
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,029 |
تعداد مشاهده مقاله | 67,082,944 |
تعداد دریافت فایل اصل مقاله | 7,656,401 |
Some dominating results of the topological graph | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 11، دوره 14، شماره 2، اردیبهشت 2023، صفحه 133-140 اصل مقاله (644.33 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2022.6404 | ||
نویسندگان | ||
Zainab N. Jwair؛ Mohammed A. Abdlhusein* | ||
Department of Mathematics, College of Education for Pure Sciences, University of Thi-Qar, Thi-Qar, Iraq | ||
تاریخ دریافت: 19 دی 1400، تاریخ بازنگری: 09 اسفند 1400، تاریخ پذیرش: 01 فروردین 1401 | ||
چکیده | ||
Let $G_{\tau}=(V, E)$ be a topological graph constructed from the topological space $(X, \tau)$. In this paper, several types of dominating parameters are applied on the topological graph $G_{\tau}$. Such as independent domination, total domination, connected domination, doubly connected domination, restrained domination, strong domination and weak domination. Also, the inverse domination of all these parameters was proved. | ||
کلیدواژهها | ||
Topological graph؛ dominating set؛ domination number؛ inverse domination؛ connected graph | ||
مراجع | ||
[1] M.A. Abdlhusein, New approach in graph domination, Ph. D. Thesis, University of Baghdad, Iraq, 2020.
[2] M.A. Abdlhusein, Doubly connected bi-domination in graphs, Discrete Math. Algor. Appl. 13 (2021), no. 2, 2150009. [3] M.A. Abdlhusein, Stability of inverse pitchfork domination, Int. J. Nonlinear Anal. Appl. 12 (2021), no. 1, 1009– 1016. [4] M.A. Abdlhusein, Applying the (1, 2)-pitchfork domination and its inverse on some special graphs, Bol. Soc. Paran. Mat. Accepted to appear, 2022. [5] M.A. Abdlhusein and M.N. Al-Harere, Total pitchfork domination and its inverse in graphs, Discrete Math. Algor. Appl. 13 (2021), no. 4, 2150038. [6] M.A. Abdlhusein and M.N. Al-Harere, New parameter of inverse domination in graphs, Indian J. Pure Appl. Math. 52 (2021), no. 1, 281–288. [7] M. A. Abdlhusein and M.N. Al-Harere, Doubly connected pitchfork domination and it’s inverse in graphs, TWMS J. App. Eng. Math. 12 (2022), no. 1, 82–91. [8] M.A. Abdlhusein and M.N. Al-Harere, Pitchfork domination and it’s inverse for corona and join operations in graphs, Proc. Int. Math. Sci. 1 (2019), no. 2, 51–55. [9] M.A. Abdlhusein and M.N. Al-Harere, Pitchfork domination and its inverse for complement graphs, Proc. Instit. Appl. Math. 9 (2020), no. 1, 13–17. [10] M.A. Abdlhusein and M.N. Al-Harere, Some modified types of pitchfork domination and its inverse, Bol. Soc. Paran. Mat. 40 (2022), 1–9. [11] M.A. Abdlhusein and S.J. Radhi, The arrow edge domination in graphs, Int. J. Nonlinear Anal. Appl. Accepted to appear, 2022. [12] M.A. Abdlhusein and Z.H. Abdulhasan, Modified types of triple effect domination, reprinted, 2022. [13] M.A. Abdlhusein and Z.H. Abdulhasan, Stability and some results of triple effect domination, Int. J. Nonlinear Anal. Appl. Accepted to appear, 2022.
[14] Z.H. Abdulhasan and M.A. Abdlhusein, Triple effect domination in graphs, AIP Conf. Proc. 2386 (2022), 060013. [15] Z.H. Abdulhasan and M.A. Abdlhusein, An inverse triple effect domination in graphs, Int. J. Nonlinear Anal. Appl. 12 (2021), no. 2, 913–919. [16] M.N. Al-Harere and M.A. Abdlhusein, Pitchfork domination in graphs, Discrete Math. Algor. Appl. 12 (2020), no. 2, 2050025. [17] M.N. Al-Harere and A.T. Breesam, Further results on bi-domination in graph, AIP Conference Proc. 2096 (2019), no. 1, 020013–020013-9. [18] L.K. Alzaki, M.A. Abdlhusein and A.K. Yousif, Stability of (1, 2)-total pitchfork domination, Int. J. Nonlinear Anal. Appl. 12 (2021), no. 2, 265–274. [19] E.J. Cockayne, R.M. Dawes and S.T. Hedetniemi, Total domination in graph, Networks 10 (1980), 211–219. [20] J. Cyman, M. Lemanskat and J. Raczek, On the doubly connected domination number of a graph, Cent. Eur. J. Math. 4 (2006), no. 1, 34–45. [21] W. Goddard and M.A. Henning, Independent domination in graph, A survey and Recent, Discrete Math. 313 (2013), 839–854. [22] F. Harary, Graph theory, Addison-Wesley, Reading, MA, 1969. [23] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of domination in graphs, Marcel Dekker, Inc. New York, 1998. [24] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in graphs-advanced topics, Marcel Dekker, Inc. 1998. [25] T.W. Haynes, M.A. Henning and P. Zhang, A survey of stratified domination in graphs, Discrete Math. 309 (2009), 5806–5819. [26] M.K. Idan and M.A. Abdlhusein, Some properties of discrete topological graph, IOP Conf. Proc. accepted to appear, 2022. [27] A.A. Jabor and A.A. Omran, Domination in discrete topological graph, AIP Conf. Proc. 2183 (2019), 030006. [28] A.A. Jabor and A.A. Omran, Topological domination in graph theory, AIP Conf. Proc. 2334 (2021) 020010. [29] Z.N. Jweir and M.A. Abdlhusein, Applying some dominating parameters on the topological graph, IOP Conf. Proc. accepted to appear, 2022. [30] Z.N. Jweir and M.A. Abdlhusein, Constructing new topological graph with several properties, reprinted, 2022. [31] S.S. Kahat, A.A. Omran and M.N. Al-Harere, Fuzzy equality co-neighborhood domination of graphs, Int. J. Nonlinear Anal. Appl. 12 (2021), no. 2, 537–545. [32] V.R. Kulli and S.C. Sigarkanti, Inverse domination in graphs, Nat. Acad. Sci. Letters, India, 14 (1991), 473–475. [33] G.B. Monsanto and H. Rara, Resolving restrained domination in graphs, Eur. J. Pure and Appl. Math. 14 (2021), no. 3, 829–841. [34] S.J. Radhi, M.A. Abdlhusein and A.E. Hashoosh, The arrow domination in graphs, Int. J. Nonlinear Anal. Appl. 12 (2021), no. 1, 473–480. [35] S.J. Radhi, M.A. Abdlhusein and A.E. Hashoosh, Some modified types of arrow domination, Int. J. Nonlinear Anal. Appl. 13 (2022), no. 1, 1451–1461. [36] E. Sampathkumar and H.B. Walikar, The connected domination number of a graph, J. Math. Phys. Sci. 13 (1979), no. 6, 607–613. [37] E. Sampathkumar and L. Pushpa Latha, Strong weak domination and domination balance in a graph, Discrete Math. 161 (1996), 235–242. | ||
آمار تعداد مشاهده مقاله: 11,285 تعداد دریافت فایل اصل مقاله: 744 |