xn+1 = αnu+ (1− αn)(βyn + (1− β)un),

(1.15)

where PC is the metric projection from H onto C, yn = KT
rnT

F
rnxn with TF

rn and KS
rn as the resolvent mappings for F

and T , respectively, {rn} ⊂ [a,∞), for some a > 0, un = PC(xn − λAzn), λ ∈ [a, b] ⊂ (0, 1
L ) and {αn} ⊂ (0, c] ⊂ (0, 1)

with limn→∞ αn = 0 and
∑

αn = ∞. Then, the sequence {xn} converges strongly to a point PFu.

In 2019, Khonchaliew et al. [10] studied two shrinking extragradient algorithms for finding a common solution set of
equilibrium problems for a finite family of pseudomonotone bifunctions and set of fixed points of quasinonexpansive
mappings in real Hilbert spaces.

In 2020, Nnakwe and Okeke [14] constructed a new Halpern-type iterative algorithm and proved the following
result in uniformly smooth and uniformly convex real Banach spaces. Let Bi : C → E∗, i = 1, 2 be a continuous and
monotone mappings, Fi : C × C → R, i = 1, 2 be a bi-functionals satisfying Condition A, and Ti : C → E∗, i = 1, 2
be a continuous semi-pseudocontractive mappings with F :=

⋂2
i=1 (Fs(Ti)

⋂
GEP (Fi, Bi)) ̸= ∅. Let the sequence

{xn} be generated by 
x1 ∈ C,

zn = TH1
rn TH2

rn xn,

xn+1 = J−1(αnJx1 + (1− αn)JK
T1
rnK

T2
rn zn]),∀n ≥ 1,

(1.16)

where THi
rn and KTi

rn are the resolvent mappings for Hi and Ti, i = 1, 2, respectively, and {αn} ⊂ (0, 1) with
limn→∞ αn = 0 and

∑
αn = ∞. Then, the sequence {xn} converges strongly to a point ΠFx1.

In 2021, Bello and Nnakwe [2] studied a new Halpern-type subgradient extragradient iterative algorithm and proved
strong convergence in a uniformly smooth and 2-uniformly convex real Banach space. Let A : C → E∗ be a Lipschitz
monotone mapping with Lipschitz constant L > 0, F : C × C → R be a bi-functional satisfying Condition A, and
T : C → E∗ be a continuous semi-pseudocontractive mapping with F := Fs(T )

⋂
V I(C,A)

⋂
EP (F ) ̸= ∅. Let the

sequence {xn} be generated by
x0 ∈ C,

zn = ΠCJ
−1(Jxn − λAxn),

Tn = {w ∈ E : ⟨w − zn, Jxn − λAxn − Jzn⟩ ≤ 0},
xn+1 = J−1(αnJx0 + (1− αn)[βJvn + (1− β)Jwn]),

(1.17)

where vn = TF
rnK

T
rnxn with TF

rn and KS
rn are the resolvent mappings of F and T , respectively, {rn} ⊂ [a,∞), for some

a > 0, wn = ΠTn
J−1(Jxn − λAzn), λ ∈ (0, 1) with λ < c

L and {αn} ⊂ (0, 1) with limn→∞ αn = 0 and
∑

αn = ∞.
Then, the sequence {xn} converges strongly to a point ΠFx0.

Motivated and inspired by the above results, it is our purpose in this paper to propose an algorithm for approx-
imating a common element of the set of solutions of a finite family of generalized mixed equilibrium problems, the
set of f -fixed points of a finite family of f -pseudocontractive mappings and the set of solutions of a finite family of
variational inequality problems for Lipschitz monotone mappings in real reflexive Banach spaces.
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2 Preliminaries

Let f : E → (−∞,+∞] be a Gâteaux differentiable convex function. The function Df : domf × int(domf) →
[0,+∞), defined by

Df (y, x) = f(y)− f(x)− ⟨y − x,∇f(x)⟩,∀x, y ∈ E. (2.1)

is called the Bregman distance with respect to f (see, Bregman [5]).
The Bregman distance has the following two important properties (see, Reich and Sabach [16]), called the three-point
identity : for any x ∈ domf and y, z ∈ int(domf),

Df (x, y) +Df (y, z)−Df (x, z) = ⟨x− y,∇f(z)−∇f(y)⟩, (2.2)

and the four-point identity : for any y, w ∈ domf and x, z ∈ int(domf),

Df (y, x)−Df (y, z)−Df (w, x) +Df (w, z) = ⟨y − w,∇f(z)−∇f(x)⟩. (2.3)

Let f : E → (−∞,+∞] be a Gâteaux differentiable convex function. The function νf : int(domf)× R+ → R defined
by

νf (x, t) = inf
y∈int(domf)

{Df (y, x) : ∥x− y∥ = t}

is called the Modulus of total convexity of f at x ∈ int(domf) and f is called totally convex if

νf (x, t) > 0, for all (x, t) ∈ int(domf)× R+.

We remark that f is totally convex on bounded subsets of E if and only if f is uniformly convex on bounded subsets
of E (see, Butnariu and Resmerita [6], Theorem 2.10, Page 9).
The Bregman projection of x ∈ int(domf) onto the nonempty, closed and convex set C ⊂ domf is the unique vector

P f
C(x) ∈ C satisfying

Df (P
f
C(x), x) = inf{Df (y, x) : y ∈ C}.

If E is a smooth and strictly convex Banach space and f(x) = 1
2∥x∥

2 for all x ∈ E, then we have that ∇f = J , where

J is the normalized duality mapping from E into 2E
∗
and the Bregman distance with respect to f , Df , reduces to the

Lyapunov functional ϕ : E × E → [0,+∞) defined by

ϕ(y, x) = ∥y∥2 − 2⟨y, Jx⟩+ ∥x∥2,∀x, y ∈ E. (2.4)

The function f is called Legendre if it satisfies the following two properties:

(L1) the interior of the domain of f , int(domf), is nonempty, f is Gâteaux differentiable and dom(∇f) = int(domf);

(L2) the interior of the domain of f∗, int(domf∗), is nonempty, f∗ is Gâteaux differentiable and dom(∇f∗) =
int(domf∗);

Since E is reflexive, (∂f)−1 = ∂f∗. This, with (L1) and (L2), imply the following equalities:

∇f = (∇f∗)−1, R(∇f) = dom(∇f∗) = int(domf∗),

and
R(∇f∗) = dom(∇f) = int(domf),

where R(∇f) denotes the range of ∇f .

If a function f : E → (−∞,+∞] is a Legendre function and E is a reflexive Banach space, then ∇f∗ = (∇f)−1(see,
Bonnans and Shapiro [4]).

One of the important and interesting Legendre function in a smooth and strictly convex Banach space is f(x) =
1
p∥x∥

p (1 < p < ∞) with its conjugate function f∗(x) = 1
q∥x∥

q (1 < q < ∞) (see, for example, Bauschke et al. [1] ),

where 1
p + 1

q = 1. In this case, the gradient of f , ∇f , coincides with the generalized duality mapping, Jp, of E; that

is, ∇f = Jp, where Jp : E → 2E
∗
is defined by

Jp(x) = {y∗ ∈ E∗ : ⟨x, y∗⟩ = ∥x∥p, ∥f∥ = ∥x∥p−1},∀x ∈ E.
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If p = 2, we write J2 = J , called the normalized duality mapping and if E = H, a real Hilbert space, then J = I,
where I is the identity mapping on H.
Let f : E → R be a Legendre function. We make use of the function Vf : E × E∗ → R defined by

Vf (x, x
∗) = f(x)− ⟨x, x∗⟩+ f∗(x∗), for all x ∈ E and x∗ ∈ E∗.

We note that Vf is a nonnegative function which satisfies (see, Senakka and Cholamjiak [20])

Vf (x, x
∗) = Df (x,∇f∗(x∗)) for all x ∈ E and x∗ ∈ E∗, (2.5)

and
Vf (x, x

∗) + ⟨∇f∗(x∗)− x, y∗⟩ ≤ Vf (x, x
∗ + y∗), for all x ∈ E and x∗, y∗ ∈ E∗. (2.6)

Lemma 2.1. (Phelps [15]) If f : E → (−∞,+∞] is a proper, lower semi-continuous and convex function, then
f∗ : E∗ → (−∞,+∞] is a proper, weak∗ lower semi-continuous and convex function and for any x ∈ E, {yk}Nk=1 ⊆ E

and {ck}Nk=1 ⊆ (0, 1) with
∑N

k=1 ck = 1 the following holds:

Df

(
x,∇f∗

(
N∑

k=1

ck∇f(yk)

))
≤

N∑
k=1

ckDf (x, yk). (2.7)

Lemma 2.2. (Reich and Sabach [17]) If f : E → R is uniformly Fréchet differentiable and bounded on bounded
subsets of E, then ∇f is norm-to-norm uniformly continuous on bounded subsets of E and hence both f and ∇f are
bounded on bounded subsets of E.

Lemma 2.3. (Bunariu and Resmerita [6]) Let f : E → R be a totally convex and Gâteaux differentiable function,

and x ∈ E. Let C be a nonempty, closed and convex subset of E. The Bregman projection P f
C from E onto C has

the following properties:

(i) z = P f
C(x) if and only if ⟨y − z,∇f(x)−∇f(z)⟩ ≤ 0, ∀y ∈ C;

(ii) Df (y, P
f
C(x)) +Df (P

f
C(x), x) ≤ Df (y, x), ∀y ∈ C.

Lemma 2.4. (Reich and Sabach [18]) Let f : E → R be a Gâteaux differentiable and totally convex function. If
x ∈ E and the sequence {Df (xn, x)} is bounded, then the sequence {xn} is also bounded.

Lemma 2.5. (Reich and Sabach [18]) Let f : E → R be a Gâteaux differentiable function which is uniformly convex
on bounded subsets of E. Let {xn} and {yn} be bounded sequences in E. Then, the following assertions are equivalent:

(i) lim
n→∞

Df (xn, yn) = 0;

(ii) lim
n→∞

∥xn − yn∥ = 0.

Lemma 2.6. (Wega and Zegeye [23]) Let f be a strongly convex function with constant µ > 0. Then, for all y ∈ domf
and x ∈ int(domf),

Df (y, x) ≥
µ

2
∥x− y∥2,

where Df (y, x) is a Bregman distance with respect to f .

Lemma 2.7 (Darvish [9]). Let f : E → (−∞,+∞] be a coercive and Gâteaux differentiable function. Let C be a
closed and convex subset of a real reflexive Banach space E. Assume that B : C → E∗ is a continuous and monotone
mapping, φ : C → R is a lower semi-continuous and convex function and let F : C×C → R be a bi-function satisfying
Condition A. For r > 0 and x ∈ E, define a mapping T f,r

H : E → C as follows:

T f,r
H x = {z ∈ C : H(z, y) +

1

r
⟨y − z,∇f(z)−∇f(x)⟩ ≥ 0,∀y ∈ C}, (2.8)

where H(z, y) := F (z, y) + φ(y)− φ(z) + ⟨y − z,Bz⟩. Then, T f,r
H (x) ̸= ∅, and the following hold:
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(1) T f,r
H is single-valued;

(2) F (T f,r
H ) = GMEP (F,φ,B);

(3) GMEP (F,φ,B) is closed and convex;

(4) T f,r
H is quasi-Bregman nonexpansive;

(5) Df (p, T
f,r
H x) +Df (T

f,r
H x, x) ≤ Df (p, x),∀p ∈ F (T f,r

H ).

Lemma 2.8. Let f : E → (−∞,+∞] be a coercive and Gâteaux differentiable function. Let E∗ be the dual space
of a real reflexive Banach space E and C be a closed and convex subset E. Let T : C → E∗ be a continuous
f -pseudocontractive mapping. For r > 0 and x ∈ E, define a mapping Kf,r

T : E → C as follows:

Kf,r
T x = {z ∈ C : ⟨y − z, T (z)⟩ − 1

r
⟨y − z, (1 + r)∇f(z)−∇f(x)⟩ ≤ 0,∀y ∈ C}. (2.9)

Then, Kf,r
T (x) ̸= ∅, and the following hold:

(1) Kf,r
T is single-valued;

(2) F (Kf,r
T ) = Ff (T )

(3) Ff (T ) is closed and convex;

(4) Kf,r
T is quasi-Bregman nonexpansive;

(5) Df (p,K
f,r
T x) +Df (K

f,r
T x, x) ≤ Df (p, x),∀p ∈ F (Kf,r

T ).

Proof. Let B := ∇f − T . Then, B is monotone and continuous. Putting F ≡ 0 and φ ≡ 0 in Lemma 2.7. Then, there
exists z ∈ C such that

⟨y − z,B(z)⟩+ 1

r
⟨y − z,∇f(z)−∇f(x)⟩ ≥ 0,∀y ∈ C.

Equivalently,

⟨y − z, T (z)⟩ − 1

r
⟨y − z, (1 + r)∇f(z)−∇f(x)⟩ ≤ 0,∀y ∈ C.

Furthermore, applying Lemma 2.7, we get the results (1)-(5) of Lemma 2.8. This completes the proof.

Lemma 2.9. (Xu [22] ) Let {an} be a sequence of nonnegative real numbers satisfying the following relation:

an+1 ≤ (1− αn)an + αnbn, n ≥ n0,

where {αn} ⊂ (0, 1) and {bn} ⊂ R satisfying the following conditions:

∞∑
n=1

αn = ∞, and lim sup
n→∞

bn ≤ 0, or

∞∑
n=1

|αnbn| <

∞. Then lim
n→∞

an = 0.

Lemma 2.10. (Maingé [12]) Suppose {sn} is a sequence of real numbers such that there exists a subsequence {si} of
{n} such that sni

< sni+1 for all i ∈ N. Let the sequence of {mk} be defined by mk = max{j ≤ k : sj < sj+1}. Then,
{mk} is a nondecreasing sequence satisfying mk → ∞ as k → ∞ and the following properties hold:

smk
≤ smk+1 and sk ≤ smk+1,

for all k ≥ N0, for some N0 > 0.

Lemma 2.11. (Rockafellar [19]) Let C be a nonempty, closed and convex subset of a real Banach space E and let A
be a monotone and hemicontinuous mapping from C into E∗ with C = D(A). Let B : E → 2E

∗
be a mapping defined

as follows:

Bv =

{
Av +NCv if v ∈ C,
∅ if v /∈ C,

where NC(v) := {w ∈ E∗ : ⟨v − u,w⟩ ≥ 0,∀u ∈ C} is called the normal cone to C at v ∈ C. Then B is maximal
monotone and B−1(0) = V I(A,C).
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3 Main Results

The following assumptions will be used in the sequel.
Assumption 3.1.

(B1) Let C be a nonempty, closed and convex subset of a reflexive real Banach space E with its dual E∗;

(B2) Let Ti : E → E∗, i = 1, 2, · · · , N be continuous f -pseudocontractive mappings;

(B3) Let Bt : C → E∗, t = 1, 2, · · · ,M be continuous monotone mappings;

(B4) Let Ft : C × C → R, t = 1, 2, · · · ,M be bi-functionals satisfying Condition A;

(B5) Let φt : C → R, t = 1, 2, · · · ,M be real valued functions;

(B6) Let Aj : C → E∗ be Lipschitz monotone mappings with Lipschitz constants Lj , for j = 0, 1, 2, . . . ,K.

(B7) Let the common set of solutions, denoted by F , be nonempty, that is

F :=

[
N⋂
i=1

Ff (Ti)

]
∩

 K⋂
j=0

V I(C,Aj)

 ∩

[
M⋂
t=1

GMEP (Ft, φt, Bt)

]
̸= ∅.

(C1) Let f be a strongly coercive, bounded and uniformly Fréchet differentiable Legendre function which is strongly
convex with constant µ > 0 on bounded subsets of E.

Let {xn} be the sequence generated by the iterative scheme:

u, x0 ∈ C,

zn = P f
C∇f∗(∇f(xn)− λnAnxn),

dn = P f
C∇f∗(∇f(xn − λnAnzn),

un = T f,rn
HM

◦ T f,rn
HN−1

◦ · · · ◦ T f,rn
H2

◦ T f,rn
H1

xn,

vn = Kf,rn
TN

◦Kf,rn
TN−1

◦ · · · ◦Kf,rn
T2

◦Kf,rn
T1

un,

xn+1 = ∇f∗(αn∇f(u) + θn∇f(xn) + βn∇f(dn) + γn∇f(vn)),

(3.1)

where An = An mod (K+1) and ∇f is the gradient of f on E; {rn} ⊂ [c1,∞) for some c1 > 0, αn, θn, βn, γn ∈ (0, 1),
∀n ≥ 0 such that αn + θn + βn + γn = 1, lim

n→∞
αn = 0 with

∑∞
n=1 αn = ∞ and βn, γn ∈ [c, 1) for some c > 0, and

dn = P f
C∇f∗(∇f(xn − λnAnzn), 0 < a ≤ λn ≤ b < µ

L , for L = max
0≤i≤K

Li.

Lemma 3.1. Assume that Conditions (B1) − (B7), and (C1) hold. Then, the sequence {xn} generated by (3.1) is
bounded.

Proof. Let a0 = b0 = I, where I is the identity mapping on E, ai = Kf,rn
Ti

◦Kf,rn
Ti−1

◦· · ·◦Kf,rn
T2

◦Kf,rn
T1

for i = 1, 2, . . . , N ,

and , bt = T f,rn
Ht

◦ T f,rn
Ht−1

◦ · · · ◦ T f,rn
H2

◦ T f,rn
H1

for t = 1, 2, . . . ,M . Let p ∈ F . Then, by Lemma 2.7 and 2.8, we get

Df (p, un) ≤ Df (p, bM−1(xn))−Df (un, bM−1(xn))

≤ Df (p, bM−2(xn))−Df (bM−1(xn), bM−2(xn))−Df (un, bM−1(xn)),

and, by induction we obtain

Df (p, un) ≤ Df (p, xn)−
M−1∑
t=0

Df (bt+1(xn), bt(xn)). (3.2)

Similarly,

Df (p, vn) ≤ Df (p, un)−
N−1∑
t=0

Df (at+1(un), at(un)). (3.3)
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Thus, from (3.2), (3.3) and Lemma 2.6, we obtain

Df (p, vn) ≤ Df (p, xn)−
M−1∑
t=0

Df (bt+1(xn), bt(xn))−
N−1∑
i=0

Df (ai+1(un), ai(un))

≤ Df (p, xn)−
µ

2

(
M−1∑
t=0

∥bt+1(xn)− bt(xn)∥2 +
N−1∑
i=0

∥ai+1(un)− ai(un)∥2
)

(3.4)

≤ Df (p, xn). (3.5)

Let wn = ∇f∗(∇f(xn)− λnAnzn). By Lemma 2.3 and the fact that λn ≤ µ
L , we get

Df (p, dn) = Df (p, P
f
Cwn) ≤ Df (p, wn)−Df (dn, wn) (3.6)

= f(p)− f(wn)− ⟨p− wn,∇f(wn)⟩ − [f(dn)− f(wn)− ⟨dn − wn,∇f(wn)⟩]
= f(p)− ⟨p− dn,∇f(wn)⟩ − f(dn)

= f(p)− ⟨p− dn,∇f(xn)− λnAnzn⟩ − f(dn)

= f(p)− ⟨p− dn,∇f(xn)⟩+ ⟨p− dn, λnAnzn⟩ − f(dn)

= f(p)− ⟨p− xn,∇f(xn)⟩ − f(xn)− [f(dn)− ⟨dn − xn,∇f(xn)⟩ − f(xn)]

+ ⟨p− dn, λnAnzn⟩
= Df (p, xn)−Df (dn, xn) + ⟨p− dn, λnAnzn⟩
= Df (p, xn)−Df (dn, xn) + ⟨p− zn, λnAnzn⟩+ ⟨zn − dn, λnAnzn⟩
= Df (p, xn)−Df (dn, xn) + λn ⟨p− zn, Anzn −Anp⟩

+λn ⟨p− zn, Anp⟩+ ⟨zn − dn, λnAnzn⟩
≤ Df (p, xn)−Df (dn, xn) + ⟨zn − dn, λnAnzn⟩ .

Now, from (2.2), we obtain

Df (dn, xn) = Df (dn, zn) +Df (zn, xn) + ⟨dn − zn,∇f(zn)−∇f(xn)⟩ . (3.7)

Thus, from (3.6), (3.7) and Lemma 2.6, we get

Df (p, dn) ≤ Df (p, xn)−Df (dn, zn)−Df (zn, xn) + ⟨zn − dn, λnAnzn +∇f(zn)−∇f(xn)⟩

≤ Df (p, xn)−
µ

2

[
∥dn − zn∥2 + ∥xn − zn∥2

]
(3.8)

+ ⟨zn − dn, λnAnzn +∇f(zn)−∇f(xn)⟩ .

Using the fact that Ai is Lipschitz monotone for i = 0, 1, 2, . . . ,K and Lemma 2.3, we have that

⟨zn − dn, λnAnzn +∇f(zn)−∇f(xn)⟩ = ⟨dn − zn, λnAnxn − λnAnzn⟩ (3.9)

+ ⟨dn − zn,∇f(xn)− λnAnxn −∇f(zn)⟩
≤ λn ⟨dn − zn, Anxn −Anzn⟩
≤ λn∥dn − zn∥∥Anxn −Anzn∥
≤ Lλn∥dn − zn∥∥xn − zn∥

≤ 1

2
Lλn

[
∥dn − zn∥2 + ∥xn − zn∥2

]
.

Thus, from (3.8), (3.9) and the fact that λn ≤ µ
L , we get

Df (p, dn) ≤ Df (p, xn)−
1

2
(µ− Lλn)

[
∥dn − zn∥2 + ∥xn − zn∥2

]
(3.10)

≤ Df (p, xn). (3.11)
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By (3.4), (3.10), λn ≤ µ
L and Lemma 2.1, we obtain

Df (p, xn+1) = Df (p,∇f∗ (αn∇f(u) + θn∇f(xn) + βn∇f(dn) + γn∇f(vn)))

≤ αnDf (p, u) + θnDf (p, xn) + βnDf (p, dn) + γnDf (p, vn)

≤ αnDf (p, u) + (1− αn)Df (p, xn) (3.12)

−1

2
βn(µ− Lλn)

[
∥dn − zn∥2 + ∥xn − zn∥2

]
−γn

µ

2

[
M−1∑
t=0

∥bt+1(xn)− bt(xn)∥2 +
N−1∑
i=0

∥ai+1(un)− ai(un)∥2
]

≤ αnDf (p, u) + (1− αn)Df (p, xn)

≤ max{Df (p, u), Df (p, xn)}. (3.13)

Therefore, by induction, we get

Df (p, xn) ≤ max{Df (p, u), Df (p, x0)}, for all n ≥ 0. (3.14)

This implies that {Df (p, xn)} is bounded. Therefore, by Lemma 2.4 we have, {xn} is bounded and also the sequences
{zn}, {dn}, {un} and {vn} are bounded.

Theorem 3.2. Assume that Conditions (B1) − (B7) and (C1) hold. Then, the sequence {xn} generated by (3.1)
converges strongly to p in F which is nearest to u with respect to the Bregman distance.

Proof. Let p = P f
Fu. From (2.5), (2.6), (3.4), (3.10) and Lemma 2.1, we obtain

Df (p, xn+1) = Df (p,∇f∗ (αn∇f(u) + θn∇f(xn) + βn∇f(dn) + γn∇f(vn)))

= Vf (p, αn∇f(u) + θn∇f(xn) + βn∇f(dn) + γn∇f(vn))

≤ Vf (p, αn∇f(p) + θn∇f(xn) + βn∇f(dn) + γn∇f(vn))

−αn ⟨xn+1 − p,∇f(p))−∇f(u)⟩
= Df (p,∇f∗ (αn∇f(p) + θn∇f(xn) + βn∇f(dn) + γn∇f(vn)))

−αn ⟨xn+1 − p,∇f(p)−∇f(u)⟩
≤ αnDf (p, p) + θnDf (p, xn) + βnDf (p, dn) + γnDf (p, vn)

−αn ⟨xn+1 − p,∇f(p)−∇f(u)⟩

= (1− αn)Df (p, xn)−
1

2
βn(µ− Lλn)

[
∥dn − zn∥2 + ∥xn − zn∥2

]
(3.15)

−γn
µ

2

[
M−1∑
t=0

∥bt+1(xn)− bt(xn)∥2 +
N−1∑
i=0

∥ai+1(un)− ai(un)∥2
]

+αn ⟨xn+1 − p,∇f(u)−∇f(p)⟩
≤ (1− αn)Df (p, xn) + αn ⟨xn − p,∇f(u)−∇f(p)⟩

+αn ⟨xn+1 − xn,∇f(u)−∇f(p)⟩
≤ (1− αn)Df (p, xn) + αn ⟨xn − p,∇f(u)−∇f(p)⟩ (3.16)

+αn∥xn+1 − xn∥∥∇f(u)−∇f(p)∥.

Now, we divide the rest of the proof into two parts as follows.
Case 1. Assume that there exists n0 ∈ N such that {Df (p, xn)} is decreasing for all n ≥ n0. It then follows that
{Df (p, xn)} is convergent and hence Df (p, xn) −Df (p, xn+1) → 0 as n → ∞. Thus, from (3.15) and the conditions
on αn, βn, γn, and λn, we get

lim
n→∞

∥dn − zn∥2 + ∥xn − zn∥2 = 0, (3.17)

and

lim
n→∞

[
M−1∑
t=0

∥bt+1(xn)− bt(xn)∥2 +
N−1∑
i=0

∥ai+1(un)− ai(un)∥2
]
= 0, (3.18)
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which imply
lim
n→∞

∥dn − zn∥ = lim
n→∞

∥xn − zn∥ = 0, and hence, lim
n→∞

∥xn − dn∥ = 0, (3.19)

lim
n→∞

∥bt+1(xn)− bt(xn)∥ = 0, 0 ≤ t ≤ M − 1, and hence, lim
n→∞

∥un − xn∥ = 0, (3.20)

and
lim
n→∞

∥ai+1(un)− ai(un)∥ = 0, 0 ≤ i ≤ N − 1, and hence, lim
n→∞

∥vn − un∥ = 0. (3.21)

Now,

∥∇f(xn+1)−∇f(xn)∥ = ∥ (αn∇f(u) + θn∇f(xn) + βn∇f(dn) + γn∇f(vn))−∇f(xn)∥
≤ αn∥∇f(u)−∇f(xn)∥+ βn∥∇f(dn)−∇f(xn)∥ (3.22)

+γn∥∇f(vn)−∇f(xn)∥,

and from (3.19), (3.20), (3.21), the fact that αn → 0 as n → ∞ and uniform continuity of ∇f , we get ∥∇f(xn+1) −
∇f(xn)∥ → 0 as n → ∞. Moreover, the uniform continuity of ∇f∗ implies that

lim
n→∞

∥xn+1 − xn∥ = 0. (3.23)

Now, for j = 0, 1, . . . ,K, we have

∥dn+j − xn∥ ≤ ∥dn+j − xn+j∥+
n+j−1∑
l=n

∥xl+1 − xl∥. (3.24)

Then, from (3.19), (3.23) and (3.24), we obtain that

lim
n→∞

∥dn+j − xn∥ = 0, for j = 0, 1, . . . ,K. (3.25)

Since {xn} is bounded in E, there exists q ∈ E and a subsequence {xns} of {xn} such that xns ⇀ q and

lim sup
n→∞

⟨xn − p,∇f(u)−∇f(p)⟩ = lim
s→∞

⟨xns − p,∇f(u)−∇f(p)⟩ . (3.26)

Then, from (3.20), (3.21) and (3.25), we have that bt(xns) ⇀ q, ai(uns) ⇀ q, dns+j ⇀ q for t ∈ {1, 2, . . . ,M},
i ∈ {1, 2, . . . , N} and j ∈ {1, 2, . . . ,K}. Now, we show that q ∈ F .

Step 1. First we show that q ∈
K⋂
j=0

V I(C,Aj).

Let

Bjv =

{
Ajv +NCv, if v ∈ C,
∅ if v /∈ C,

where NC is the normal cone to C at v ∈ C given by NC = {w ∈ E∗ : ⟨v − x,w⟩ ≥ 0,∀x ∈ C}. Then, by Lemma
2.11, Bj is maximal monotone and B−1

j (0) = V I(C,Aj). Let w ∈ Bjv. Then, we have w ∈ Ajv + NCv and hence
w −Ajv ∈ NCv. Thus, we obtain that

⟨v − x,w −Ajv⟩ ≥ 0,∀x ∈ C. (3.27)

Let {ns + j}, s ≥ 1 be such that Ans+j = Aj for all s ∈ N where j = 0, 1, 2, . . . ,K. Then, since dns+j =

P f
C∇f∗(∇f(xns+j)− λns+jAjzns+j), and v ∈ C, we have

⟨v − dns+j ,∇f(dns+j)− (∇f(xns+j)− λns+jAjzns+j)⟩ ≥ 0,

and so 〈
v − dns+j ,

∇f(dns+j)−∇f(xns+j)

λns+j
+Ajzns+j

〉
≥ 0. (3.28)
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From (3.27), (3.28) and Aj is monotone mapping, we get that

⟨v − dns+j , w⟩ ≥ ⟨v − dns+j , Ajv⟩

≥ ⟨v − dns+j , Ajv⟩ −
〈
v − dns+j ,

∇f(dns+j)−∇f(xns+j)

λns+j
+Ajzns+j

〉
= ⟨v − dns+j , Ajv −Ajdns+j⟩+ ⟨v − dns+j , Ajdns+j −Ajzns+j⟩

−
〈
v − dns+j ,

∇f(dns+j)−∇f(xns+j)

λns+j

〉
≥ ⟨v − dns+j , Ajdns+j −Ajzns+j⟩ −

〈
v − dns+j ,

∇f(dns+j)−∇f(xns+j)

λns+j

〉
≥ ⟨v − dns+j , Ajdns+j −Ajzns+j⟩ − ∥v − dns+j∥

∥∇f(dns+j)−∇f(xns+j)∥
λns+j

≥ ⟨v − dns+j , Ajdns+j −Ajzns+j⟩ −R
∥∇f(dns+j)−∇f(xns+j)∥

λns+j
, (3.29)

where R = max
0≤j≤K

sup
s≥0

∥v − dns+j∥. Taking limits on both sides of the inequality (3.29) as s → ∞ and using the fact

that λn ≥ a > 0, for all n ≥ 0, ∇f is uniformly continuous, and (3.19), we get that ⟨v − q, w⟩ ≥ 0 as s → ∞ for each

j. Therefore, the maximality of Bj gives that q ∈ B−1
j (0) = V I(C,Aj) for each j. Therefore, q ∈

K⋂
j=0

V I(C,Aj).

Step 2. We show that q ∈
N⋂
j=1

Ff (Tj). Let ai(uns
) = K

f,rns

Ti
ai−1(uns

). By Lemma 2.8 (2), we get that

⟨y − ai(uns), Tiai(uns)⟩ −
1

rns

⟨y − ai(uns), (1 + rns)∇f(ai(uns))−∇f(ai−1(uns))⟩ ≤ 0,∀y ∈ C.

Since C is convex, yλ = λy + (1− λ)q ∈ C, where λ ∈ [0, 1] and y ∈ C. Thus,

⟨ai(uns
)− yλ, Tiyλ⟩ ≥ ⟨ai(uns

)− yλ, Tiyλ⟩+ ⟨yλ − ai(uns
), Tiai(uns

)⟩

− 1

rns

⟨yλ − ai(uns), (1 + rns)∇f(ai(uns))−∇f(ai−1(uns))⟩

= ⟨ai(uns
)− yλ, Tiyλ − Tiai(uns

)⟩

− 1

rns

⟨yλ − ai(uns
), (1 + rns

)∇f(ai(uns
))−∇f(ai−1(uns

))⟩

≥ ⟨ai(uns)− yλ,∇f(yλ)−∇f(ai(uns))⟩

− 1

rns

⟨yλ − ai(uns), (1 + rns)∇f(ai(uns))−∇f(ai−1(uns))⟩

= ⟨ai(uns
)− yλ,∇f(yλ)⟩

− 1

rns

⟨yλ − ai(uns
),∇f(ai(uns

))−∇f(ai−1(uns
))⟩

≥ ⟨ai(uns)− yλ,∇f(yλ)⟩

−∥yλ − ai(uns
)∥∥∇f(ai(uns

))−∇f(ai−1(uns
))∥

rns

≥ ⟨ai(uns)− yλ,∇f(yλ)⟩ (3.30)

−W
∥∇f(ai(uns

))−∇f(ai−1(uns
)∥

rns

,

where W = max
1≤i≤N

sup
s≥0

∥yλ − ai(uns)∥. From the facts that ai(uns) ⇀ q, ∇f is uniformly continuous, (3.21), rn ≥ c1,

for all n ≥ 0 and taking the limits on both sides of the inequality (3.30) as s → ∞, we obtain that

⟨q − yλ, Tiyλ⟩ ≥ ⟨q − yλ,∇f(yλ)⟩ . (3.31)
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Thus, from inequality (3.31), we obtain

⟨q − y, Ti(q + λ(y − q))⟩ ≥ ⟨q − y,∇f(q + λ(y − q))⟩ ,∀y ∈ E. (3.32)

Using the fact that Ti is continuous and ∇f is uniformly continuous on bounded subset of E and letting λ ↓ 0 , we
have from inequality (3.32) that

⟨q − y, Tiq⟩ ≥ ⟨q − y,∇f(q)⟩ ,∀y ∈ C ⇔ 0 ≥ ⟨q − y,∇f(q)− Tiq⟩ ,∀y ∈ E. (3.33)

Now, set y = ∇f∗(Tiq). Since E is reflexive and ∇f∗ is monotone, we get that

⟨q −∇f∗(Tiq),∇f(q)− Tiq⟩ = 0, (3.34)

which implies that Tiq = ∇f(q). Hence q ∈ Ff (Ti), for each i = 1, 2, . . . , N and q ∈
N⋂
i=1

Ff (Ti).

Step 3. We show that q ∈
M⋂
t=1

GMEP (Ft, φt, Bt).

Set bt(xns) = T
f,rns

Ht
bt−1(xns

). Then,

Ht(bt(xns
), y) +

1

rns

⟨y − bt(xns
),∇f(bt(xns

))−∇f(bt−1(xns
))⟩ ≥ 0,∀y ∈ C.

Thus, by Condition (A2), we have

Ht(y, bt(uns
)) ≤ −Ht(bt(xns

), y) ≤ 1

rns

⟨y − bt(xns
),∇f(bt(xns

))−∇f(bt−1(xns
)⟩

≤ ∥y − bt(xns)∥
∥∇f(bt(xns))−∇f(bt−1(xns))∥

rns

≤ P
∥∇f(bt(xns

))−∇f(bt−1(xns
)∥

rns

, (3.35)

where P = max
1≤t≤M

sup
s≥0

∥y − bt(xns)∥. From the facts that bt(xns) ⇀ q, Condition A (A4), rn ≥ c1, for all n ≥ 0 and

taking limits on both sides of the inequality (3.35) as s → ∞, we obtain that

Ht(y, q) ≤ 0,∀y ∈ C. (3.36)

Set yλ = λy + (1− λ)q, λ ∈ (0, 1] and y ∈ C. Consequently, we get yλ ∈ C. From (3.36) and Condition A (A1), we
obtain

0 = Ht(yλ, yλ) ≤ λHt(yλ, y) + (1− λ)Ht(yλ, q) (3.37)

≤ Ht(q + λ(q − y), y).

If λ ↓ 0, using Condition A (A3), we have
Ht(q, y) ≥ 0,∀y ∈ C.

Hence, q ∈ GMEP (Ft, φt, Bt), for each t = 1, 2, . . . . . . ,M . Therefore, q ∈
M⋂
t=1

GMEP (Ft, φt, Bt).

Finally, we show that {xn} converge strongly to the point p.

From (3.26) and Lemma 2.3, we obtain that

lim sup
n→∞

⟨xn − p,∇f(u)−∇f(p)⟩ = lim
s→∞

⟨xns − p,∇f(u)−∇f(p)⟩ (3.38)

= ⟨q − p,∇f(u)−∇f(p)⟩ ≤ 0.

Thus, using (3.16), (3.23), (3.38) and Lemma 2.9, we conclude that

lim
n→∞

Df (p, xn) = 0.
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Hence, Lemma 2.5 implies that xn → p as n → ∞.

Case 2. Suppose that there exists {ns} of {n} such that Df (p, xns
) < Df (p, xns+1), for all s ≥ 0. It follows from

Lemma 2.10 that there exists a nondecreasing sequence{ks} ⊂ N such that ks → ∞ as s → ∞ and

max{Df (p, xks
), Df (p, xs)} < Df (p, xks+1), (3.39)

for all s ≥ 0. Thus, from (3.15) and the conditions on αn, βn, γn, and λn, we get

lim
n→∞

∥dks
− zks

∥2 + ∥xks
− zks

∥2 = 0, (3.40)

and

lim
s→∞

[
M−1∑
t=0

∥bt+1(xks
)− bt(xks

)∥2 +
N−1∑
i=0

∥ai+1(uks
)− ai−1(uks

)∥2
]
= 0. (3.41)

Then
lim
s→∞

∥dks
− zks

∥ = lim
s→∞

∥xks
− zks

∥ = 0 and hence lim
s→∞

∥xks
− dks

∥ = 0, (3.42)

lim
s→∞

∥bt+1(xks)− bt(xks)∥ = 0, 0 ≤ t ≤ M − 1, lim
s→∞

∥uks − xks∥ = 0, (3.43)

and
lim
s→∞

∥ai(uks)− ai−1(uks)∥ = 0, 0 ≤ i ≤ N − 1, lim
s→∞

∥vks − uks∥ = 0. (3.44)

Moreover, following the methods used in Case 1, we get

lim sup
s→∞

⟨xks
− p,∇f(u)−∇f(p)⟩ ≤ 0. (3.45)

Therefore, from (3.16), (3.23), (3.45) and Lemma 2.9, we obtain that

lim
s→∞

Df (p, xks) = 0. (3.46)

This together with (3.16) imply that
lim
s→∞

Df (p, xks+1) = 0. (3.47)

Thus, from (3.39), and (3.47) we have that
lim
s→∞

Df (p, xs) = 0.

This together with Lemma 2.5 imply that xs → p as s → ∞. Therefore, from Case 1 and Case 2, we can conclude
that {xn} converges strongly to the point p in F . The proof is complete.

We note that the method of proof of Theorem 3.2 provides the following theorem for approximating a common
solution of f -fixed point, variational inequality and generalized mixed equilibrium problems in real Banach spaces.

Theorem 3.3. Assume that Conditions (B1) − (B7) and (C1) are satisfied with N = K = M = 1. Then, the
sequence {xn} generated by (3.1) with N = K = M = 1 converges strongly to p in F which is nearest to u with
respect to the Bregman distance.

If, in Theorem 3.2, we assume that Aj ≡ 0, for j = 0, 1, 2, . . . ,K, then Theorem 3.2 provides the following corollary.

Corollary 3.4. Assume that Conditions (B1)− (B5), and (C1) hold.

Let F :=
[⋂N

i=1 Ff (Ti)
]
∩
[⋂M

t=1 GMEP (Ft, φt, Bt)
]
̸= ∅. Let {xn} be a sequence generated from arbitrary u0, x0 ∈ C

by 
un = T f,rn

HM
◦ T f,rn

HM−1
◦ · · · ◦ T f,rn

H2
◦ T f,rn

H1
xn,

vn = Kf,rn
TN

◦Kf,rn
TN−1

◦ · · · ◦Kf,rn
T2

◦Kf,rn
T1

un,

xn+1 = ∇f∗(αn∇f(u) + θn∇f(xn) + γn∇f(vn)),

(3.48)

where ∇f is the gradient of f on E; {rn} ⊂ [c1,∞) for some c1 > 0, αn, θn, γn ∈ (0, 1), ∀n ≥ 0 such that αn+θn+γn =
1, lim

n→∞
αn = 0 with

∑∞
n=1 αn = ∞ and γn ∈ [c, 1) for some c > 0. Then, the sequence {xn} converges strongly to p

in F which is nearest to u with respect to the Bregman distance.
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If, in Corollary 3.4, we assume that Fi ≡ 0, for i = 1, 2, . . . ,K, then Corollary 3.2 provides the following corollary
for approximating the common solution of a finite family of mixed variational inequality of Browder type problems for
continuous monotone mappings and f -fixed point problems for continuous f -pseudocontractive mapping in a reflexive
real Banach space.

Corollary 3.5. Let {xn} be a sequence generated from arbitrary u0, x0 ∈ C by
un = T f,rn

HM
◦ T f,rn

HM−1
◦ · · · ◦ T f,rn

H2
◦ T f,rn

H1
xn,

vn = Kf,rn
TN

◦Kf,rn
TN−1

◦ · · · ◦Kf,rn
T2

◦Kf,rn
T1

un,

xn+1 = ∇f∗(αn∇f(u) + θn∇f(xn) + γn∇f(vn)),

(3.49)

where ∇f is the gradient of f on E; {rn} ⊂ [c1,∞) for some c1 > 0, αn, θn, γn ∈ (0, 1), ∀n ≥ 0 such that αn+θn+γn =
1, lim

n→∞
αn = 0 with

∑∞
n=1 αn = ∞ and γn ∈ [c, 1) for some c > 0. If the Conditions (B1)− (B3), (B5) and (C1) are

satisfied and F :=
[⋂N

i=1 Ff (Ti)
]
∩
[⋂M

t=1 V I(Bt, φt, C)
]
̸= ∅, then the sequence {xn} converges strongly to p in F

which is nearest to u with respect to the Bregman distance.

If we assume that E is smooth and strictly convex, then f(x) = 1
2∥x∥

2 is strongly coercive, bounded and uniformly
Fréchet differentiable Legendre function which is strongly convex with constant µ = 1 and conjugate f∗(x∗) = 1

2∥x
∗∥2.

In this case, we have ∇f = J , ∇f∗ = J−1 and for r > 0 and x ∈ E, we have

T r
Hx = {z ∈ C : H(z, y) +

1

r
⟨y − z, J(z)− J(x)⟩ ≥ 0,∀y ∈ C}, (3.50)

where H(z, y) := F (z, y) + φ(y)− φ(z) + ⟨y − z,Bz⟩, and

Kr
Tx = {z ∈ C : ⟨y − z, T (z)⟩ − 1

r
⟨y − z, (1 + r)J(z)− J(x)⟩ ≤ 0,∀y ∈ C}. (3.51)

In this case, Theorem 3.2 reduces to the following corollary:

Corollary 3.6. Let C be nonempty, closed and convex subset of a smooth and strictly convex reflexive real Banach
space E with its dual E∗. Assume that Conditions (B1)−(B7) hold. Let {xn} be a sequence generated from arbitrary
u0, x0 ∈ C by 

zn = ΠCJ
−1(J(xn)− λnAnxn)

dn = ΠCJ
−1(J(xn − λnAnzn),

un = T rn
HM

◦ T rn
HN−1

◦ · · · ◦ T rn
H2

◦ T rn
H1

xn,

vn = Krn
TN

◦Krn
TN−1

◦ · · · ◦Krn
T2

◦Krn
T1
un,

xn+1 = J−1(αnJ(u) + θnJ(xn) + βnJ(dn) + γnJ(vn)),

(3.52)

where An = An mod (K+1), and ΠC is the generalized metric projection from E onto C; {rn} ⊂ [c1,∞) for some
c1 > 0, αn, θn, βn, γn ∈ (0, 1), ∀n ≥ 0 such that αn + θn + βn + γn = 1, lim

n→∞
αn = 0 with

∑∞
n=1 αn = ∞ and

βn, γn ∈ [c, 1) for some c > 0, and 0 < a ≤ λn ≤ b < 1
L , for L = max

0≤i≤K
Li. Then, the sequence {xn} converges strongly

to p in F which is nearest to u with respect to the generalized metric projection.

If, in Corollary 3.6, we assume that E = H, a real Hilbert space, and f(x) = 1
2∥x∥

2, then we have ∇f = J =
I and ∇f∗ = J−1 = I, were I is identity mapping on H. Moreover, f -pseudocontractive mapping reduces to
pseudocontractive mapping. In this case, for r > 0 and x ∈ E, we have

T r
Hx = {z ∈ C : H(z, y) +

1

r
⟨y − z, z − x⟩ ≥ 0,∀y ∈ C}, (3.53)

where H(z, y) := F (z, y) + φ(y)− φ(z) + ⟨y − z,Bz⟩, and

Kr
Tx = {z ∈ C : ⟨y − z, T (z)⟩ − 1

r
⟨y − z, (1 + r)z − x⟩ ≤ 0,∀y ∈ C}. (3.54)

Thus, we have the following corollary.
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Corollary 3.7. Let C be a nonempty, closed and convex subset of a real Hilbert space H and let Ti : H → H,
i = 1, 2, · · · , N be continuous pseudocontractive mappings. Let {xn} be a sequence generated from an arbitrary
u, x0 ∈ C by 

zn = PC(xn − λnAnxn)

dn = PC(xn − λnAnzn),

un = T rn
HM

◦ T rn
HM−1

◦ · · · ◦ T rn
H2

◦ T rn
H1

xn,

vn = Krn
TN

◦Krn
TN−1

◦ · · · ◦Krn
T2

◦Krn
T1
un,

xn+1 = αnu+ θnxn + βndn + γnvn,

(3.55)

where An = An mod (K+1), and PC is metric projection of H onto C; {rn} ⊂ [c1,∞) for some c1 > 0, αn, θn, βn, γn ∈
(0, 1), ∀n ≥ 0 such that αn + θn + βn + γn = 1, lim

n→∞
αn = 0 with

∑∞
n=1 αn = ∞ and βn, γn ∈ [c, 1) for some c > 0,

and 0 < a ≤ λn ≤ b < 1
L , for L = max

0≤i≤K
Li. If Conditions (B3)− (B7) are satisfied, then the sequence {xn} converges

strongly to p in F which is nearest to u with respect to the metric projection.

4 Numerical Example

In this section, we present an example to illustrate the main result of our paper.

Example 4.1. Let E = LR
2 ([0, 1]) with norm ∥x∥LR

2
= (
∫ 1

0
|x(s)|2ds) 1

2 , for x ∈ E and C = {x ∈ E : ∥x∥LR
2
≤ 1}.

Define f : E → R by f(x) = 1
2∥x∥

2
LR

2
, then ∇f = J = I and ∇f∗ = J = I, where I is identity mapping on E. Let

Aj , Ti, Bt : C → E be defined by Aj(x)(s) = (1 + j)∇f(x)(s), j = 0, 1, . . . ,K; Ti(x)(s) = −si∇f(x)(s), i = 1, . . . , N
and Bt(x)(s) = t+1

2t+1∇f(x)(s), t = 1, . . . ,M , for all x(s) ∈ C, s ∈ [0, 1], respectively. Let Ft : C × C → R be

defined by Ft(x, y) =
t

2t+1 ⟨y − x,∇f(x)⟩ ,∀x, y ∈ C. Then Aj , for j = 0, 1, . . . ,K are Lipschitz monotone mappings

with
⋂K

j=0 V I(C,Aj) = {0}; Ti, for i = 1, . . . , N are continuous f -pseudocontractive with
⋂N

i=1 Ff (Ti) = {0}; Bt,
for t = 1, . . . ,M are continuous monotone mappings, and Ft, for t = 1, . . . ,M are bi-function satisfying Condition
A. Thus, a common solution set of the generalized equilibrium problems is

⋂M
t=1 GMEP (Ft, φt, Bk) = {0}, where

φt ≡ constant. Now, for implementation, we choose K = 0, N = M = 1, rn = 1, θn = βn = γn = 1
3 (1 − αn),

λn = 0.00001 + 1
100n , for n ≥ 0 and we compute the (n+ 1)th iteration as follows:



zn(s) = min{1, 1
∥wn∥LR

2

}wn(s),

dn(s) = min{1, 1
∥hn∥LR

2

}hn(s),

un(s) =
1

rn+1xn(s),

vn(s) =
1

1+rn(1+s)un,

xn+1(s) = αnu(s) + θnxn(s) + βndn(s) + γnvn(s),

(4.1)

where wn(s) = xn(s)− λn(1 + s)xn(s) and hn(s) = xn(s)− λn(1 + s)zn(s).

Now, taking different initial points, x0(s) = 2s, x0(s) = 2s5, x0(s) = 2s10 and fixed u0(s) = 2s2 in C and αn =
1

10000n+10 , the numerical experiment result provides that the sequence {∥xn − p∥} approaches zero as n → ∞ (see,
Figure 1 below), where p = 0. In this case, we observe that the sequence {xn} converges faster when the power of s
gets large.

Next, we obtain the same numerical tests of algorithm 4.1 by taking initial points u0(s) = 2s2, x0(s) = 2s10 and
different control parameters, αn = 1

100n+10 , αn = 1
(100)2n+10 , αn = 1

(100)3n+10 . In this case, we observe that the rate

of convergence looks the same through out (see, Figure 2).

5 Conclusion

In this paper, we constructed a new algorithm to approximate a common element of the set of solutions of a finite
family of generalized mixed equilibrium problems, the set of f -fixed points of a finite family of f -pseudocontractive
mappings and the set of solutions of a finite family of variational inequality problems for a finite family of Lipschitz
monotone mappings in reflexive real Banach spaces. We proved a strong convergence theorem for the developed
algorithm in reflexive real Banach spaces. In addition, a numerical example is given to illustrate the implementability
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Figure 1: Figure 1: Convergence of the sequence {||xn − p||} as n gets large.
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Figure 2: Figure 2: Convergence of the sequence {||xn − p||} as n gets large.

of our algorithm. Specifically, the result of our method improve the result obtained by Shahzad and Zegeye [21] from
a Hilbert spaces to a reflexive Banach spaces, from continuous pseudocontractive to continuous f -pseudocontractive
and from equilibrium problem to generalized mixed equilibrium problem. In addition, Theorem 3.2 extends Theorem
3.1 of Bello and Nnakwe [2] from 2-uniformly convex and uniformly smooth spaces to reflexive Banach spaces, from
continuous semi-pseudocontractive to continuous f -pseudocontractive and from equilibrium problem to generalized
mixed equilibrium problem.

Acknowledgement

This work was supported by Simons Foundation funded project based at Botswana International University of
Science and Technology. The first author was also supported by the International Science Program(ISP)- Sweden,
based in the Department of Mathematics, Addis Ababa University, Ethiopia.

References

[1] H.H. Bauschke, J.M. Borwein and P.L. Combettes, Essential smoothness, essential strict convexity, and Legendre
functions in Banach spaces, Commun. Contemp. Math. 3 (2001), 615–647.



1086 Zegeye, Zegeye, Sangago, Boikanyo

[2] A.U. Bello and M.O. Nnakwe, An algorithm for approximating a common solution of some nonlinear problems in
Banach spaces with an application, Adv. Differ. Eq. 2021 (2021), no. 1, 1–17.

[3] E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Stud. 63
(1994), 123–145.

[4] F.J. Bonnans and A. Shapiro, Perturbation analysis of optimization problem, Springer, New York, 2000.

[5] L.M. Bregman, The relaxation method for finding common points of convex sets and its application to the solution
of problems in convex programming, USSR Comput. Math. Math. Phys. 7 (1967), 200–217.

[6] D. Butnariu and E. Resmerita, Bregman distances, totally convex functions and a method for solving operator
equations in Banach spaces, Abstr. Appl. Anal. 2006 (2006), 139.

[7] F.E. Browder, Existence and approximation of solutions of nonlinear variational inequalities, Proc. Natl. Acad.
Sci. USA 56 (1966), no. 4, 1080–1086.

[8] L.C. Ceng and J.C. Yao, A hybrid iterative scheme for mixed equilibrium problems and fixed point problems, J.
Comput. Appl. Math. 214 (2008), 186–201.

[9] V. Darvish, Strong convergence theorem for generalized mixed equilibrium problems and Bregman nonexpansive
mapping in Banach spaces, Mathematica Moravica 20 (2016), no. 1, 69–87.

[10] M. Khonchaliew, A. Farajzadeh and N. Petrot, Shrinking extragradient method for pseudomonotone equilibrium
problems and quasi-nonexpansive mappings, Symmetry 11 (2019), no. 4, 480.

[11] P. Lohawech, A. Kaewcharoen and A. Farajzadeh, Algorithms for the common solution of the split variational
inequality problems and fixed point problems with applications, J. Inequal. Appl. 2018 (2018), 358.
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