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Abstract

In this article, a class of first order neutral delay differential equations with iterative terms is investigated. The
proofs of the existence of positive periodic solutions rely on the Krasnoselskii’s fixed point theorem together with the
Green’s functions method. Furthermore, by the aid of the Banach fixed point theorem and under an extra condition,
we establish the existence, uniqueness and stability results. We provide an example to show the accuracy of the
conditions of the obtained findings which extend and generalize earlier ones in the literature.
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1 Introduction

Recently, a great attention has been devoted to investigate neutral differential equations where the highest order
derivatives occur with delays. These equations arise in various applied sciences such as population dynamic, biology,
hematology, physics, economics, chemistry, and so forth. For any further and detailed information, we refer the
interested reader to [2, 7, 14, 16, 18] and the references cited therein. Among the papers that dealt with the existence
of periodic solutions for first order neutral differential equations, we cite some of them which are relevant to what we
are discussing in this work.

In 1991, Serra [18] used the Mawhin’s coincidence degree theory to investigate the existence of periodic solutions
for the following neutral differential equation:

d

dt
[x (t)− cx (t− τ)] = f (t, x (t)) ,

with t ∈ R, c ∈ R, τ ∈ ]0, 2π[ , f : R× R −→ R is Caratheodory function and 2π−periodic with respect to the time.

In 2008, by means of the Krasnoselskii’s fixed point theorem, Luo et al. [16] gave the sufficient conditions that
guarantee the existence of positive periodic solutions of the following neutral differential equation:

d

dt
[x (t)− cx (t− τ (t))] = −a (t)x (t) + f (t, x (t− τ (t))) ,
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where a ∈ C (R, (0,∞)) , τ ∈ C (R,R) and f ∈ C (R× R,R) are common periodic functions with respect to the time
variable.

In 2016, Candan [7] employed the same aforementioned fixed point theorem to discuss the positive periodic solutions
for the following neutral differential equation:

d

dt
[x (t)− P (t)x (t− τ)] = −a (t)x (t) + f (t, x (t− τ)) ,

here a ∈ C (R, (0,∞)) , P ∈ C1 (R,R) and f ∈ C (R× R,R) are common periodic functions with respect to the time
variable and τ > 0.

In the present work, we give new sufficient criteria for the existence, uniqueness and continuous dependence of
positive periodic solutions for the following first order neutral differential equation with iterative terms:

d

dt
[x (t)− cx (t− τ (t))] = −a (t)x (t) + f (t, x (t− τ (t)))−H

(
t, x (t) , x[2] (t) , ..., x[n] (t)

)
, (1.1)

where the iterate x[n] (t) stands for x composed with itself n times, i.e. x[2] (t) = x (x (t)) , ..., x[n] (t) = x[n−1] (x (t)),
c ∈ (0, 1), a, τ ∈ C (R, (0,∞)) , f ∈ C ([0, T ]×R, (0,∞)) and H ∈ C ([0, T ]×Rn, (0,∞)) are T−periodic functions
with respect to the time variable. Furtheremore, the functions f (t, x) and H (t, x1, x2, ..., xn) are supposed globally
Lipschitz in x and x1, ..., xn respectively, i.e. there exist a positive constant k and n positive constants l1, l2, ..., ln such
that

|f (t, x)− f (t, y)| ≤ k ∥x− y∥ , (1.2)

and

|H (t, x1, x2, ..., xn)−H (t, y1, y2, ..., yn)| ≤
n∑

i=1

li ∥xi − yi∥ , (1.3)

It is noteworthy that equation (1.1) is a first order iterative differential equation and such equations are used to
model a variety of phenomena observed in an extremely wide range of areas, including life sciences (see, e.g., [1, 6, 19],
and references cited therein). For instance, it can model many biological and ecological equations such as: Neutral
Mackey-Glass models with harvesting, Neutral Wazewska-Lasota model with harvesting, Neutral Nicholson’s blowflies
model with harvesting and Neutral houseflies model with harvesting.

So, to put forward a more meaningful and realistic model that can describe a biological phenomenon and contain the
minimal basic biological information about it, we assume that the production f (flux or recruitment) term incorporates
a time-varying delay and also we take into account a harvesting strategy H with time and state dependent delays that
lead to the appearance of the iterates x[i] (t).

The strong interest in this work is motivated by the fact that the harvesting of individuals provides a good
description of the population dynamics and plays a prominent role in getting a better understanding of its effects on
the management of biological resources. Moreover, in many biological and vital phenomena, the delays are generally
depending on both the time and the state variable that can give the iterations in the model such as in infectious
diseases spread, blood cell production and insect population growth.

We now outline some key features of our work by the following items:

- It should be pointed out that equation (1.1) is more general than those investigated in [6, 7, 16, 18]. Furthermore,
to the best of our knowledge, there are no published papers that address this problem with a time varying delay and
an iterative harvesting term that involves implicitly (n− 1) time and state dependent delays.

- Despite that recent years have gradually witnessed an unprecedented interest towards such kind of equations (we
can mention, for instance, [1], [3]-[6], [8]-[13], [15], [17], [19]-[21] ), the investigation in this direction remains scarce
and their theory has not yet been developed enough. So, it is our belief that our work is of significance because it
contributes in the literature of this emergent theory.

- There is no doubt that the harvesting strategy plays a crucial role in the population dynamics and it is also
quite normal that it involves many delays. So, on account of these facts, we attempt to understand the effect of the
harvesting strategy on the population dynamics by adding an iterative harvesting term involving implicitly many time
and state dependent delays.

- We are interested in the positivity, boundedness and periodicity of solutions which makes our results even more
powerful and biologically meaningful. This is due to the fact that the state x (t) in biological phenomena could, for
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example, stand for an amount of cells, a density, a number of individuals or a size of the population which should be
positive and bounded quantities and generally periodic.

The rest of the manuscript is furnished as follows: In Section 2, we start with some preliminaries which will be
needed in what follows. In Section 3, by virtue of the Krasnoselskii’s fixed point theorem and some Green’s function
properties, we construct some new results about the existence of positive periodic solutions for equation (1.1). In
Section 4, the existence, uniqueness and continuous dependence on parameters of the solutions are established by
using Banach fixed point theorem. In Section 5, we exhibit an example to which our key outcomes can be applied.
Finally, we conclude the paper with a brief conclusion.

2 Mathematical background

For T,M,L > 0 and m ≥ 0, let
PT = {x ∈ C(R,R), x(t+ T ) = x(t)} ,

be a Banach space furnished with the norm

∥x∥ = sup
t∈R

|x(t)| = sup
t∈[0,T ]

|x(t)| ,

and
PT (L,m,M) = {x ∈ PT ,m ≤ x (t) ≤ M, |x(t2)− x(t1)| ≤ L |t2 − t1| ,∀t1, t2 ∈ R} .

Then PT (L,m,M) is a closed convex and bounded subset of PT . Since the uniform boundedness and the equicontinuity
of PT (L,m,M) follow from its definition, then it follows from the Arzelà-Ascoli theorem that it is compact.

For convenience, throughout this work, we introduce the following notations:

a1 = max
t∈[0,T ]

a (t) , f1 = max
t∈[0,T ]

|f (t, 0)| , H1 = max
t∈[0,T ]

|H (t, 0, 0, ..., 0)| ,

η1 =
exp

(
−
∫ T

0
a (u) du

)
exp

(∫ T

0
a (u) du

)
− 1

, η2 =
exp

(∫ T

0
a (u) du

)
exp

(∫ T

0
a (u) du

)
− 1

, Λ =

n∑
i=1

li

i−1∑
j=0

Lj .

In the sequel we will assume that the following hypotheses are satisfied:
There exists a positive constant f0 > 0 such that

f (t, x) ≥ f0, ∀t ∈ R, ∀x ∈ (0,∞) . (2.1)

The following estimates are satisfied:

cM + η2T (kM + f1) ≤ M, (2.2)

η1Tf0 − η2T (MΛ +H1)− cTη2a1M + cm ≥ m, (2.3)

and
η2 (2 + a1T ) (H1 + f1 +M (k + Λ+ ca1)) + L (1 + L) c ≤ L. (2.4)

Now, we state and prove the following lemma, which we intend to use later.

Lemma 2.1. x ∈ PT (L,m,M) ∩ C1(R,R) is a solution of (1.1) if and only if x ∈ PT (L,m,M) satisfies the following
integral equation:

x (t) =

∫ t+T

t

G (t, s)
[
f (s, x (s− τ (s)))−H

(
s, x (s) , x[2] (s) , ..., x[n] (s)

)
−ca (s)x (s− τ (s))] ds+ cx (t− τ (t)) , (2.5)

where

G (t, s) =
exp

(∫ s

t
a (u) du

)
exp

(∫ T

0
a (u) du

)
− 1

. (2.6)
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Proof . Let x ∈ PT (L,m,M) ∩ C1(R,R) be a solution of (1.1). Multiplying both sides of (1.1) by exp
(∫ t

0
a (u) du

)
,

we get

d

dt

[
(x (t)− cx (t− τ (t))) exp

(∫ t

0

a (u) du

)]
=
[
f (t, x (t− τ (t)))−H

(
t, x (t) , x[2] (t) , ..., x[n] (t)

)]
exp

(∫ t

0

a (u) du

)
− ca (t)x (t− τ (t)) exp

(∫ t

0

a (u) du

)
.

It follows from the periodic properties and the integration from t to t+ T that

(x (t)− cx (t− τ (t)))

(
exp

(∫ t+T

0

a (u) du

)
− exp

(∫ t

0

a (u) du

))

=

∫ t+T

t

{
f (s, x (s− τ (s)))−H

(
s, x (s) , x[2] (s) , ..., x[n] (s)

)
−c (s) a (s)x (s− τ (s))} exp

(∫ s

0

a (u) du

)
ds.

Therefore

x (t) =

∫ t+T

t

exp
(∫ s

t
a (u) du

)
exp

(∫ T

0
a (u) du

)
− 1

{
f (s, x (s− τ (s)))−H

(
s, x (s) , x[2] (s) , ..., x[n] (s)

)
−ca (s)x (s− τ (s))} ds+ cx (t− τ (t)) .

This completes the proof of the lemma. □

Lemma 2.2. [21]If x, y ∈ PT (L,m,M), then

∥∥∥x[m] − y[m]
∥∥∥ ≤

m−1∑
j=0

Lj ∥x− y∥ , m = 1, 2, ...

Remark 2.3. We have

0 < η1 ≤ G (t, s) ≤ η2, (2.7)

G (t+ T, s+ T ) = G (t, s) , ∀t, s ∈ R, (2.8)∫ t1+T

t1

|G (t2, s)−G (t1, s)| ds ≤ Ta1η2 |t2 − t1| , (2.9)

for all t, s, t1, t2 ∈ R and in view of (1.2), (1.3) and Lemma 2.2 we obtain

|f (s, x (s− τ (s)))| ≤ kM + f1, (2.10)

and ∣∣∣H (s, x (s) , x[2] (s) , ..., x[n] (s)
)∣∣∣ ≤ MΛ +H1, (2.11)

for all x ∈ PT (L,m,M).

3 Main Results

In this section, we will use the Krasnoselskii’s fixed point theorem to prove the existence of positive periodic
solutions of equation (1.1). For this and, by virtue of Lemma 2.1, we define an operator N : PT (L,m,M) → PT as
follows:

(Nx) (t) = (F1x) (t) + (F2x) (t) ,
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where F1, F2 : PT (L,m,M) → PT are defined as follows:

(F1x) (t) =

∫ t+T

t

G (t, s)
[
f (s, x (s− τ (s)))−H

(
s, x (s) , x[2] (s) , ..., x[n] (s)

)
−ca (s)x (s− τ (s))] ds, (3.1)

and
(F2x) (t) = cx (t− τ (t)) . (3.2)

So, the existence of solutions for equation (1.1) is equivalent whether or not the operator N has a fixed point.

Since c ∈ (0, 1) , then F2 is a contraction. So, to apply Krasnoselskii’s fixed point theorem, it suffices to prove that
F1 is continuous and compact and that F1x+ F2y ∈ PT (L,m,M) for all x, y ∈ PT (L,m,M).
We start by proving the compactness and the continuity of F1.

Lemma 3.1. Operator F1 : PT (L,m,M) → PT is continuous and compact.

Proof . Since PT (L,m,M) is a compact subset of PT , then the compactness of F1 follows immediately from its
continuity.
Let us prove that F1 is continuous. Indeed, for all x, y ∈ PT (L,m,M), we have

|(F1x) (t)− (F1y) (t)| ≤
∫ t+T

t

|f (s, x (s− τ (s)))− f (s, y (s− τ (s)))|G (t, s) ds

+

∫ t+T

t

G (t, s)
∣∣∣H (s, x (s) , x[2] (s) , ..., x[n] (s)

)
ds

−H
(
s, y (s) , y[2] (s) , ..., y[n] (s)

)∣∣∣ ds
+

∫ t+T

t

ca (s) |x (s− τ (s))− y (s− τ (s))|G (t, s) ds.

It follows from (1.2), (1.3) and (2.7) that

∥F1x− F1y∥ ≤ η2Tk ∥x− y∥+ η2T

n∑
i=1

li

∥∥∥x[i] − y[i]
∥∥∥+ η2Tca1 ∥x− y∥ .

By using Lemma 2.2, we obtain
∥F1x− F1y∥ ≤ η2T (k + ca1 + Λ) ∥x− y∥ , (3.3)

which establishes that the operator F1 is Lipschitz continuous and hence continuous. Therefore, F1 is compact. □

Lemma 3.2. Let τ ∈ PT (L,m,M). If conditions (2.1)-(2.4) hold, then

F1x+ F2y ∈ PT (L,m,M),

for all x, y ∈ PT (L,m,M).

Proof . Let x, y ∈ PT (L,m,M). From (2.2), (2.7) and (2.10) we get

(F1x) (t) + (F2y) (t) ≤ cy (t− τ (t)) +

∫ t+T

t

G (t, s) f (s, x (s− τ (s))) ds

≤ cM + η2T (kM + f1)

≤ M,

and from (2.1), (2.3), (2.7) and (2.11), we arrive at

(F1x) (t) + (F2y) (t) ≥ η1Tf0 − η2T (MΛ +H1)− cTη2a1M + cm

≥ m.
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Consequently,
m ≤ (Ax) (t) + (By) (t) ≤ M, (3.4)

for all x, y ∈ PT (L,m,M).
Let τ ∈ PT (L,m,M) and t1, t2 ∈ [0, T ] with t1 < t2. For all x, y ∈ PT (L,m,M), we have

|((F1x) + (F2y)) (t2)− ((F1x) + (F2y)) (t1)|

≤

∣∣∣∣∣
∫ t2+T

t2

G (t2, s) f (s, x (s− τ (s))) ds−
∫ t1+T

t1

G (t1, s) f (s, x (s− τ (s))) ds

∣∣∣∣∣
+

∣∣∣∣∣
∫ t2+T

t2

G (t2, s)H
(
s, x (s) , x[2] (s) , ..., x[n] (s)

)
ds

−
∫ t1+T

t1

G (t1, s)H
(
s, x (s) , x[2] (s) , ..., x[n] (s)

)
ds

∣∣∣∣∣
+

∣∣∣∣∣
∫ t2+T

t2

G (t2, s) ca (s)x (s− τ (s)) ds−
∫ t1+T

t1

G (t1, s) ca (s)x (s− τ (s)) ds

∣∣∣∣∣
+ |cy (t2 − τ (t2))− cy (t1 − τ (t1))| .

By using (2.7), (2.9) and (2.10), we obtain∣∣∣∣∣
∫ t2+T

t2

G (t2, s) f (s, x (s− τ (s))) ds−
∫ t1+T

t1

G (t1, s) f (s, x (s− τ (s))) ds

∣∣∣∣∣
≤
∣∣∣∣∫ t1

t2

G (t2, s) f (s, x (s− τ (s))) ds

∣∣∣∣+
∣∣∣∣∣
∫ t2+T

t1+T

G (t2, s) f (s, x (s− τ (s))) ds

∣∣∣∣∣
+

∫ t1+T

t1

|G (t2, s)−G (t1, s)| f (s, x (s− τ (s))) ds.

≤ (2 + a1T ) η2 (kM + f1) |t2 − t1| . (3.5)

From (2.7), (2.9) and (2.11), we get∣∣∣∣∣
∫ t2+T

t2

G (t2, s)H
(
s, x (s) , x[2] (s) , ..., x[n] (s)

)
ds−

∫ t1+T

t1

G (t1, s)H
(
s, x (s) , x[2] (s) , ..., x[n] (s)

)
ds

∣∣∣∣∣
≤
∣∣∣∣∫ t1

t2

G (t2, s)H
(
s, x (s) , x[2] (s) , ..., x[n] (s)

)
ds

∣∣∣∣+
∣∣∣∣∣
∫ t2+T

t1+T

G (t2, s)H
(
s, x (s) , x[2] (s) , ..., x[n] (s)

)
ds

∣∣∣∣∣
+

∫ t1+T

t1

|G (t2, s)−G (t1, s)|H
(
s, x (s) , x[2] (s) , ..., x[n] (s)

)
ds,

≤ (2 + a1T ) (MΛ +H1) η2 |t2 − t1| . (3.6)

In view of (2.7) we obtain∣∣∣∣∣
∫ t2+T

t2

G (t2, s) ca (s)x (s− τ (s)) ds−
∫ t1+T

t1

G (t1, s) ca (s)x (s− τ (s)) ds

∣∣∣∣∣
≤
∣∣∣∣∫ t1

t2

G (t2, s) ca (s)x (s− τ (s)) ds

∣∣∣∣+
∣∣∣∣∣
∫ t2+T

t1+T

G (t2, s) ca (s)x (s− τ (s)) ds

∣∣∣∣∣
+

∫ t1+T

t1

|G (t2, s)−G (t1, s)| ca (s)x (s− τ (s)) ds

≤ (2 + a1T ) η2cMa1 |t2 − t1| . (3.7)
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Since τ ∈ PT (L,m,M), then

|cy (t2 − τ (t2))− cy (t1 − τ (t1))| ≤ c |y (t2 − τ (t2))− y (t1 − τ (t1))|
≤ Lc |t2 − t1 + τ (t2)− τ (t1)|
≤ Lc (|t2 − t1|+ L |t2 − t1|)
≤ L (1 + L) c |t2 − t1| . (3.8)

Thus, it follows from (2.4) and (3.5)-(3.8) that

|((F1x) + (F2y)) (t2)− ((F1x) + (F2y)) (t1)| ≤ L |t2 − t1| , (3.9)

for all t1, t2 ∈ R and x, y ∈ PT (L,m,M).
According to (3.4) and (3.9) we conclude the desired result. □

Now we are ready to present our first existence theorem.

Theorem 3.3. Let τ ∈ PT (L,m,M). If conditions (2.1)-(2.4) hold, then equation (1.1) has at least one positive
periodic solution in PT (L,m,M).

Proof . Based on Lemmas 3.1 and 3.2, the fact that PT (L,m,M) is a compact subset of PT and that F2 is a
contraction, we conclude by the Krasnoselskii’s fixed point theorem that there exists at least x ∈ PT (L,m,M) satisfies
N (x (t)) = x (t) . Thanks to Lemma 2.1, x is a solution of equation (1.1). □

4 Existence, uniqueness and stability

4.1 Existence and uniqueness

Theorem 4.1. Let τ ∈ PT (L,m,M). If conditions (2.1)-(2.4) and the following estimate:

Tη2 (k + Λ+ ca1) + c < 1, (4.1)

are fulfilled, then equation (1.1) has a unique positive periodic solution x ∈ PT (L,m,M) .

Proof . Let x, y ∈ PT (L,m,M) . By repeating the same steps as those in the proof of Lemma 3.2, we infer that
N (PT (L,m,M)) ⊂ PT (L,m,M) and similarly as in the proof of Lemma 3.1, we get

∥(Nx)−Ny∥ ≤ (Tη2 (k + Λ+ ca1) + c) ∥x− y∥ .

According to (4.1) and the Banach fixed point theorem, N is a contraction and hence N has a unique fixed point
which is the unique solution of (1.1). □

4.2 Stability

Remark 4.2. If

G1 (t, s) =
exp

(∫ s

t
υ1 (u) du

)
exp

(∫ T

0
υ1 (u) du

)
− 1

, G2 (t, s) =
exp

(∫ s

t
υ2 (u) du

)
exp

(∫ T

0
υ2 (u) du

)
− 1

,

then ∫ t+T

t

|G1 (t, s)−G2 (t, s)| ds ≤ µ ∥υ1 − υ2∥ , (4.2)

where

µ =
T 2 exp (T (∥υ2∥+max (∥υ1∥ , ∥υ2∥)))(

exp
(∫ T

0
υ1 (u) du

)
− 1
)(

exp
(∫ T

0
υ2 (u) du

)
− 1
) +

T 2 exp (T max (∥υ1∥ , ∥υ2∥))

exp
(∫ T

0
υ1 (u) du

)
− 1

.

Theorem 4.3. The unique solution obtained in Theorem 4.1 depends continuously on functions a, f and H.
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Proof . If G1 and G2 are given as in Remark 4.2, let

x1 (t) =

∫ t+T

t

G1 (t, s)
[
f1 (s, x1 (s− τ (s)))−H1

(
s, x1 (s) , x

[2]
1 (s) , ..., x

[n]
1 (s)

)
−cυ1 (s)x1 (s− τ (s))] ds+ cx1 (t− τ (t)) ,

and

x2 (t) =

∫ t+T

t

G2 (t, s)
[
f2 (s, x2 (s− τ (s)))−H2

(
s, x2 (s) , x

[2]
2 (s) , ..., x

[n]
2 (s)

)
−cυ2 (s)x2 (s− τ (s))] ds+ cx2 (t− τ (t)) ,

be two different solutions of equation (1.1). We have

|x1 (t)− x2 (t)| ≤
∫ t+T

t

|G1 (t, s) f1 (s, x1 (s− τ (s)))−G2 (t, s) f2 (s, x2 (s− τ (s)))| ds

+

∫ t+T

t

∣∣∣G1 (t, s)H1

(
s, x1 (s) , x

[2]
1 (s) , ..., x

[n]
1 (s)

)
−G2 (t, s)H2

(
s, x2 (s) , x

[2]
2 (s) , ..., x

[n]
2 (s)

)∣∣∣ ds
+

∫ t+T

t

|G1 (t, s) cυ1 (s)x1 (s− τ (s))−G2 (t, s) cυ2 (s)x2 (s− τ (s))| ds

+ |cx1 (t− τ (t))− cx2 (t− τ (t))| .

Using (1.2), (1.3), (2.7), (2.10), (2.11) and (4.2), we get∫ t+T

t

|G1 (t, s) f1 (s, x1 (s− τ (s)))−G2 (t, s) f2 (s, x2 (s− τ (s)))| ds

≤
∫ t+T

t

G1 (t, s) |f1 (s, x1 (s− τ (s)))− f2 (s, x1 (s− τ (s)))| ds

+

∫ t+T

t

f2 (s, x1 (s− τ (s))) |G1 (t, s)−G2 (t, s)| ds

+

∫ t+T

t

G2 (t, s) |f2 (s, x1 (s− τ (s)))− f2 (s, x2 (s− τ (s)))| ds

≤ Tη2 ∥f1 − f2∥+ µ (kM + f1) ∥υ1 − υ2∥+ Tη2k ∥x1 − x2∥ , (4.3)

and ∫ t+T

t

∣∣∣G1 (t, s)H1

(
s, x1 (s) , x

[2]
1 (s) , ..., x

[n]
1 (s)

)
−G2 (t, s)H2

(
s, x2 (s) , x

[2]
2 (s) , ..., x

[n]
2 (s)

)∣∣∣ ds
≤
∫ t+T

t

G1 (t, s)
∣∣∣H1

(
s, x1 (s) , x

[2]
1 (s) , ..., x

[n]
1 (s)

)
−H2

(
s, x1 (s) , x

[2]
1 (s) , ..., x

[n]
1 (s)

)∣∣∣ ds
+

∫ t+T

t

H2

(
s, x1 (s) , x

[2]
1 (s) , ..., x

[n]
1 (s)

)
|G1 (t, s)−G2 (t, s)| ds

+

∫ t+T

t

G2 (t, s)
∣∣∣H2

(
s, x1 (s) , x

[2]
1 (s) , ..., x

[n]
1 (s)

)
−H2

(
s, x2 (s) , x

[2]
2 (s) , ..., x

[n]
2 (s)

)∣∣∣ ds
≤ Tη2 ∥H1 −H2∥+ µ (ΛM +H1) ∥υ1 − υ2∥+ Tη2Λ ∥x1 − x2∥ . (4.4)
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On the other hand, we have∫ t+T

t

|G1 (t, s) cυ1 (s)x1 (s− τ (s))−G2 (t, s) cυ2 (s)x2 (s− τ (s))| ds

≤
∫ t+T

t

cυ1 (s)G1 (t, s) |x1 (s− τ (s))− x2 (s− τ (s))| ds

+

∫ t+T

t

cυ1 (s)x2 (s− τ (s)) |G1 (t, s)−G2 (t, s)| ds

+

∫ t+T

t

cx2 (s− τ (s))G2 (t, s) |υ1 (s)− υ2 (s)| ds

≤ Tη2c ∥υ1∥ ∥x1 − x2∥+ c ∥υ1∥Mµ ∥υ1 − υ2∥+ Tη2cM ∥υ1 − υ2∥ , (4.5)

and
|cx1 (t− τ (t))− cx2 (t− τ (t))| ≤ c ∥x1 − x2∥ . (4.6)

Thanks to (4.3)-(4.6), we obtain

∥x1 − x2∥ ≤ Tη2 ∥f1 − f2∥+ µ (kM + f1) ∥υ1 − υ2∥+ Tη2k ∥x1 − x2∥
+ Tη2 ∥H1 −H2∥+ µ (ΛM +H1) ∥υ1 − υ2∥+ Tη2Λ ∥x1 − x2∥
+ Tη2c ∥υ1∥ ∥x1 − x2∥+ c ∥υ1∥Mµ ∥υ1 − υ2∥+ Tη2cM ∥υ1 − υ2∥
+ c ∥x1 − x2∥ .

Taking into account (4.1) we get the following estimate:

∥x1 − x2∥ ≤ 1

1− Tη2 (k + Λ+ cυ1)
(Tη2 ∥f1 − f2∥+ Tη2 ∥H1 −H2∥

(µ (kM + f1) + µ (ΛM +H1) + µc ∥υ1∥M + Tη2cM) ∥υ1 − υ2∥) ,

which completes the proof. □

5 Example

In this section, we are going to perform an illustrating application of our obtained findings.

Example 5.1. Consider the following neutral differential equation with an iterative harvesting term:

d

dt
[x (t)− 0.001x (t− τ (t))] = −

(
1

70
+

1

70
sin4

(
2π

35
t

))
x (t)

+

(
1

9π3
+

1

36π3
sin2

(
2π

35
t

)
+

1

7π3
sin2

(
2π

35
t

)
x (t− τ (t))

)
−
(

1

9π8
sin2

(
2π

35
t

)
+

1

20π8
sin2

(
2π

35
t

)
x (t) +

1

30π8
sin2

(
2π

35
t

)
x[2] (t)

)
, (5.1)

where m = 0.05, M = 1.5, L = π, i.e. PT (L,m,M) = P35 (π, 0.05, 1.5) and c = 0.001.
We have

l1 =
1

20π8
, l2 =

1

30π8
, H1 =

1

9π8
, Λ ≃ 1.981 9× 10−5,

f0 =
1

9π3
, f1 =

5

36π3
, k =

1

7π3
, a1 =

1

35
, η1 ≃ 0.50856, η2 ≃ 2.0114.

So

cM + η2T (kM + f1) = 0.80337 < M = 1.5,

η1Tf0 − η2T (MΛ +H1)− cTη2a1M + cm = 0.05.7901 > m = 0.05,

η2 (2 + a1T ) ((kM + f1) + (MΛ +H1) + cMa1) + L (1 + L) c ≃ 0.082252 ≤ L = π,

and
η2Tk + η2TΛ + η2Tca1 + c ≃ 0.32876 < 1.

Then all conditions of Theorems 3.3 and 4.1 are satisfied. Thereby equation (5.1) has one and only one positive
periodic solution in P35 (π, 0.05, 1.5) that depends continuously on a, f and H.
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6 Conclusion

This article is concerned with a first order neutral differential equation with iterative terms arising in biology and
population dynamics. We have obtained some results regarding the existence, uniqueness and continuous dependence
on parameters of positive periodic and bounded solutions for the addressed equation. Our key step in this work was
the choice of the space and its subset which have fulfilled all our requirements whether biological or mathematical.
The second step is the conversion of the equation (1.1) into an integral one whose solutions were solutions of the
proposed equation and vice versa. So, by means of the Krasnoselskii’s fixed point theorem as well as some properties
of a Green’s function, we established the existence of the solutions by defining an integral operator written as a sum
of two operators, one of them is a contraction and the other is continuous and compact. While, for the existence and
stability of the unique solution, it was handy that we used Banach fixed point theorem.
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[11] M. Fečkan, J. Wang and H.Y. Zhao, Maximal and minimal nondecreasing bounded solutions of iterative functional
differential equations, Appl. Math. Lett. 113 (2021), 106886.

[12] A. Guerfi and A. Ardjouni, Periodic solutions for second order totally nonlinear iterative differential equations,
J. Anal. 30 (2022), 353—367.

[13] R. Khemis, A. Ardjouni, A. Bouakkaz and A. Djoudi, Periodic solutions of a class of third-order differential
equations with two delays depending on time and state, Comment. Math. Univ. Carolinae. 60 (2019), no. 3,
379-399.

[14] R. Khemis, A. Ardjouni and A. Djoudi, Existence of periodic solutions for a second-order nonlinear neutral
differential equation by the Krasnoselskii’s fixed point technique, Matematiche. 72 (2017), no. 1, 145–156.

[15] M. Khuddush and K.R. Prasad, Nonlinear two-point iterative functional boundary value problems on time scales,
J. Appl. Math. Comput. (2022), https://doi.org/10.1007/s12190-022-01703-4.

[16] Y. Luo, W. Wang and J. Shen, Existence of positive periodic solutions for two kinds of neutral functional differ-
ential equations, Appl. Math. Lett. 21 (2008), no. 6, 581–587.



Neutral differential equation arising in biology and population dynamics 1051

[17] B. Mansouri, A. Ardjouni, A. Djoudi, Periodicity and continuous dependence in iterative differential equations,
Rend. Circ. Mat. Palermo, II. 69 (2020), 561–576.

[18] E. Serra, Periodic solutions for some nonlinear differential equations of neutral type, Nonlinear Anal. Theory
Methods Appl. 17 (1991), no. 2, 139–151.

[19] D. Yang and W. Zhang, Solutions of equivariance for iterative differential equations, Appl. Math. Lett. 17 (2004),
no. 7, 759–765.
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