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Abstract

In the present investigation, we introduce the two subclasses S&(v, p, A, 11, €, ) and Sx(7, p, A, 11, €, §; B) of normalized
analytic bi-univalent functions defined in the open unit disk and associated with the Ruscheweyh’s operator. Further,
we obtain bounds for the second and third Taylor-Maclaurin coefficients of the functions belong to these subclasses.
We also provide relevant connections with earlier investigations of other researchers.
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1 Introduction and preliminaries

Let A be the class of analytic functions f defined in the open unit disk U = {z € C: |z| < 1} and normalized by
conditions f(0) =0 and f’(0) = 1. Hence, series expansion of f € A is of the form

f(2) :z—l—Zanz", (z € U). (1.1)
n=2

Let S denote the subclass of A containing univalent functions in U (for details, see [4]). A function f € § is said to

be starlike of order a (0 < v < 1) if Re (z}céj» > a. A function f € § is said to be convex of order o (0 < o < 1)

if Re (1 + Z}C,ZS)) > «. The classes of starlike functions of order o and convex functions of order « are denoted by
S*(a) and (o), respectively. By definition, it is clear that, (o) C S*(«) and also we have, f € K(«) if and only if
zf € §*(a).

Since each f € § is univalent, they are invertible for some part of unit disk U. In fact, the Koebe One Quarter
Theorem [4] ensures that, f~! exists at least on {z € C: |z| < 1} for each f € S. Thus every f € A has an inverse
f~1 which is defined by

FTUf) =2 =2€U
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and

FUHw) =w,  Jwl <ro(f), ro(f) =

Py

where,

fHw) = w — agw?® + (243 — az)w® — (5a3 — bagaz + as)w* + - . (1.2)
A function f € A is said to be bi-univalent in U if both f and f~' are univalent in U. Let ¥ denote the class of
bi-univalent functions. For brief history of the class X, see Srivastava et al.[I6]. Here are some of the examples of

functions in the class ¥ ) )
z +z
—log(1 — =1 .
o toati= ), gtos (1)

Geometric behavior of any function can be analyzed by knowing coefficient bounds of that function. Hence many
researchers obtained coefficient bounds for several interesting subclasses of ¥. This journey was started in 1967 by
Lewin [7], who introduced the class ¥ and showed that, |as| < 1.51. Subsequently, Brannan and Clunie [2] conjectured
that, |az| < v/2. Later, Netanyahu [I1I] proved that, maz|as| = 4 if f € X. The theory of bi-univalent functions
has been revived in the year 2010 by the pioneering work of Srivastava et al.[I6]. After that, many researchers viz.

[1, [©, [8, 10, 12| 19] introduced various subclasses of ¥ and found coefficient bounds for the functions in them.

Let f,g € A, given by
fz)=2z+ i apz” and g(z) =z + i bpz", (z€U).
n=2 n=2
Then, the convolution (Hadamard product) of f and g is denoted by f * g and is defined as
(f*x9)(z)=2z+ i anbnz".
n=2

In 1975, Ruscheweyh [13] defined the operator D involving convolution as follows.
Let f € A. The operator D* : A — A is defined as

D(f(2)) = W ff(z) (A>-1)
where,
D(f(2)) = f(2), D' (f(2)==zf'(2)
and
D™M(f(2)) = w neNo=1{0,1,2,3,...}.

Clearly, the operator D* satisfies the relation:

2Df(2)) = (L+ DM (f(2)) = ADA(f(2)). (1.3)
Using the operator D, we define following two new subclasses of bi-univalent functions.
Definition 1.1. A function f € ¥ given by (1.1) is said to be in the class SE(v,p, A\, 11,&,0); 0<p <1, A>-1,0<
n<1,0<¢<1,0<6<1,0<a<1,yeC*=C-—{0}, if it satisfies the following conditions:

1[(L=p)Df(2) + (p— n— pN2(D F(2)) + n(1 + Nz(DM1f(2) ar
e (1 *3 { (1—€)z+&(1—8)Df(2) + €62(D* f(2))' 1])‘ <2

and

ar 1 [(1=p) D g(w) + (p— p — pA)w(Drg(w)) + p(l + Nw(D g(w)) ar
g (1 3 { (1= w +&(1 - 9) D g(w) + Euw( D g(w)) 1D‘ <7
for all z,w € Uand g = f~! € ¥ given by .

Definition 1.2. A function f € ¥ given by is said to be in the class S (v, p, A\, 1,&,0;8);0 < p < 1,A > —-1,0<
1n<1,0<£<1,0<5<1,0<8<1,v7eC*=C—{0}, if it satisfies the following conditions:
1[(L=p)D f(2) + (p— p— pN)2(D f(2)) + p(1 +N2(DM1f(2)) D
re(1+3 ] (1= 8)z + €0 - )D 1 (2) + E02(D (=) )7

and

. 1 [(1=p)D*g(w) + (p — p — pA)w(Dg(w))" + p(1 + Nw(D Hg(w))
re(1e | (1 —Quw +£(1— ) DA g(w) + Ew(D g(w)) 1]) > s
for all z,w € Uand g = f~! € ¥ given by .
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Remark 1.3. For particular values of v, p, A, 4, & and 8, we get following well known subclasses of the class of bi-
univalent functions.

1. S&(v,p,0,1,&,6) and Sx (7, p,0,u,&,0; B) are the subclasses introduced by Saleh [14].

2. For A = 0 and p = 1 in definitions [I.I] and [I.2] we get modified definitions of subclasses introduced by Srivastava
et al. [15].

3. Sx(1,X,0,6,0,7; ) = Nx(a, A, d) is the subclass introduced by Bulut [3].

4. 5¢(1,1,0,0,),0) = Sg’l’“(m A) and Sx(1,1,0,0,),0;3) = M%’La(ﬂ, A) are the subclasses introduced by Srivas-
tava et al. [I7].

5. 58(1,1,0,0,1,\) = Gn(a,A) and Sx(1,1,0,0,1,X;5) = Mx(B8, ) are subclasses introduced by Murugusun-
daramoorthy et al. [9].

6. S2(1,1,0,\,1,A) = Be(a, A) and Sx(1,1,0,A,1,A; 8) = Ns(8, \) are subclasses introduced by Keerthi and Raja
[18].

7. 5%(1,1,0,0,0,7v) = Bx(a, ) and Sx(1,,0,0,0,v; 8) = Bs(8,A) are the subclasses introduced by Frasin and
Aouf [6].

8. 5%(1,1,0,8,0,v) = Hx(a, B) and Sx(1,1,0,3,0,7v;7v) = Hx(7, B8) are the subclasses introduced by Frasin [5].

9. 5¢(1,1,0,0,0,v) = HE and Sx(1,1,0,0,0,v; 5) = Hx () are the subclasses introduced by Srivastava et al. [16].

Lemma 1.4. [4] If h € P, then the estimates |¢,,| < 2,n =1,2,3,... are sharp, where P is the family of all functions
h which are analytic in U for which h(0) = 1 and Re(h(z)) > 0 (z € U) where,

h(z) =1+ciz+cz?+...,2€U.

2 Coefficient bounds for the function class Sg (v, p, A, u, &, 9)
Theorem 2.1. If f € S(v,p, A\, 1,&,0) is in A, then

2aly

lag| < (2.1)
VA+1/2Qay + (1 —a) (1 +p+2u— €= £5)2(A + 1)
and
laz| < mzn{ 4a2|'y|2 + dalyl
= (Itp+2u—E— €2+ 12 " [T+2p+6p—&—206[(A+1)(A+2)
dapy| (i + ! ) } (2.2)
A+1\2/Q 1420+ 6p—&—256|(A+2)
where
(A+2)
Q= (1+20+6p—&—20)"— = (1+p+2u— &= )51+ )(A+1). (2.3)

Proof . Let f € S&(v,p, A, 1,&, ). Then there exist two analytic functions hi(z) = 1+ Y 07 pp2" and ho(z) =
1+ 57 | gpw™ with positive real part in the unit disc such that,

1 [(1 —P)DXf(2) + (p— = pN)2(D f(2)) + p(1 + XN)=(DM1f(2))

' (1— &)+ E(1— 6)D [ (2) + £62(D (=)

1] =t (2.4)

and

L [(1=p)D g(w) + (p — p — ph)w (D g(w))" + u(1 + Nw(D ' g(w))’ ] o
14 = —1| =(h . 2.5
- (1~ O+ €0 - 9)DAg(w) + (DA g(w)) (ha(w) 29
Expanding above brackets and comparing coefficients of z, 22, w and w? in both sides of equations (2.4) and (2.5)), we

get
(1+p+2u—&—E8)(A+1)ay

= aps, 2.6
p 1 (2.6)
(1+2p+6p— § — 266) DI a5 — (14 p+ 20— € — E0)E(L + 6) (A + 1)%a3 _
5 (2.7)
—(1 2u — & — 1
(1+p+20—&—E&0)(A+1)ay — o (2.8)

v
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and
(1+2p+ 6 — € — 206) CFUOTD (962 — ag) — (14 p+2u — € — €0)E(1 + (A +1)%a3

~ (2.9)
aqe + a(a; DQ%
From equations and , we get
P =—q (2.10)
and avpr
as = (2.11)

(I+p+2u—E—-E)A+1)
Adding (2.7) and (2.9), we obtain

2Q(X + 1)a3 ala—1)

5 =a(p2+q)+ 5 ®? +d7), (212)
where ) is given by (2.3). Now, by using (2.10) and (2.11) in (2.12]), we get
o (peta)d+p+2u—E-80)*(A+1)

P 900y + (1—a) 1+ p+ 20— € —E0)2(A+ 1)

which, on using Lemma (1.4]) yields
o] < 21+ p+2u—E—&5|VA+1
T V2907 + (1 — )1 +p+2u—E—E6)2(A+ 1)

By taking modulus of both sides of (2.11]) and applying Lemma (1.4)) and inequality (2.13)), we get desired bound of

|az| given by (2.1).
Next, to get desire bound of |ag|, we subtract equation (2.9)) from (2.7)) to get

(1+2p+6p—&—266)(A+1)(A+2)(a3 — a3)
v

. (2.13)

= a(p2 — g2)-
This can be written using relation (2.10) as

-, ay(p2 — 2)
az = a3+ (14+2p+6p— & =266 (A +1)(A+2)

If we use the value of a2 given by (2.11)) in , we obtain

a?y?p? N ay(p2 — g2)

Q+p+2u—E—80)2(A+1)2  (1+2p+6p—E—20)A+1)(A+2)°

in which, using Lemma (1.4) we conclude one of the desired estimates of |az|. Further, if we use the value of a3

obtained from (2.12)) in equation (2.14]), we obtain

(2.14)

az =

_ ov(p2 + ¢2) + a(a = Dypt ay(pz — a2) (2.15)
8 20(A+1) (1+2p+6p—E&—206)(A+1)(A+2)’ '
which, by using Lemma proves the second desired estimation of |as|. O
3 Coefficient bounds for the function class Sx(v, p, A, , &, 95 3)
Theorem 3.1. If f € Sx(v,p, A\, 1,&,9;8) is in A, then
: 2(1-B)hl 2(1=B)l
= ; 3.1
'“2'—”“”{|1+p+2u555|<A+1> Q0+ 1) 3.1)
and
as| <min{ 4(1 - B’ L 4(1 =Bl
- (I+p+2u—E—€5)20+1)2  [1+20+6u—&—265|(A+1)(A+2)’
1-8hl (i 4 )} (3.2)
A+1) \IQ  |1+2p+6p—&—285|(A+2) ’

where (2 is given by (2.3).
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Proof . Let f € Ss(v,p, A\ 1,&,0;3). Then there exist two analytic functions P(z) = > 7, p,2™ and Q(w) =
> | guw™ with positive real part in the unit disc such that,

14 % {(1 —P)D f(2) + (p— pp = pN)2(DMf(2)) + p(1 + N2(DAf(2) 1}

(1 =8z +&(1 —8)DAf(z) + £82(D N f(2)) (3.3)
=B+ (1-pB)P(z)
and
141 [(1 — p)DAg(w) + (p — p = pA)w(Drg(w)) + p(1 + Nw(D g(w))" 1]
v (1— &w+E(1 — 8) D g(w) + Edw(D g(w))’ (3.4)

=B+ (1-8)Qw).
Expanding above brackets and comparing coefficients of z, 22, w and w? in both sides of equations (3.3]) and (3.4)), we

get
(L+p+2u—E—E€5)(A+1)as

= (1— B)p1, 3.5
S (1=8)p (3.5)
(1+2p+ 6 — € — 266) PEUOED 4y — (14 p 4 200 — € — £0)E(1 + 6)(A + 1)%a3
¥ (3-6)
= (1 - B)p2,
—(14+p+2u—€6—=E0)(A+1)a
(L+p+2p—8&—E5)( )2:(1_ﬂ)q1 (3.7)
Y
and
(1+2p + 6p — & — 266) ATVOT2) (92 _ 43) — (14 p+ 20 — € — £6)E(L + 8)(A + 1)2a3
¥ (3:8)
= (1 - B)gz.
From equations (3.5) and (3.7), we get
P1=—q
and (1-p)
— P)Thn
= . 3.9
T Mt 1) (39)
Adding (3.6) and (3.8), we obtain
20\ + 1)a?
2OLDS _ (1 ) pa+ ) (3.10)
where ) is given by (2.3). This, by applying Lemma (1.4]) gives
2(1 - B)|y|
Also, equation (3.9) shows that
2(1 —
|as| < 1 =A)h (3.12)

1+p+2u—&—E|(A+1)
Equation (3.11)) and (3.12)) gives desire bound of |as| given by (3.1). Next, to obtain bounds for |ag|, we subtract
(EKS) 3-0)

equation from (| , to get
> (1—B)v(p2 — 42)
=as + . 3.13
O 0 16— € — 206) (A + D)(A +2) (3.13)
Using value of as form (3.9) in equation (3.13)), we get
A)242,2 _ _

B AT pr2n—€ 06212 (I 420160 —€— 220N D0 +2)

Using Lemma (|1.4)), we conclude one of the desired estimate of |ag|. Further, if we use the value of a3 obtained from

(3.10) in (3.13)), we obtain

(1—B)(p2 + q2)v n (1-8)v(p2 — q2)
20(A+1) (1+2p+6u—&—206)(A+1)(A+2)

which, in light of Lemma (1.4]) gives the desired estimation of |as|. O

(3.15)

az =
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4 Some Corollaries and Consequences

In this section, we have mentioned correlations with some of the known results as consequences of Theorem (2.1))
and Theorem (3.1]) proved in previous two sections.

By putting A = 0 and p = 1 in the Theorems (2.1)) and (3.1)), we get modified results considered by Srivastava et
al. ([15], Theorem 1 and 2).

Corollary 4.1. Let f € Hx(y, 1, &, ;) given by (L.1) then

la] < 2aly|
T VI2Qay + (1 - )2+ 2 — € — €6)?

and

4o |y)? 20 20|y 2aly| }

az| < min s
las] < {<2+2u—5—56)2 81 6u—c 260 || |13+ 6n—¢— 20|

where
Q1 = (34 61— € — 260) — (2421 — £ — E6)E(1 4 9). (4.1)

Corollary 4.2. Let f € Hx(vy, 1, &, d; 8) given by (1.1) then

[ 201-8hl [20-p)h
”ﬂ<”””{m+2u—§—s&’ N }

and

as| <mm{ 401 = B)*yI? 208k 20-Fkl_ _ 20-H)hl }
- (2+2u—€—€0)%  [3+6p—€-26]" ] 3+ 6 — & — 2¢6]
where || is given by equation (4.1)).

By putting y =p=¢=1,u=0 and A = 0 in the Theorems (2.1)) and (3.1]), we get modified results considered by
Murugusundaramoorthy et al. ([9], Theorem 4 and 5).
Corollary 4.3. Let f € Gu(a,0) (0 <6 < 1) given by (L.1)) then
las| < 2a
a e SR
S R s Wy
and
las| <

(1-6)2 1-4¢
Corollary 4.4. Let f € Mx(8,6) (0 < 4§ < 1) given by then

2(1 - B)

<
a2l < 55

and

las| < min{

41-p8)2 1-821-6) 1-8
(1=0) +1—5’(1—5)2+1—5}'

By putting y =p=¢ =1, p =06 and A = 0 in the Theorems (2.1)) and (3.1]), we get modified results considered by
Keerthi and Raja ([I8], corollary 2.3 and 3.4).

Corollary 4.5. Let f € Bs(a, ) given by (1.1)) then

2
las| < 2
Va1 +2p) + (1= 30) (1 + p)?|
and
las| < mi 402 N e 202 N @ }
a: min , .
3= (IT+p)?  2u+11+20—p2  2u+1
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Corollary 4.6. Let f € Nx (B, u) given by (1.1) then

2= T+p 1420 —p2

and

T A

az| < min ,
las| < {(1+u)2 120 14+2u—p2  1+2u

By putting A = y=¢ =0 and v = 1 in the Theorems ([2.1) and (3.1]), we get modified results considered by Frasin
and Aouf ([6], Theorem 2.2 and 3.2).

Corollary 4.7. Let f € Bs(a,p) (p > 1) given by (1.1) then

2
jas] < )
Val+2p—p?) + (14 p)?

and

402 20 202 200 }

az| < min + , +
las] < {(1+p)2 14201420 142

Corollary 4.8. Let f € Bs(8,p) (p > 1) given by then

4| < min 2(1-8) [2(1-8)
2= 1+p '\ 1+2

and

g7, 2= 41-9)

az| < min ,
las] < {(1+p)2 1420 1+2p

By putting A =& =0 and v = p = 1 in the Theorems (2.1)) and (3.1)), we get modified results considered by Frasin
([B], Theorem 2.2 and 3.2).

Corollary 4.9. Let f € Hx(a, ) given by (1.1)) then

2
jas| < =
V22 + ) +4p(a —ap+2 + p)

and

2 200 202 4 2 }

e
-
ool < min{ (e T S0

Corollary 4.10. Let f € Hx(p,8) given by (1.1) then

Iazlgmm{lﬁ, 201 - F) }
T+p"\ 3(1+2p)

and

Upr, 2= d1-p)

az| < min ,
jas| < {(1+u)2 3(1+2p)" 3(1+ 2p)

By putting A = ¢ = p =0 and 7 = p = 1 in the Theorems (2.1) and (3.1]), we get modified results considered by
Srivastava et al. ([I6], Theorem 1 and 2).

Corollary 4.11. Let f € H$ given by (1.1]) then

2
lag| < ay/——
o+ 2

200 2 1
las| < min {a2 + a’a(a—i—)}

and

3 3
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Corollary 4.12. Let f € Hx(8) given by (1.1) then

|as| §min{lﬂ,\/2(135)}

2(1-5) 4(1—5)}
3 3 '

and

lag| < min {(1 - 6)2 +
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