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Abstract

In this paper, a new algorithms type three-step via projection Jungck Suzuki generalized mappings are introduced,
and the convergence of projection Jungck- Zenor algorithm and projection Jungck P-algorithm are proved. On the
other hand, we proved that the projection Jungck-Zenor algorithm converges to a common fixed point faster than of
projection Jungck P- algorithm in Banach spaces.
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1 Introduction

The fixed point theory is a wonderful, and exciting topic for mathematics. In many fields such as general and alge-
braic topology, mathematical economics, approximation theory, game theory and etc. The scientist Luitzen Brouwer
presented in 1912 [6] a theory named after him the Brouwer theory, which is considered one of the oldest theorems of
the fixed point

Scientists also developed the concept of this theory until the polish mathematician S. Banach presented in [4] a basic
result after this theory called the Banach contraction principle. This theory has a great benefit and is considered one
of the most important results that were used in the analysis, as it played a major and important role in studying many
problems in different fields, see [3} 13| [I7, [16]. Finding fixed point values is not easy but rather complicated, therefore
researchers have resorted to discovering algorithm methods to find their value. In 1953 Mann introduced a one-step
algorithm called the Mann algorithm [I1]. In [9] the scientist Ishikawa proposed a two-step Ishikawa algorithm. Noor
in [12], presented a three-step algorithm defined as:

Yo €Y

Yn+1 = (1 - an) Yn + anT (1n)

in = (1 =) yn + T (yn), where {a,},{fn} and {7,} lie in [0,1]. On the other hands, Sainuan in [14] defined a
three-step algorithm as follows :

hpt1 = (1 —ayp) Ton + @, T,
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ln = (1 - /Bn) On + /BHTOTL
on = (1 =) hp, + T hy, where {a,}, {Bn} and {v,} lie in [0, 1].

Sainuan bears out the convergence theorem for the P - algorithm and also proved that this algorithm converges
faster than S and Ishikawa algorithm.it was Jungck who first introduced the algorithms scheme, named after him
Jungck iteration [10] to approximate common fixed points now known as Jungck contraction maps. Suzuki [I§]
likewise presented a type of map that fulfils condition (C). In addition, researchers Dhompongsa and Kaewcharoen

developed this concept and got results that contribute to the fixed point theory that satisfies the condition (C), see
[7, 8, [15].

Definition 1.1. [10] Any mappings T, S : C' — X are called Jungck contraction if L € (0, 1) such that

[Tz =Tyl < L|Sz — Sy|[Ve,y € C.

Definition 1.2. [1] Any mappings T,S : C — X are called Jungck non-expansive if we have

[Tz — Ty < [|Sz = Sy|[Va,y € C.

Definition 1.3. [5] Let {a,} and {d,,} be sequences convergent to a and d, respectively. Then, {a,} converges faster

than {d,} if lim, ‘%‘ =0.

Lemma 1.4. [2] Let {z,} and {y,} be two sequence in X such that lim, . supz, < ¢, lim, o supy, < ¢ and
lim,, 00 SUP ||tnxn+ (1 — tn) ynl| = ¢, holds for some ¢ > 0, then lim,, o |2, — yn| =0

2 Main Results

In this section, we define a new type of mapping, such as projection Jungck Suzuki generalized mapping and
introduce iterative methods type three step. Also, we study the rate of convergence on these methods.

Definition 2.1. Let C' be a non-empty subset of a normed space X. Then T': C — X and P, : X — C are called
projection Jungck Suzuki Generalized mapping if

3l = Pe(@)l| < ||Sz — Sy|| implies that [|Pe(z) = Pe(y)ll < LlSz — Syl + ¢ (lz = Pe()]| + |z — Szl|),  where
L€ (0,1) and ¢ : R™ — RTsuch that ¢(0) =0

Definition 2.2. Let TS : C — X and P, : X — C.Then we define the following algorithms:

1. The projection Jungck P-algorithm
For hy € C the sequence {h,} is defied by
Shpy1 = (1 = ay) PcTon + anP:Tl,
Sln = (1= B) SPe (0n) + BnPcTon
Son = (1 =) SPe (hn) + ¥ PcThy, where {a, },{Bn}, {n} lies in [0, 1]

2. The projection Jungck Zenor-algorithm
For ¢ € C the sequence {c,} is defied by
Scn+l = Pchn
S8d, = (1 —ay)P.Te, + a,GTe,
Se, = (1= 8,) SP.(cn) + BnTcy, where G is nonexpansive function and {a,},{8,} lie in [0, 1].

A mapping SP, is commute, i.e., SP, (z,,) = P.S (z,,).
Lemma 2.3. Let C be a non-empty closed convex subset of a Banach space X. T : C'— X be a projection Jungck
Suzuki Generalized if {S¢,,} Generated by projection Jungck Zenor algorithm such that

0 <A< Bp,an, <1forall n €N then

1. limy, o0 ||Sepn — t|| exists for all t € F (P, T)
2. limy 00 [|PeTen, — GT1, || =,0 and lim,,— o0 ||PeS (cn) — Sen|| =0
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Proof . Let t € F (P, T), where F (P,.,T) is a family of common fixed point, then

|Senss — ¢ = IPTdy ]
< ||Td, —t|
< LSdy — 1] + 6 ([t - Pu(t)]| + |1t — St])
< L|8d, —t||
< ||Sd,, — ||
= (1 = o) PeTen + 0nGTey — (1 — ap + an) t||
=[|(1 —an) (P.Ten, —S) + o, (GTe, —t)]]
<[(1 = an) [PTen — t|| + an |GTen — ]
< [(1= o) [PeTen —t] + an [|Ten — ]
< [(1 = an) [Ten — t] + an | Ten — 4]
< | Te, -t
< L||Sen =t + ¢ ([t = Pe@)]| + It — St]])
< L|Se, —t||
< [[Sen — 1| (2.1)

Now,

[Sen =t = (1 = B81) SPe (cn) + BaTcr — (1 = Bn + Bn) |
= [[(1 = Bn) (SPe(cn) = t) + By (Ten — 1|
< (1= Bu) ISP (en) =t + B | Ten — |
= (1= Bn) [IPeS (en) = tl| + B | Ten — ¢
(1= Bn) ISen = t[| + Bn | Tcn — ¢
(1= Bn) ISen =t + LB | Sen — t + @ ([t = Pe(®)]| + (It — Stl)
(1 - 671) Hscn - tH + Lfn Hscn - tH
(1= Bn) ISen =t + Bn [|Sen — ]
[Sern — | (2.2)

Substitute Equation (2.2)) in to Equation ({2.1))

1Sentr =t < [[Sen — 1

(VAN VAN VAR VAN VAN

So, |Scnt1 —t|| < ||Sepn, — t|| = {Sc¢,} is non-increasing (2.3)
<[ISen—a =t
|Sen+1 —tl] < ||Sco — t|| = {Scn} is bounded (2.4)

From (2.3) and (2.4) we get

lim ||Se, —¢|| is exists.
n—oo

Now to prove,

lim ||P.Te, — GTe,|| =0 and ILm |P.S (cn) — Senl| =0
n—oo n oo

Let, ¢ € R; lim ||S¢, — t|| = ¢ = lim sup ||Se, — ]| < ¢ (2.5)
n—oo n—oo
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Now, we apply the three condition To prove that, lim, . sup ||P.Te, — t|| < ¢

lim sup ||P.Te, —t|| < lim sup ||Te, — ||
n— oo

n—oo

< lim sup[L [|Sen — ] + 6 (It — Pe()]| + [}t — St}

IN

lim sup [L ||Se, — t||]
n— o0

IN

ILm sup ||Sen - t”
nll)rréo sup ||(1 = Bn) 8P (¢n) + BnTen — (1 — Br + Bn) t|
nh_)rr;o sup |[(1 — Bn) (SPe(cn) —t) + Bn (Ten, — t)||

limsup [(1 — B,) [|SPe (cn) — t]| + Bn || Ten — t]
Timn sup (1~ ) [PeS (60) — ] + B [ Ten — ]

(
Jimsup [(1 = ) [|Sen = ]| + Bn [ Ten = t]l]

Jim sup [(1 = B) [|Sen =t + LB [|Sen =t + ¢ ([t = Pe(t)]| + [t — St]])]
Jim sup [(1 = B) [|Sen =t + LB [|Sen — ]

Jimsup [(1 = Bn) [|Sen — tl] + Bn [|Sen — ]

lim sup ||Se, — ¢

n— oo

IN

IN

(/AN VAN VA N VAN VAN VAN VAN

IN

C.

So,

lim sup||PTe, —t]| <ec. (2.6)
n—oo

To proof that, lim,_, sup [|P.S (¢,) — t|| < ¢, we have
lim sup ||P.S (¢n) — ]| < lim sup||Se, —t|| |
n—oo n—oo
<ec
So,

ILm Sup || P.S (en) — ¢|| < c. (2.7)

To prove that, lim, . sup ||GTe, — t|| < ¢,
lim sup ||GTe, —t|| < lim sup ||Te, — ||
n—oo n—oo

< Tim sup [L[Sen — ] + 6 (t — Pe(t)]| + |1t — S]]

IN

lim sup [L ||Se, — t|[]
n—oo

IA

Jim_sup [|Sep — ¢]|

Jimsup [[(1 = B) SPe (¢n) + BuTen = (1= B + Bn) ]
Jimsup [|(1 = B,) (SPe (¢n) = 1) + Bn (Ten — 1)
Jimsup [(1 = B5) [|SPe (¢n) =t + B [[Ten — ]
Jimsup [(1 = B5) [[PeS (¢n) =t + B [[Ten — ]

Jim sup [(1 = Bn) |Sen — | + Bn [ Ten — t]

INIAN AN IA

IN
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get

< lim sup [(1 = B,) |Sen — 8| + LBn [[Sen =t + & ([t = Pe(®)]| + [t = St)]

/\

IN

IA

C.

IN

So,

Now,

Jim sup [(1— 5n) [|Sen — 8] + LB [|Sen — ]
Jimsup [(1 = Bn) [ISen = ] + Bn [[Sen — 1]

lim sup||Se¢, — ¢t
n— oo

lim sup||GTe, —t|| <ec. (2.8)
n—oo

¢= lim sup||Scpi1 — ¢t
n— oo

IN

N VAN VAN VAN VAN VAR VAN

IN

<
<

<

= lim sup [|P.Td, —t||
n— oo

N

lim sup ||Td, — ||
n— o0
< i sup LISy — ) + 6 (It = Po(o)] + 1t - Sel)
< lim sup[L||8d,, — t||]
n— 00

lim sup ||Sd, — ||

n—oo

lim sup ||(1 — an) PTen + @nGTe, — (1 — oy + ) £
n—o0

le sup ||(1 — ap) (P.Te, —t) + ay (GTe, — t)|| (2.9)
li_>m sup [(1 — o) ||PcTen — t|| + an [|GTen — t]

nlLH;O sup [(1 — an) [[Ten — tl| + an || Ten — ]

lim sup || Te, — t||

n—oo

Timn sup (L [[Se. — ] + 6 (It — Pu(o)] + 1t — Stl)]

lim sup [L|Se, — t|]

n—oo

lim sup||Se, — ¢

n—oo

nhﬁ\n;o sup |[(1 — Bn) SPe(cn) + BnTen — (1 — B + Bn) t|
nh_{go sup [|(1 = B5) (SPe (cn) — 1) + Bn (T'cr, — 1)l

Tim sup[(1 = B,) [SPe (ea) = + B | Ten — 1]

Tim sup (1= B) [PeS (ea) =t + B [T — 1]

Jimsup [(1 = B5) [[Ped (¢n) = ¢l + LBn [|Sen — t]]

Jim_sup [(1 = B5) [|Ped (en) — £l + Bn [|0cn — ¢]] (2.10)
nh—{r;o sup [(1 = Bn) |Sen — t]| + Bn [|Sen — t]]]

= lim sup||dc, —t||
n—oo

=cC

So, limy, 00 sup |[(1 — o) (PcTen —t) + o (GTe, — t)|| = ¢. From (2.6), (2.8), (2.9) and by using lemma (1.4) we

lim ||P.Te, — GTe,| = 0.
n— o0
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Also, limy, oo sup [(1 = Bp) |PeS (cn) — t]| + Br ||Scn — t||] = ¢. From (2.5), (2.7)), (2.10) and by using lemma (1.4)
we get

nh_}rr;g |P.S (¢) — Senl| =0
(]

Lemma 2.4. Let T : C — X be a projection Jungck Suzuki generalized. If {Sh,} generated by projection Jungck
— P algorithm such that 0 < A\ < 8,,a, <1, for all n € N, then

1. limy o0 ||Shy, — t]| exists for all t € F (P, T)

2. limy, o0 [|PcT0n, — P.Tly|| = 0 and lim, o0 ||PeShy — Shy|| =0

Theorem 2.5. Let X be a normed space, T be a projection Jungck Suzuki generalized mapping and F (T, S, P.) # ¢.
Then the projection Jungck Zenor algorithm converge faster than projection Jungck P-algorithm.

Proof . For Projection Jungck- Zenor algorithm

1Seni1 =t = [[PeTdn — ¢

< || Tdy —t||
< L||Sdp = tl| + ¢ ([t = Pe()l + It = Stll)
< L||Sdy — 1

=L H(l - an) (PcTen - t) +an (gTen - t)”

< L1 —ap) |PTe, —t|| + an||GTe, — t|]
< L[(1 = an) |PTen —tl] + ap [|[Te, — t|]
S L[ —an)[|Ten —t]| + o || Ten — t]
SLILQ—oy)|Sen =t + & (It = Pe(®)l + (It — Stl) + Lo [[Sen — ]
+é ([t = Pe(@)[| + 11t — St[])]
< LIL(1-—ap)|Sen —t|| + Lay, ||Sen — t]]
< L[L — Lay, + Lag] ||Sen — ¢t
< L2 |Sen —t|. (2.11)

Now

[Sen =t = [[(1 = Bn) SPe (cn) + BnTen — (L= Bn + Ba) t|

= [[(1 = Bn) (SPc (cn) — t) + Bn (Tecn — 1)

< (1= Bu) ISP (en) — tll + B | Ten — t|

= (1= Ba) [IPeS (cn) = tll + B | Tep — t||

(L= Bp) Sen =t + B [ Ten — 1

(1= Bn) ISen = pll + LB Sen =t + ¢ (It = Pe(@)]| + [t — Stll)

(1= Bn) ISen — | + LB [|Scn — t||

(1= Bp(1=1L))[|Scn — |

(L=M1=1))[|Sen —t|- (2.12)

IN A AN IN A

Substitute Equation (2.12) in to Equation ([2.11])
ISens1 —t] < L?[1 = A1 — L)] | Sen — ¢
< L1 = A1 - L))" ||Seo —t|
Put,P-J-Z-1=L*"[1-\1-L)]"|Sco—t|-
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For Projection Jungck-P algorithm

1Shnt1 =t = |(1 — ap) PcTopn + anPTl, — (1 — ap + ) B
= (1 = an) (PTo, —t) + an (P.Tl, — )]

< (L= an) [[PeTon —t|| + on || PeTln — |

< (1 —an) |Ton —t|| + an [T, — ¢

S LA —an)|Son =t + ¢ ([t = Pe(t)]| + It — Stl]) + Lo |STn — £
+ o (It =Pe(t)]| + [It = St])

< L(1—ay)|Son —t| + Lay, ||Sl, — ¢t

Now

1S, — £l = [I(1 = Bn) SPe (0n) + BnPeTon = (1 = B + Ba) tl|

= [I(1 = Bn) (SPe (0n) = t) + P (PcTon — 1)

< (1 - ﬁn) HSP (On) - t” + 5n HP To, — tH

= (1= Bn) [PeS (0n) = tl| + B [PeTon — 1]

(1= Bn) [ISon = t]| + B [ Ton — ¢
(1= Bn) Son = tl| + L [Son =t + & ([t = Pe()]| + [t — St]])
(1= Bn) ISon — t|| + LBy [|Son — ]
(1=Bn(1=1L))|[[Son —

VAN VAN VAN VA

[Son —t]| = |(1 = v1) SPe (hn) + ¥ PeThy — (1 — 4 + Y0 ]|
=11 = ) (SPec (hn) = t) + v (PeThn, — 1)
< (L= 90) [|[SPe (hn) = ]| + v [[PeThy — |
= (1 =) [|PeS (hn) = t|| + yn [[PThn — |
(1 =) Shn — t|| + v [|Thn — ||
(L =) [Shn, — | + Ly |Shyy — | + ¢ ([t = Pe(®)[| + ([t — St]])
(L =) |Shn = t[| + Ly [|Shy, — ¢
(1 =9n(1 = L)) [|Shy, — ||
(1 =M1 = L)) IShy — |-

IN A AN IN A

Substitute Equation (2.15)) in to Equation(|2.14])

18T =t = (1 = Bu(1 = L)) [(1 = M1 = L)) [|Shs — t]
=[(1=Bn(1 = L)) (1 = AL = L))} [|Shn — 1]
<[ =AA =L)X = A1 = L))]|Shn — ]
<[ =21 = L) |ISh, — .

Substitute Equation (2.16)) &(2.15)) in to Equation ([2.13))

[Shps1 =t = L (1 —an) [(1 = A1 = L)) [|Shp — ][] + Lewn ([1 = A(1 = L) || S, — ¢])
[L(1—on)—LA(1—an(l=L)+ Loy, [1 =21 = L) + N*(1 — L)]) [|Shy, — t|]

<[LA =X =LA(1=X1—=L)+LA[1—2X1— L) + X*(1 = L)]) ||Shy, — t|]
<[L—=LX—= LA+ LXN(1— L)+ LA —2LN*(1 — L) + LX*(1 — L)] [|Sh,, — t||
<[L—=LX=LXN(1—=L)+LX*(1 - L)] |Shy, — t||
<L[1=X)—=X(1-L)+X(1-1L)]|Sh, —t]|

SLM[(1=A) =M1 —L)+X(1 - L)]"||Sho — t|

1039
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(2.16)
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Put, P-J-P-T=L"[(1—A)—A2(1 — L)+ X*(1 — L)]" [Sho — ]|

Now, because

PIZI _ LML~ A(1— D" [[Seo — f] e m

PJJI  L[(1—A) = A2(1—L) + \3(1 = L)]" | Shn — ]

therefore, projection Jungck Zenor-algorithm converge faster than projection Jungck P-algorithm. [
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