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Abstract

In this paper, we study some differential subordination and subordination results for certain subclass
of univalent functions in the open unit disc U using generalized operator H;‘ﬁ. Also, we derive some
sandwich theorems.
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1. Introduction

Let Y = Y (U) be the class of analytic functions in the open unit disk U = {z : z € C and |z| < 1}.
For n € N and a € C. Let Y|[a, n] be the subclass of Y of the form:

f(z) =a+a,z" + ap12" + ., (a € C).
Let ¢ denote the subclass of Y of functions f of the form:

f(2) :z+Zanz", (ze€U), (1.1)

which are analytic in the open unit disk U = {z: z € C and |z| < 1}. Let f and g are analytic
functions in Y, f is said to be subordinate to g, or g is said to be superordinate to f in U and write
f < g, if there exists a Shwarz function w in U, which with w(0) = 0, and |w(z)| < 1(z € U), where
f(z) = g(w(2)). In such a case we write f < g or f(z) < g(z)(z € U). If ¢ is univalent in U, then
f < g if and only if f(0) = ¢g(0) and f(U) C ¢g(U) ([17, 18]).
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Definition 1.1. [17] Let ¢ : C* x U — C and h(z) be univalent in U. If p(z) is analytic in U and
satisfies the second — order differential subordination:

o(p(2), 2p'(2), 2°p"(2); 2) < h(2 ) (1.2)
then p(2) is called a solution of the differential subordination , and the univalent function q(z)
1s called a dominant of the solution of the differential subordinatz’on (11.2), or more simply dominant

if p(z) < q(2) for all p( ) satisfying (1.2)). A univalent dominant §(z) that satisfies G(z) < q(z) for
all dominant q(z) of (1.2) is said to be the best dominant is unique up to a relation of U.

Definition 1.2. [17] Let p,h € ¢ and ¢(r,s,t;2) : C3 x U — C. If p and ¢(p(2), zp'(2), 2°p"(2); 2)

are univalent function in U and if p satisfies:

h(z) < ¢(p(2), 2/ (2), 2°p"(2); 2), (1.3)

then p is called a solution of the differential superordination (1.3 . An analytic functions q(z),

which is called a subordinant of the solutions of the differential subordmation (1.3), or more simply a

subordinant if p < q for all the functions p satisfying (1.3). A univalent subordinant G that satisfies
q < q for all the subordinants q of (1.3) is said to be the best subordinant.

Several researchers [1I, 2, O] T4, 17] obtained sufficient conditions on the functions h,p and ¢ for
which the following implication holds

h(z) < 6(p(2), 2p'(2), 2°p"(2); 2)

then

q(z) < p(z) (1.4)
Making use the results (see [3, [4), Bl [6, [10] 111 [18]) to obtain sufficient conditions for normalized
analytic functions to satisfy:

2f'(2)
f(2)

where ¢; and ¢y are given univalent functions in U with ¢;(0) = ¢2(0) = 1.

Also, several researchers (see [II, 3], 5], 6] [7, §]) derived some differential subordination and super-
ordination results with sandwich results.

Cho et al. [I3] introduced the operator \90z " due to Goyal and Prajapat [15](see also [21]) as
follows:

0(z) < < ¢2(2),

INE)NEE

T'(2—p)I(2—A+1n) 5y .
—m)“m Mn)” 21 “”f(z)(—oo <A<0+2;z€U),

LRl GXbn) u pAen £(2) (0 < X\ <+ 22 € U

where JO 1 and I #1 are the generalized fractional derivative and integral operators, respec-
tively, due to Srlvastava et al. [25](see also [19, 22]). For f € ¢ of form Equation (1.1]), we have

L f(2) = 23 F = (1,2,2 41 — 152 — 11,2+ 1 — X; 2)

o~ (2u2—ptn)
= n n7 s R7 2,— )\ 2, 16
Z+E, E M)n(Q—)\+77)naZ (u,n € Ry < 00 <A<n+2) (1.6)
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where ¢Fs(q < s+1;q,s € Ng = NU{0}) is the well- Known generalized hypergeometric function
(for details, see [20)], 24]),the symbol * stands for convolution of two analytic functions [I7] and (v),
is the Pochhammer symbol [16], 20].

Setting

2_
*Z“LZ Qﬁj;_?n) 2" (m € Ryp <min{2,2+n}; —oco < A <n+2) (1.7)

and

z
T
Tang et al. [26](see also [23]) defined the operator H,»0 : ¢ — ¢ by H)0 f(2) =[Gy (2)] * f(2).
then for f € ¢, we have

GA L (2) * [GX0(2)] = §<—1;z€U).

A, n 2-A+ n
Hp» 6 —z+z N (2) (H‘H?) U anz". (1.8)

It is easy to verify that

2(Hyn f(2)) = (6+ V) Hp2 f(2) — 6H o f(2),
2(H)TOf(2)) = (L+n—NHM f(2) — (n— N H T f(z). (1.9)

The specific aim of this idea is to find sufficient condition for certain normalized analytic function

f to satisfy:
H)\,E B
q1(2) < (%(2)) =< q2(2),

and

H)\ o+1
a() < (W{%)) <)

2. Preliminaries

In order to prove our subordination and superordination results, we need the following lemmas
and definitions.

Definition 2.1. [17] denote by Q the class of all functions q that are analytic and injective on
U\E(q), where U = UU{z € U} and E(q) = {¢ € U : lim, . q(z) = oo} and are such that
q(C) # 0 for ¢ € partialU\E(q). Further, let the subclass of Q for which q(0) = a be denoted by
Q(a),Q(0) = Qo and Q(1) = Q1 ={q € Q : U : q(0) =1}.

Lemma 2.2. [I8] Let q(z) be a convex univalent function in U let v € C,{ € C\{0} and suppose

that Re {1 + %} > max{0, —Re},

If g(2) is analytic in U and vg(z) + (z4(z) < vq(2) + (z{(z),
then g(z) < q(z) and q is the best dominant.
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Lemma 2.3. [J] Let q be univalent in U and let @ and 6 be analytic in the domain D containing
q(U) with O(w) # 0, when w € q(U). Set Q(z) = 24(2)D(q(2)) and h(z) = 0(q(z)) + Q(2), suppose
that

1. Q is starlike univalent in U,

zh!(z
2 Re{Zdl>0zeU.

If g is analytic in U with g(0) = ¢q(0), g(U) € D and O(g(2)) + 24(2)D(g(2)) < O(q(z)) +
24(2)D(q(z)), then g(z) < q(2), and q is the best dominant.

Lemma 2.4. [12] Let q(z) be a conver univalent function in the unit disk U and let 6 and O be
analytic in the domain D containing q(U) suppose that:

0(a(2))
1. Re{¢(q( ))}>O,Z€U.

2. Q(z) = z4(2)D(q(z)) is starlike univalent in U.

If g € H[q(0),1]NQ, with g(U) C D, and 0(g(2)) + 24(2)D(g(z)) is univalent in U, and
0(q(2)) + 24(2)D(q(z)) < 0(g(2)) +zg( 1D(g(2)), then q(z) < g(2), and q is the best subordinate.

Lemma 2.5. [1§] Let q(z) be a convex univalent function in U and q(0) = 1, let § € C, that
Re{f} >0 if g(z) € H[q(0),1]NQ and g(z) + Bzj(z) is univalent in U, then

q(2) + B24(2) < 9(2) + B4(2),
which implies that q(z) < g(z) and q(z) is the best subordinate.

3. Differential Subordination Results

Theorem 3.1. Let q be convez univalent function in U with ¢(0) = 1, € C\{0}, 8 € C and suppose

that q satisfies:
Zq”(Z) /8
Re{l—i— 70 } >maX{O,Re (a)} (3.1)

If f € C satisfies the subordination condition:

NS F (s B NS F (s Ad+1 o
1—a(d+1)] <M> +a(d+1) (H"”f ( )> (H G )) <q(z)+5zq'(z), (3.2)

z z Hynf(2)

then

AN
<Hn,uz( )> < q(2), (3.3)

and q 1s the best dominant.
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Proof . Define the function g by

Aor\
o) = (H—”) , 3.4

then the function g(z) is analytic in U and g(0) = 1, therefore, differentiating (3.4) with respect
to z and using the identity ((1.9) in the resulting equation, we obtain

2g'(2) /\le( )
=030 +1) | ——-—2—1/{.
e 7y
2,0 P )\5—0—1 P
Hence 2 6 =(+1) (H"“‘f( )> [ Hﬁf{()) 1].

The subordination . ) from the hypothesis becomes
! o
9(z) + BZQ’(Z) < q(z) + EZQ’(Z)-

An application of Lemma [2.2] we obtain with ¢ = and v=1.0
Putting ¢(z) = (2), in Theorem | we obtam the followmg corollary.

1

Corollary 3.2. Let 0 #a € C,5 > 0 and Re {1 + ffz} > maX{O, —Re (g)} If f € C satisfies the

subordination condition:

m0(2)\ 1)\ (o)) (12425
[1-a(d+1)] <—> *“(‘””< : ) (Haﬁﬂz)) TP )

(}_Z) is the best dominant.

Theorem 3.3. Let q be convez univalent function in U with ¢(0) = 1,¢'(z) # 0 (z € U) and assume

that q satisfies:
Re {1 +24() 4 () + Z;’éz)) - qu(S)} -0, {o, Re (g)} (3.5)

where a,v € C\{0}, ¢,7,6 € C and z € U.

Assume that U% 1s starlike univalent in U. If f € ( satisfies:

x(¢, 7,0, 8,0, 0,1, 15 2) < c+q(2) + ¢*(z) + v (3.6)

. B H/\6+1f( ) >\6+2f(2> A6+2f(z) B H)“Hlf(z)
X(6mf ’A"S’"’”’Z)_Cﬂ( HYF(2) ) +<H9,3“f(Z)>+w (o+1) (H%;‘f“f(z) HYF(2)
)

(3.7
then (B < 4(2),
and q(z) 1is the best dominant of (i3.6]).



2526 Atshan, Sehen

Proof . Consider a function g by

X0
Hyuf(2)
Then the function ¢(z) is analytic in U and g(0) = 1 differentiating (3.8)) with respect to z and
using the identity (1.9)), we get,

29'(2) _ Hyp i) Hy'f(2)
- 5(5 + 1) A,0+1 - A0 )

9(2) Hyu™ f(z) Hyuf(2)

By setting 6(w) = ¢ + yw + w? and O(w) = £, w # 0.

We see that §(w) is analytic in C and @ (w) is analytic C\{0} and that O(w) # 0, w € C\{0}.

Also, we obtain R(z) = 2¢/(2)0(q(2)) = 24/ (2) 355 = UZ;IES),

and S(2) = 0(q(2)) + R(2) = ¢+ vq(2) + (q(2))? + v

We find R(z) is starlike univalent in U, we have

Aot p\ P
g(z) = (M) ) (3.8)

vzq"(2) + vq' ()

q(z)

25'(z) _ v 2 2, v2q"(z) +ug'(z) v 2 2, 24"(2) | 2d(2)
25'(z) gl 2 2, 2q"(2) | 2q'(2)

= 14+ = — .
Re( R(z)) Re{ +Uq(z)+vz(q(z)) + 7 + ) >0
By a straightforward computing, we get

2q'(z
c+7q(2) +¢*(2) +v j(i)) = X(¢, 7, v, B, A, 6,1, 113 2), (3.9)
where x(c,7,v, 8, A, 8,1, p; z) is given by (3.7).
From (3.6 and , we have
29'(2) 2q'(2)

c+v9(2) + ¢*(2) +v <c+7q(2) + ¢ (2) +v

9(2) q(z)
Therefore, by Lemma [2.3] we get g(z) < ¢(z) by using (3.4), we obtain the result. O

Putting ¢(z) = (}igz) — 1< B < A<1in the Theorem ({3.3]), we get the following corollary:

Corollary 3.4. Let —1 < B< A <1 and Re {1 + 1 (%) + f—z (}igi)z + 125322 + (H(;Z;ngz)} >
0,

where v € C\{0} and z € U, if f € ( salisfies

1+ Az N 1+ A2\’ v(A— B)z
1+ Bz 1+ Bz (14+ Bz)(1+4 Az)’

and X(Ca YU, 67 )‘7 67 ;1 Z) is gz’ven by ‘ ’ then

x(c,v,v,B8,A,0,1m, 1; 2) <C+7<
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H)oH f(2) o (1 + Az)
L =< ,
Hyuf(2) 1+ Bz

) 18 the best dominant.

(Lt

and q(z) = (1752

4. Differential Superordination Results

Theorem 4.1. Let q be a convex univalent function in U with ¢(0) = 18 > 0 and Re{a} > 0. Let
f € ( satisfies:

AN
(H—”) e Hlg(0).1]nQ

z

A8 B 2,6 B A5+1
and [1 — a(d+1)] (H"“Tf(z)> +a(d+1) (H""Tf(z)) (%) be univalent in U.
If mH

)+ Sa(2) < [1 - oo+ 1)  F2l D) B+a(6+1> HLE)) (Hu 1 (4.1)
Ne) T g z z Hynf(z) )

2,8 B
then q(z) < (H"”Tf(z)> , and q is the best subordinate of (4.1)).

Proof . Define the function g by
B
HM f(2
z
Differentiating (4.2]) with respect to z, we obtain
! 2 (HMF(2))
UL(Z) _ (+()) 1) (4.3)
9(2) Hyuf(2)
After some computations and using ([1.9)), from (4.3), we get

HAM F( 5 B HM F(s B FMOHLF( N
[1—a(0+1)] (%) +a(d+1) (%()) (%) =g(z) + Bzg’(z)

and now, by using Lemma [2.5, we get the desired result. [

Putting ¢(z) = (32) in Theorem , we obtain the following corollary:

Corollary 4.2. Let > 0 and Re{a} >0, if f € ¢ satisfies:

Mor\
(H—”) e Hlg(0).1]NQ

z
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A6 B 2,8 B A, 5+1
and [1 — a(d+1)] (H"“Tf(z)> +a(d+1) (H""Tf(z)> (Ii}fé—f{())) be univalent in U.
n

1—22+ 252 H) f(2) ’ H) f(z) ’ Hyot f(z)
(—(1 e ) <[1—a(d+1)] (—Z ) a(d+1) (—Z ) <—H$;;ff(z) ) ,

( %5f

) s the best subordinant.

then

andq )

Theorem 4.3. Let q be a convexr univalent function in U with q(0) =1, ¢/(2) # 0 and assume that
q satisfies:

Re {zq(z)q'(z)} > 0 (4.4)
v
where v € C\{O} and z € U.
Suppose that Uzq( i) is starlike univalent function in U. Let f € C satisfies:

A0+1
(I—I:I;\L(;—f{(;)> € H[q(0),1]NQ and x(¢c,v,v, B, \,0,m, p; z) is univalent function in U,
n,ud \Z

where x(c,v,v, B, N, 6,m, p; z) is given by (3.7). If

c+7q(z) +¢*(z) + U%S) < x(e,7,v, 8, A, 8,1, 13 2), (4.5)

X641 B
then q(=) < (“2k19),
Hyp f(2)
and q is the best subordinant of ({4.5) .

>\ 6+
Proof . Consider a function g by g(z) = < A f{(;)> :
Ny z

By setting: 6(w) = ¢+ ~yw + w? and O(w) = %, w # 0.

We see that §(w) is analytic in C and O (w) is analytic in C\{0} and that O(w) # 0, w € C\{0}.
Also, we obtain R(z) = 2¢/(2)D(q(z)) = UZQ(S)
It is clear that R(z) is starlike univalent function in U,

Re { gggz;% } = Re {%q(z)q'(z)} > 0.

By straightforward computation, we get:

2q'(z
X(€7:0, B,0,0,m, p152) = ¢ +94(2) + ¢*(2) + v ) : (4.6)
q(z)
where x(c,v,v, 8, A, 0,1, j1; 2) is given by (3.7)).
From (4.5) and (4.6)), we have
2q'(2) zg'(2)

c+7q(z) + () +v

< c+g(2) +g°(2) +v

q(2)

Therefore, by Lemma [2.4] we get ¢(z) < g(z). O
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5. Sandwich Results

Theorem 5.1. Let ¢ be a conver univalent function in U with ¢;(0) = 1, Re{a} > 0, a €
C\{0}, B > 0 and let g5 be univalent function in U, q2(0) =1 and satisfies

Re {1 - Zq//(z)} > max {0, Re (g)} f f € ¢ satisfies:

q'(2)
B
H)\,é
(—”’“ <Z)> € H[1,1]NQ,

z

A8 B 2,6 B 2,541
and [1 — a(d+1)] (H"“Tf(z)> +a(d+1) (M) (Ii}fé—f{(;)) be univalent in U.
n,ut (2

\,6 B 2,8 B X641
Ifau(2)+5204(2) < [1—a(@+1)] (HE52) " a(o+1) (H)" (B SD) < gy(2) + S204(2),
n,ut (2

2,6 B
then q(z) < (H’”Tf(z)> < q2(2) and q1(z) and ga(z) are respectively, the best subordinant and

the best dominant.

Theorem 5.2. Let q; be a convez univalent function in U with ¢ (0) = 1 and satisfies Re {2q(2)q'(z)} >
0. Let gy be univalent function in U with ¢2(0) = 1 satisfies

W'(5) ()
/& @ } =0

Re {1 + %q(z) + q2(2) +

. HOH () B
Let f € ( satisfies: (m) H[1,1]NQ,
and x(c,7,v, 8, A, 6,1, w; z) is univalent in U, where x(c,v,v, B, X, 8,0, ; z) is given by (3.7). If
aqi(2) = Bzqy(2) < x(c,7,v, B, A 0,1, 15 2) < aga(2) — Bras(2),
then qi(z) < <%>ﬂ =< q2(2), and q1(z) and q2(2) are respectively, the best subordinant and
the best dominant.
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