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Abstract

In this article, Numerous new Jacobi elliptic function solutions for perturbed Gerdjikov-Ivanov equation with space-
time conformable fractional derivative have been extracted using the new extended auxiliary equation method. Solitary
and periodic solutions are retrieved from the Jacobi elliptic function solutions. These solutions’ existence is likewise
guaranteed by the constraint criteria. In order to better understand the physical processes, we also show some graphical
representations of the solutions.
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1 Introduction

One of the most difficult tasks in mathematical physics is finding exact analytic solutions to partial differential
equations (PDE). In general, it is impossible to find an accurate solution to many types of such equations. The
employment of numerical and approximation approaches is unavoidable in these situations. However, accurate (PDE)
solver approaches are always favored because they offer the answer immediately and without any limits on how it can
be used. The goal of this paper is to look at the fractional nonlinear Schrödinger equation (FNLSE) which has a quintic
nonlinearity, namely the perturbed Gerdjikov-Ivanov equation with space-time conformable fractional derivative [1]
from an exact approach perspective. In nonlinear fiber optics, this equation is very important. It is also having a wide
range of uses in photonic crystal fibers. The model has grabbed the attention of numerous scholars in recent years due
to its great significance. The model with cubic non-linearity has been subjected to a range of powerful approaches,
including, the semi-inverse variational principle [2], the sine-Gordon equation approach [3], the extended trial equation

method [4], the exp(ϕ(ζ))-expansion and the Kudryashov methods [5], the
(

G
′

G2

)
-expansion method [6]. The goal of

this study was to use a well-known method [7] known as a new extended auxiliary equation method to find a large
number of new Jacobi elliptic function solutions to the following nonlinear Schrödinger equation.

iDα
t u+ aD2α

x u+ b|u|4u = i
[
cu2Dα

x ū+ λ1Dα
xu+ λ2Dα

x (|u|2u) + θDα
x (|u|2)u

]
, (1.1)
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Here q(x, t) denoted the macroscopic complex-valued wave profile. In this equation, Dα
t u represents linear temporal

evolution, D2α
x u represents group velocity dispersion (GVD), and |u|4u represents quintic non-linearity. The parame-

ters a, b are the coefficients of these quantities, respectively. Furthermore, the non-linear dispersion coefficient denoted
by c. Last but not least, the constants λ1, λ2 and θ are known parameters related to perturbative effects.

The following is a breakdown of the structure of this paper: The new extended auxiliary equation method is
described in Section 2. We use this method to solve the perturbed Gerdjikov-Ivanov equation with space-time con-
formable fractional derivative in Section 3. We ran numerical simulations of the given results in section 4. Conclusions
are reached in Section 5.

2 Description of new extended auxiliary equation method

Assume that we are given nonlinear partial differential equation of the form;

W (u, ux, ut, uxx, uxt, ...) = 0, (2.1)

where W is a polynomial function. The main steps for solving equations (1.1) using the new extended auxiliary
equation method [7] are summarized as follows:
Step 1: We use the wave transformation

u(x, t) = ψ(ζ(x, t))eiη(x,t),

ζ(x, t) = (
1

α
)xα − (

ν

α
)tα,

η(x, t) = (
−k
α

)xα + (
w

α
)tα.

(2.2)

Step 2: Substituting (2.2) into (2.1) yields an ordinary differential equation in ζ of the form;

Q(U,U
′
(ζ), , U

′′
(ζ), U

′′′
(ζ), ...) = 0, (2.3)

where Q is a general polynomial.
Step 3: Assume that (2.3) has the formal solution;

U(ζ) =

2N∑
i=0

AiF
i(ζ), (2.4)

where Ai are constants to be determined, such that A2N ̸= 0, and F (ζ) satisfies the first order ODE:[
F

′
(ζ)
]2

= c0 + c2F
2 + c4F

4 + c6F
6, (2.5)

where ci,(i = 0, 2, 4, 6) are arbitrary constants to be determined.
Step 4: Determining the positive integer N by balancing the highest order derivatives and the nonlinear terms in
equation (2.3).
Step 5: Substituting (2.4) along with (2.5) into (2.3) and collecting all the coefficients of F j(F

′
)l, (j = 0, 1, 2, ...)

and (l = 0, 1) then setting each coefficient to zero, a set of algebraic equations is obtained for ci, (i = 0, 2, 4, 6), Aj ,
(j = 0, 1, 2, ..., 2N), k and µ. Solving the system we find ci, (i = 0, 2, 4, 6), Aj , (j = 0, 1, 2, ..., 2N), k and µ.
Step 6: It is well known [7, 9] that Equation (2.5) has the following solutions:

F (ζ) =
1

2

[
−c4
c6

(
1± fi(ζ)

)] 1
2

, (2.6)

where the function fi, (i = 1, 2, 3, ..., 12) can be expressed through the Jacobi elliptic function sn(ζ,m), cn(ζ,m),
dn(ζ,m), where 0 < m < 1 is the modulus of the Jacobi elliptic functions. When m→ 0 or m→ 1, the Jacobi elliptic
function degenerate to hyperbolic function and trigonometric functions, respectively.
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The functions fi(ζ), (i = 1, 2, 3, ..., 12) given by (2.6) have 12 forms as follows:

If c0 =
c34(m

2−1)

32c26m
2 , c2 =

c24(5m
2−1)

16c6m2 , c6 > 0, then

f1(ζ) = sn(ρζ), f2 =
1

msn(ρζ)
, ρ =

c4
2m

√
1

c6
(2.7)

If c0 =
c34(1−m2)

32c26
, c2 =

c24(5−m2)
16c6

, c6 > 0, then

f3(ζ) = msn(ρζ), f4 =
1

sn(ρζ)
, ρ =

c4
2

√
1

c6
(2.8)

If c0 =
c34

32c26m
2 , c2 =

c24(4m
2+1)

16c6m2 , c6 < 0, then

f5(ζ) = cn(ρζ), f6 =
sn(ρζ)

dn(ρζ)

√
1−m2, ρ =

c4
2m

√
−1

c6
(2.9)

If c0 =
c34m

2

32c26(m
2−1)

, c2 =
c24(5m

2−4)
16c6(m2−1) , c6 < 0, then

f7(ζ) =
dn(ρζ)√
1−m2

, f8 =
1

dn(ρζ)
, ρ =

c4
2

√
−1

c6(1−m2)
(2.10)

If c0 =
c34

32c26(1−m2)
, c2 =

c24(4m
2−5)

16c6(m2−1) , c6 > 0, then

f9(ζ) =
1

cn(ρζ)
, f10 =

dn(ρζ)√
1−m2sn(ρζ)

, ρ =
c4
2

√
1

c6(1−m2)
(2.11)

If c0 =
m2c34
32c26

, c2 =
c24(m

2+4)
16c6

, c6 < 0, then

f11(ζ) = dn(ρζ), f12 =

√
1−m2

dn(ρζ)
, ρ =

c4
2

√
−1

c6
(2.12)

Step 7: Substituting ci, (i = 0, 2, 4, 6), Aj , (j = 0, 1, 2, ..., 2N), k, µ and (2.7)-(2.12) into (2.4), a numerous new kinds
of Jacobi elliptic function solutions of equations (1.1) will be obtained.

3 The Conformable Derivative

Let α ∈ (0, 1], R+ = [0,∞) and given a continuous function u : R+ → R.

Definition 3.1 ([1, 8]). For any α ∈ (0, 1] the conformable derivative Dα
t of the function u of order 0 < α ≤ 1 is

defined by

Dα
t u(t) = lim

ϵ→0

u(t+ ϵt1−q)− u(t)

ϵ
.

Proposition 3.2 ([8]). Let α ∈ (0, 1] and u(t), y(t) be two α-differentiable functions at a point t > 0. Then:

(a) Dα
t (a u+ b y) = aDα

t (u) + bDα
t (y) for all a, b ∈ R.

(b) Dα
t (t

p) = p tp−α for any p ∈ R.

(c) Dα
t (u y) = uDα

t (y) + yDα
t (u).

(d) Dα
t

(
u
y

)
=

yDα
t (u)−uDα

t (y)
y2 .

(e) Dα
t (u) = 0 for any u = λ, where λ is an arbitrary constant.

(f) Dα
t (f)(t) = t1−α df

dt .

(g) Dα
t (f ◦ g)(t) = t1−αf

′
(t)g

′
(t).
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4 Applications

Substituting (2.2) into (1.1) and by separating the real and the imaginary parts, we get:

The Real Part: aψ
′′
− (w + ak2 + λ1k)ψ + (c− λ2)kψ

3 + bψ5 = 0. (4.1)

The Imaginary Part: ν + λ1 + 2ak + (c+ 3λ2 + 2θ)ψ2 = 0. (4.2)

From (4.2) we have ν = −(λ1 + 2ak), θ = − 1
2 (c+ 3λ2).

From (4.1) balancing ψ
′′
and ψ5 gives N = 1

2

Setting ψ(ζ) =
√
ϕ(ζ) gives

a(2ϕϕ
′′
− (ϕ

′
)2)− 4(w + ak2 + λ1k)ϕ

2 + 4(c− λ2)kϕ
3 + 4bϕ4 = 0. (4.3)

Balancing ϕϕ
′′
with ϕ4 gives N = 1. Substituting with N = 1 in (2.5) we get

ϕ =

2∑
i=0

AiF
i(ζ) = A0 +A1f +A2f

2, (4.4)

The analytical solutions for Equation (1.1) will be derived as a result of substituting (4.4) into (4.3) and following the
steps given in the technique we obtain.

Case 1:

A0 = 0, A1 = 0, A2 = ±
√
3 a k (λ2−c)

√
− c6

a b

k (λ2−c) , provide (λ2 − c) k ̸= 0, a b ̸= 0,

c2 = − 2(w+a k2+λ1 k)
a , provide a ̸= 0, c4 =

√
3 k (λ2−c)

√
− c6

a b

2 , c0 = c0, c6 = c6,

and we have ζ(x, t) = ( 1
α )x

α + ( (λ1+2ak)
α )tα

Substituting into (4.4) along with (2.6), we obtain the following solutions of equation (4.3):

ψ(ζ) =
1

2

[−(√3 k (λ2 − c)
√
− c6

a b

)
2 c6

(
1± fi(ζ)

)] 1
2

. (4.5)

Now, we obtain the following Jacobi elliptic function solutions for equation (1.1):

From (2.7),(4.5) and (2.2), we obtain

u1 =

− (√3 k (λ2 − c)
√
− c6

a b

)
8 c6

1± sn

√
3 k (λ2 − c)

√
− 1

a b

4m
ζ


1
2

eiη(x,t), (4.6)

u2 =

−
(√

3 k (λ2 − c)
√

− c6
a b

)
8 c6

1± 1

msn

(√
3 k (λ2−c)

√
− 1

a b

4m ζ

)



1
2

eiη(x,t), (4.7)

provided that a b < 0.

If m→ 1, then sn(ζ) → tanh(ζ), and hence equation (1.1) has the hyperbolic function solutions

u1 =

[
−
(√

3 k (λ2−c)
√

− c6
a b

)
8 c6

(
1± tanh

(√
3 k (λ2−c)

√
− 1

a b

4m ζ

))] 1
2

eiη(x,t), (4.8)
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u2 =

[
−
(√

3 k (λ2−c)
√

− c6
a b

)
8 c6

(
1± coth

(√
3 k (λ2−c)

√
− 1

a b

4m ζ

))] 1
2

eiη(x,t), (4.9)

where a b < 0.

From (2.8),(4.5) and (2.2), we obtain

u3 =

[
−
(√

3 k (λ2−c)
√

− c6
a b

)
8 c6

(
1±msn

(√
3 k (λ2−c)

√
− 1

a b

4 ζ

))] 1
2

eiη(x,t), (4.10)

u4 =

−
(√

3 k (λ2 − c)
√
− c6

a b

)
8 c6

1± 1

sn

(√
3 k (λ2−c)

√
− 1

a b

4 ζ

)



1
2

eiη(x,t), (4.11)

provided that a b < 0.

If m→ 0, then sn(ζ) → sin(ζ), and hence equation (1.1) has the following solutions

u3 =

[
−
(√

3 k (λ2 − c)
√
− c6

a b

)
8 c6

] 1
2

eiη(x,t), (4.12)

and the periodic solution

u4 =

− (√3 k (λ2 − c)
√
− c6

a b

)
8 c6

1± csc

√
3 k (λ2 − c)

√
− 1

a b

4
ζ


1
2

eiη(x,t), (4.13)

where a b < 0.

From (2.9),(4.5) and (2.2), we obtain

u5 =

− (√3 k (λ2 − c)
√
− c6

a b

)
8 c6

1± cn

√
3 k (λ2 − c)

√
1
a b

4m
ζ


1
2

eiη(x,t), (4.14)

u6 =

−
(√

3 k (λ2−c)
√

− c6
a b

)
8 c6

1±

√
1−m2 sn

(√
3 k (λ2−c)

√
1
a b

4m ζ

)

dn

(√
3 k (λ2−c)

√
1
a b

4m ζ

)



1
2

eiη(x,t), (4.15)

provided that a b > 0.

If m→ 1, then cn(ζ) → sech(ζ), and hence equation (1.1) has the hyperbolic solutions

u5 =

− (√3 k (λ2 − c)
√
− c6

a b

)
8 c6

1± sech

√
3 k (λ2 − c)

√
1
a b

4m
ζ


1
2

eiη(x,t), (4.16)

and the solution

u6 =

[
−
(√

3 k (λ2 − c)
√
− c6

a b

)
8 c6

] 1
2

eiη(x,t), (4.17)
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From (2.10),(4.5) and (2.2), we obtain

u7 =

−
(√

3 k (λ2 − c)
√
− c6

a b

)
8 c6

1±
dn

(√
3 k (λ2−c)

√
1

a b(1−m2)

4 ζ

)
√
1−m2




1
2

eiη(x,t), (4.18)

u8 =

−
(√

3 k (λ2 − c)
√
− c6

a b

)
8 c6

1± 1

dn

(√
3 k (λ2−c)

√
1

a b(1−m2)

4 ζ

)



1
2

eiη(x,t), (4.19)

provided that a b > 0.

If m→ 0, then dn(ζ) → 1, and hence equation (1.1) has the solutions

u7 = u8 =

[
−
(√

3 k (λ2 − c)
√
− c6

a b

)
4 c6

] 1
2

eiη(x,t), (4.20)

From (2.11),(4.5) and (2.2), we obtain

u9 =

−
(√

3 k (λ2 − c)
√
− c6

a b

)
8 c6

1± 1

cn

(√
3 k (λ2−c)

√
− 1

a b(1−m2)

4 ζ

)



1
2

eiη(x,t), (4.21)

u10 =

−
(√

3 k (λ2−c)
√

− c6
a b

)
8 c6

1±
dn

√
3 k (λ2−c)

√
− 1

a b(1−m2)

4 ζ


√
1−m2 sn

√
3 k (λ2−c)

√
− 1

a b(1−m2)

4 ζ






1
2

eiη(x,t), (4.22)

provided that a b > 0.

If m→ 0, then dn(ζ) → 1, cn(ζ) → cos(ζ), sn(ζ) → sin(ζ) and hence equation (1.1) has the periodic solutions

u9 =

[
−
(√

3 k (λ2−c)
√

− c6
a b

)
8 c6

(
1± sec

(√
3 k (λ2−c)

√
− 1

a b(1−m2)

4 ζ

))] 1
2

eiη(x,t), (4.23)

u10 =

[
−
(√

3 k (λ2−c)
√

− c6
a b

)
8 c6

(
1± csc

(√
3 k (λ2−c)

√
− 1

a b(1−m2)

4 ζ

))] 1
2

eiη(x,t), (4.24)

From (2.12),(4.5) and (2.2), we obtain

u11 =

− (√3 k (λ2 − c)
√
− c6

a b

)
8 c6

1± dn

√
3 k (λ2 − c)

√
1
a b

4
ζ


1
2

eiη(x,t), (4.25)

u12 =

−
(√

3 k (λ2 − c)
√
− c6

a b

)
8 c6

1±
√
1−m2

dn

(√
3 k (λ2−c)

√
1
a b

4 ζ

)



1
2

eiη(x,t), (4.26)
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provided that a b > 0.

If m→ 0, then dn(ζ) → 1, and hence equation (1.1) has the solutions

u11 = u12 =

[
−
(√

3 k (λ2 − c)
√
− c6

a b

)
4 c6

] 1
2

eiη(x,t), (4.27)

If m→ 1, then dn(ζ) → sech(ζ), and hence equation (1.1) has the hyperbolic function solutions

u11 =

[
−
(√

3 k (λ2−c)
√

− c6
a b

)
8 c6

(
1± sech

(√
3 k (λ2−c)

√
1
a b

4 ζ

))] 1
2

eiη(x,t), (4.28)

u12 =

[
−
(√

3 k (λ2 − c)
√
− c6

a b

)
8 c6

] 1
2

eiη(x,t), (4.29)

Case 2:

A0 = 0, A1 = 0, A2 = 2ac4
(λ2−c)k , provide (λ2 − c) k ̸= 0,

c2 = − 2(w+a k2+λ1 k)
a , provide a ̸= 0, c6 = − 4abc24

3(λ2−c)2k2 , c0 = c0, c4 = c4,

and we have ζ(x, t) = ( 1
α )x

α + ( (λ1+2ak)
α )tα

Substituting into (4.4) along with (2.6), we obtain the following solutions of equation (4.3):

ψ(ζ) =
1

2

[
2ac4

(λ2 − c)k

(
1± fi(ζ)

)] 1
2

. (4.30)

Now, we obtain the following Jacobi elliptic function solutions for equation (1.1):

From (2.7),(4.30) and (2.2), we obtain

u1 =

[
ac4

2(λ2 − c)k

(
1± sn

(√
−3(λ2 − c)2k2

16m2a b
ζ

))] 1
2

eiη(x,t), (4.31)

u2 =

 ac4
2(λ2 − c)k

1± 1

msn

(√
− 3(λ2−c)2k2

16m2a b ζ

)



1
2

eiη(x,t), (4.32)

provided that a b < 0.

If m→ 1, then sn(ζ) → tanh(ζ), and hence equation (1.1) has the hyperbolic function solutions

u1 =

[
ac4

2(λ2 − c)k

(
1± tanh

(√
−3(λ2 − c)2k2

16m2a b
ζ

))] 1
2

eiη(x,t), (4.33)

u2 =

[
ac4

2(λ2 − c)k

(
1± coth

(√
−3(λ2 − c)2k2

16m2a b
ζ

))] 1
2

eiη(x,t), (4.34)

where a b < 0.

From (2.8),(4.30) and (2.2), we obtain

u3 =

[
ac4

2(λ2 − c)k

(
1±msn

(√
−3(λ2 − c)2k2

16 a b
ζ

))] 1
2

eiη(x,t), (4.35)
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Figure 1: Plotting of the Real part of |u1(x, t)| Jacobi elliptic function solution (4.31) when a = 15.2, b = −1, k = 1, λ1 = 3,
λ2 = 3, c = 1, m = 1√

5
, α = 0.97.

Figure 2: Plotting of the Imaginary part of |u1(x, t)| Jacobi elliptic function solution (4.31) when a = 15.2, b = −1, k = 1,
λ1 = 3, λ2 = 3, c = 1, m = 1√

5
, α = 0.97.
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Figure 3: Plotting of the Real part of |u5(x, t)| Jacobi elliptic function solution (4.39) when a = 15.2, b = −1, k = 1, λ1 = 3,
λ2 = 3, c = 1, c4 = 1 m = 0.5, α = 0.95.

u4 =

 ac4
2(λ2 − c)k

1± 1

sn

(√
− 3(λ2−c)2k2

16 a b ζ

)



1
2

eiη(x,t), (4.36)

provided that a b < 0.

If m→ 0, then sn(ζ) → sin(ζ), and hence equation (1.1) has the following solutions

u3 =

[
ac4

2(λ2 − c)k

] 1
2

eiη(x,t), (4.37)

and the periodic solution

u4 =

[
ac4

2(λ2 − c)k

(
1± csc

(√
−3(λ2 − c)2k2

16 a b
ζ

))] 1
2

eiη(x,t), (4.38)

where a b < 0.

From (2.9),(4.30) and (2.2), we obtain

u5 =

[
ac4

2(λ2 − c)k

(
1± cn

(√
−3(λ2 − c)2k2

16m2 a b
ζ

))] 1
2

eiη(x,t), (4.39)

u6 =

 ac4
2(λ2 − c)k

1±

√
1−m2 sn

(√
− 3(λ2−c)2k2

16m2 a b ζ

)
dn

(√
− 3(λ2−c)2k2

16m2 a b ζ

)



1
2

eiη(x,t), (4.40)
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Figure 4: Plotting of the Imaginary part of |u5(x, t)| Jacobi elliptic function solution (4.39) when a = 15.2, b = −1, k = 1,
λ1 = 3, λ2 = 3, c = 1, c4 = 1 m = 0.5, α = 0.95.

provided that a b < 0.

If m→ 1, then cn(ζ) → sech(ζ), and hence equation (1.1) has the hyperbolic solutions

u5 =

[
ac4

2(λ2 − c)k

(
1± sech

(√
−3(λ2 − c)2k2

16m2 a b
ζ

))] 1
2

eiη(x,t), (4.41)

and the solution

u6 =

[
ac4

2(λ2 − c)k

] 1
2

eiη(x,t), (4.42)

From (2.10),(4.30) and (2.2), we obtain

u7 =

 ac4
2(λ2 − c)k

1±
dn
(√

3(λ2−c)2k2

16 (1−m2) a bζ
)

√
1−m2




1
2

eiη(x,t), (4.43)

u8 =

 ac4
2(λ2 − c)k

1± 1

dn
(√

3(λ2−c)2k2

16 (1−m2) a bζ
)



1
2

eiη(x,t), (4.44)

provided that a b > 0.

If m→ 0, then dn(ζ) → 1, and hence equation (1.1) has the solutions

u7 = u8 =

[
ac4

2(λ2 − c)k

] 1
2

eiη(x,t), (4.45)
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Figure 5: Plotting of the Real part of |u7(x, t)| Jacobi elliptic function solution (4.44) when a = 15.2, b = 1, k = 1, λ1 = 3,
λ2 = 3, c = 1, c4 = 1 m = 1√

3
, α = 0.98.

Figure 6: Plotting of the Imaginary part of |u7(x, t)| Jacobi elliptic function solution (4.44) when a = 15.2, b = 1, k = 1, λ1 = 3,
λ2 = 3, c = 1, c4 = 1 m = 1√

3
, α = 0.98.
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From (2.11),(4.30) and (2.2), we obtain

u9 =

 ac4
2(λ2 − c)k

1± 1

cn
(√

− 3(λ2−c)2k2

16 (1−m2) a bζ
)



1
2

eiη(x,t), (4.46)

u10 =

 ac4
2(λ2 − c)k

1±
dn
(√

− 3(λ2−c)2k2

16 (1−m2) a bζ
)

√
1−m2 sn

(√
− 3(λ2−c)2k2

16 (1−m2) a bζ
)



1
2

eiη(x,t), (4.47)

provided that a b < 0.

If m→ 0, then dn(ζ) → 1, cn(ζ) → cos(ζ), sn(ζ) → sin(ζ) and hence equation (1.1) has the periodic solutions

u9 =

[
ac4

2(λ2 − c)k

(
1± sec

(√
3(λ2 − c)2k2

16 a b
ζ

))] 1
2

eiη(x,t), (4.48)

u10 =

[
ac4

2(λ2 − c)k

(
1± csc

(√
3(λ2 − c)2k2

16 a b
ζ

))] 1
2

eiη(x,t), (4.49)

From (2.12),(4.30) and (2.2), we obtain

u11 =

[
ac4

2(λ2 − c)k

(
1± dn

(√
3(λ2 − c)2k2

16 a b
ζ

))] 1
2

eiη(x,t), (4.50)

u12 =

 ac4
2(λ2 − c)k

1±
√
1−m2

dn

(√
3(λ2−c)2k2

16 a b ζ

)



1
2

eiη(x,t), (4.51)

provided that a b > 0.

If m→ 0, then dn(ζ) → 1, and hence equation (1.1) has the solutions

u11 = u12 =

[
ac4

2(λ2 − c)k

] 1
2

eiη(x,t), (4.52)

If m→ 1, then dn(ζ) → sech(ζ), and hence equation (1.1) has the hyperbolic function solutions

u11 =

[
ac4

2(λ2 − c)k

(
1± sech

(√
−3(λ2 − c)2k2

16 a b
ζ

))] 1
2

eiη(x,t), (4.53)

u12 =

[
ac4

2(λ2 − c)k

] 1
2

eiη(x,t), (4.54)

5 Graphs of some solutions

In this section, some graphs of the Jacobi elliptic function solutions of the given equation are presented based on
the algorithm provided in subsection 2. Figures 1− 3 have been presented to highlight the dynamic characteristics of
some selected analytical results acquired in section 4. Figure 1 illustrate the behavior of the real and the imaginary
parts of the solution |u1(x, t)| defined in (4.31) for a = 15.2, b = −1, k = 1, λ1 = 3, λ2 = 3, c = 1, m = 1√

5
, α = 0.97.

Figure 2 shows the solution properties of |u5(x, t)| stated in (4.39), where the parameters are a = 15.2, b = −1, k = 1,
λ1 = 3, λ2 = 3, c = 1, c4 = 1 m = 0.5, α = 0.95. Finally, Figure 3 represents the solution |u7(x, t)| as indicated in
(4.44) for the provided values a = 15.2, b = 1, k = 1, λ1 = 3, λ2 = 3, c = 1, c4 = 1, m = 1√

3
, α = 0.98. According to

the results of the numerical simulations, the solutions are periodic. Furthermore, a close examination of the structure
of the derived solutions reveals that the appropriate conformable derivative parameter of α exists in the formula of all
solutions.
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6 Conclusion

This study looked at the perturbed Gerdjikov-Ivanov equation with a space-time conformable fractional derivative.
The hyperbolic and the periodic solutions for the perturbed Gerdjikov-Ivanov equation with space-time conformable
fractional derivative have been determined from Jacobi elliptic function solutions when the modulus is m → 1 or
m → 0 using the new extended auxiliary equation approach. Furthermore, for a better understanding of the dy-
namical behavior of the solution of the investigated equation, we have given numerical simulations corresponding to
the conformable fractional derivatives of order α. To the best of our knowledge, this is the first time to use the new
extended auxiliary equation method to consider the perturbed Gerdjikov-Ivanov equation with space-time conformable
fractional derivative.
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