
Int. J. Nonlinear Anal. Appl. 13 (2022) 2, 899–921
ISSN: 2008-6822 (electronic)
http://dx.doi.org/10.22075/ijnaa.2022.21134.2237

Mathematical modeling of co-infections of hepatitis A viral
disease and typhoid fever with optimal control strategies

Mamo Shigute Wameko, Purnachandra Rao Koya∗, Alemu Geleta Wedajo∗

Wollega University, Ethiopia

(Communicated by Madjid Eshaghi Gordji)

Abstract

In this study, a mathematical model with optimal control measures was used to investigate the transmission dynamics
of co-infection of hepatitis A virus and typhoid fever. A deterministic compartmental model was used and an analysis
of the effect of various control measures was compared. The pathogen fitness that represents the epidemic indicator is
obtained by using the next-generation matrix. We have shown the existence of two equilibrium states: the disease-free
steady state in which there are no populations that are infected by the co-infection of hepatitis A virus and typhoid
fever, the endemic state in which a co-infected population exists and is capable of transmitting the disease. The local
and global stability conditions of the endemic equilibrium points were also proved. Further, it was proved that the
co-infection of the model exhibited a backward bifurcation. Finally, a numerical simulation of the model was made
and it reveals that prevention has a significant impact in reducing the transmission of the co-infection and applying all
the control measures can successfully eliminate co-infection of hepatitis virus and typhoid fever from the community.
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1 Introduction

Typhoid disease is caused by the bacterium, Salmonella enterica serovar typhi (S. Typhi) and it remains the main
cause of enteric disease in developing countries. Salmonella enterica serovar typhi is a gram-negative bacterium that
invades the body via the small intestines and colonizes macrophages in the reticuloendothelial system, where it is
shed into the bloodstream [2]. The symptoms of the disease include prolonged fever, headache, depression, and loss
of appetite, sometimes accompanied by abdominal pain and, in harsh cases, intestinal perforation and neurological
complications [6]. Typhoid disease results in an estimated 216,000 up to 600,000 deaths per year, mainly in children
of school-age. Human being will be infected with typhoid fever by eating or drinking food or water contaminated with
Salmonella Typhi bacteria.

Hepatitis, plural hepatitides, is a soreness of liver characterized by the presence of inflammatory cells or tissue
[1]. It is most commonly caused by the viruses: hepatitides A, B, C, D and E. This infection is associated with poor
sanitation and hygiene and is transmitted by the ingestion of contaminated food or water or by direct contact with
an infected person. Peoples who are living in a group, both within and outside shelters, increases the risk for disease
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transmission, which can result in outbreaks [9]. International travelers to the areas of hepatitis A virus endemic areas,
men who have sex with men and persons with chronic liver disease are more susceptible to the disease [13].

Typhoid fever is one of the causes of serious illness in children and adults in developing countries. Hepatitis
A disease also continues to be an important cause of illness and acute liver failure in developing countries where
congregate living conditions exits, sanitation and food hygiene are not optimal. In Africa where typhoid fever and
hepatitis A are endemic, peoples can be infected by either or both of the disease. To alleviate this problem continuous
research into the prevention and control of the disease is vital. Thus, mathematical modeling can address and describe
the dynamics of the co-infections of the disease in the community. For example in [17] studied a mathematical model
to investigate typhoid fever outbreak and optimal control with cost-effective strategies in a community with varying
population. Some of other studies include; Steady, et al, (2014) used a deterministic model to assess the dynamics
of typhoid disease in malaria endemic settings. The result of his study indicated that a typhoid fever outbreak in
malaria endemic settings may results in higher population of dually infected individuals showing clinical symptoms of
both infections than the singly infected population displaying clinical symptoms of the diseases.

Hepatitis A and typhoid fever are prevalent in many parts of the world particularly in developing countries. These
disease shares a common mode of transmission via ingestion of food or water associated with poor hygiene [3]. In
typhoid, involvement of liver is a consistent feature [7]. Various organs including the liver involves in the course of
enteric fever, resulting in a wide array of presentations [10]. Abnormalities of liver biochemical tests are commonly
found in patients with typhoid fever [12]. However, a picture of hepatitis with fever and frank jaundice characterizes
the course of a small subset of a patients infected by Salmonella typhi [16]. Different mathematical models have been
used to study the dynamics of either typhoid or HAV as well as the impact of some intervention strategies. So far
hardly any case control studies have been undertaken to study the co-infections of these diseases. Thus, this study
aimed to address mathematical modeling of the co-infection of typhoid and HAV disease using some control measures.

2 Description and Formulation of Model

In this study we used a model consisting; seven compartments of human populations and one compartment of
bacterial populations. The human population consists of susceptible S(t) that is used to represent the number of
individuals who are prone to the disease at time t. It(t) denotes typhoid infected and infectious population. Ih(t)
denotes hepatitis A virus infected peoples and capable of infecting others. Ith(t) denotes hepatitis A -typhoid co-
infected population. Rt(t) denotes peoples recovered from typhoid. Rh(t) denotes population recovered from hepatitis
A virus. R(t) denotes population recovered from the co infection of typhoid-hepatitis a virus. B(t) denotes salmonella
bacteria population. Some populations enter susceptible class by birth or emigration at a rate of Λ or from typhoid
recovered sub-class by losing temporary immunity with α rate. Susceptible individuals acquire typhoid infection at
per capita rate λ1 = νB

K+B and enter into typhoid infected sub-class It(t) or acquire HAV disease at a per capita rate

λ2 = γ(Ih(t)+ϑIth(t))
N and enter HAV infected sub-class Ih(t). If ϑ ≥ 1 then, co-infected may infect susceptible more

likely than HAV infected. ϑ = 1, then both co-infected and HAV infective have equal chance to infect the susceptible,
but if ϑ ≤ 1 then HAV infectious will have better chance to infect susceptible than co-infected. γ denotes the infectious
rate of HAV, ν is the rate of ingestion of typhoid causing bacteria, K is concentration of bacteria in foods and water.
The size of the co infected sub- class is increases from HAV infected group by acquiring typhoid disease with a rate
of θ2 due to the force of infection λ1 and also from typhoid infected sub-class by acquiring HAV disease with a rate
of θ1 due to the force of infection λ2. The HAV infected population will recover at a rate β2 due to natural immunity
and join to HAV recovered sub-class Rh or die due to disease induced death rate d2. The typhoid fever infected
population also will recover at a rate β1 due to natural immunity and join typhoid recovered sub-class Rt dies from
disease induced death rate d1. The HAV- typhoid co infected sub class removes with a rate of δ and acquire temporary
immunity either from both disease or HAV only or typhoid only and join the co infected recovered sub-class R with
probability of (1− a)(1− b) or HAV recovered sub-class Rh with probability of a(1− b) or typhoid disease recovered
sub-class Rt with probability of bδ. Moreover, individuals in the co infected sub-class dies either from the co-infections
or HAV or typhoid causing death with a rate of d3. In all the human population classes µ denotes natural mortality
rate. The salmonella bacteria population B grows exponentially at a growth rate of r in contaminated food or drinks.
The bacteria population increases due to typhoid infected individuals and the co infected individuals with a rate of ε1
and ε2 respectively.

The above model description can be written in eight system of differential equation below.
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Figure 1: Flow diagram of the model

dS

dt
= Λ+ αRt − (λ1 + λ2 + µ)S (2.1)

dIt
dt

= λ1S + bδ Ith − (β1 + θ1 + ε1 + d1 + µ)It (2.2)

dIh
dt

= λ2S + a(1− b)δ Ith − (β2 + θ2 + d2 + µ)Ih (2.3)

dIth
dt

= θ1It + θ2Ih − (δ + ε3 + d3 + µ)Ith (2.4)

dRt

dt
= β1It − (α+ µ)Rt (2.5)

dRh

dt
= β2Ih − µRh (2.6)

dR

dt
= (1− a)(1− b)δ Ith − µR (2.7)

dB

dt
= rB + ε1It + ε2Ith, (2.8)

where λ1 = νB
K+B and λ2 = γ(Ih(t)+ϑIth(t))

N are force of infections of typhoid fever and HAV disease respectively. With
initial conditions S(0) = S0, It(0) = It0, Ih(0) = Ih0, Ith(0) = Ith0, Rt(0) = Rt0, Rh(0) = Rh0, R(0) = R0, andB(0) =
B0.

3 The Model Analysis

3.1 HAV Only model

The HAV only model is obtained from the system (2.1− 2.8) by setting It = Ith = Rt = R = B = λ1 = ε1 = ε2 =
θ1 = α = 0
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
dS
dt = Λ− (λ2 + µ)S
dIh
dt = λ2S − (β2 + θ2 + d2 + µ)Ih
dRh

dt = β2Ih − µRh

(3.1)

3.1.1 Invariant Region

The invariant region in which the solution of the system (3.1) is bounded is shown as follows. For the model in
(3.1) let the total population be

N1 = S + Ih +Rh (3.2)

Taking the time derivative on both sides in (3.2) and using the system (3.1) we get

dN1

dt
= Λ− µN1 − d2Ih (3.3)

In the absence of death due to HAV i.e., d2 = 0 equation (3.3) becomes

dN1

dt
≤ Λ− µN1 (3.4)

Rearranging and evaluating the differential inequality in (3.4) as t → ∞ we obtain

D1 =

{
(S, Ih, Rh) ∈ ℜ3

+ : 0 ≤ N1 ≤ Λ

µ

}
.

Therefore, the solution of the system in (3.1) is bounded in D1.

3.1.2 Positivity of Solution

It is assumed that the initial condition of the model is non-negative, the solution of the model is also positive for
non-negative initial conditions.

Theorem 3.1. Let D1 = {(S, Ih, Rh) ∈ ℜ3
+ : S0 > 0, Ih0 > 0, Rh0 > 0} then the solutions {S, Ih, Rh} are positive for

future time.

Proof . Let t1 be defined as shown below

t1 = Sup{t > 0 : S(τ) > 0, Ih(τ) > 0, Rh(τ) > 0 for all τ ∈ [0, t]}.

Since S0 > 0, Ih0 > 0, Rh0 > 0, t1 > 0. If t1 < ∞, then necessarily S or Ih or Rh is zero at t1 < ∞. From the
system (3.1) taking the first equation

dS

dt
= Λ− (λ2 + µ)S. (3.5)

Now using variation of constant formula the solution of (3.5) at t1is obtained as

S(t1) = S0exp[−
∫ t1

0

(λ2 + µ)SdS] +

∫ t1

0

Λexp[−
∫ t1

0

(λ2 + µ)τdτ ]dS.

Since all the variable are positive in [0, t1], we have S(t1) > 0. Similarly, it can be shown that Ih(t1) > 0 and
Rh(t1) > 0 which is a contradiction. Hence, t1 = ∞. Therefore, all the solutions are positive for future time. □

3.1.3 Disease Free Equilibrium

The disease free equilibrium point of the model in (3.1) is obtained at Ih = Rh = 0. Thus, E0h = (Λµ , 0, 0).
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3.1.4 Basic reproduction number ℜ0h

The basic reproduction number ℜ0h is obtained by using the next generation matrix method as shown below.
Using the second equation of the system (3.1) we have

dIh
dt

= λ2S − (β2 + θ2 + d2 + µ)Ih, here λ2 =
γIh
N

.

Then
dIh
dt

=
γIh
N

S − (β2 + θ2 + d2 + µ)Ih.

Now, set f = (γIhN S) and v = (β2 + θ2 + d2 + µ)Ih), then

F = (γ) and V −1 =
1

β2 + θ2 + d2 + µ
.

This implies that

FV −1 =
γ

β2 + θ2 + d2 + µ
.

Therefore, the pathogen fitness or the basic reproduction number ℜ0h is given by

ℜ0h =
γ

β2 + θ2 + d2 + µ
.

3.1.5 Local Stability of Disease Free Equilibrium

Theorem 3.2. The disease free equilibrium E0h is locally asymptotically stable if ℜ0h < 1 and unstable if ℜ0h > 1.

Proof . Taking the second equation of the system (3.1), that is

dIh
dt

= λ2S − (β2 + θ2 + d2 + µ)Ih.

Setting g = λ2S − (β2 + θ2 + d2 + µ)Ih = γIh
N S − (β2 + θ2 + d2 + µ)Ih. Now taking the partial derivative of g with

respect to Ih at DFE E0h implies that

∂g

∂Ih
= γ − (β2 + θ2 + d2 + µ) < 0.

Then
(β2 + θ2 + d2 + µ)(

γ

β2 + θ2 + d2 + µ
− 1) < 0.

So, (β2 + θ2 + d2 + µ)(ℜ0h − 1) < 0. This means that ℜ0h < 1. Therefore, the disease free equilibrium is locally
asymptotically stable if ℜ0h < 1 and unstable if ℜ0h > 1. □

3.1.6 Global Stability of Disease Free Equilibrium Point

Theorem 3.3. The disease free equilibrium point E0h is globally asymptotically stable if ℜ0h < 1.

Proof . To proof this theorem the Lyapunove function is constructed and is defined as follows

L =
1

β2 + θ2 + d2 + µ
Ih.

Then

dL

dt
=

1

β2 + θ2 + d2 + µ

dIh
dt

=
1

β2 + θ2 + d2 + µ

[
γIh
N

S − (β2 + θ2 + d2 + µ)Ih

]
≤ (

γ

β2 + θ2 + d2 + µ
− 1)Ih = (ℜ0h − 1)Ih

≤ (ℜ0h − 1)Ih.
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So dL
dt ≤ 0 if and only if ℜ0h ≤ 1. Furthermore,dLdt = 0 if Ih = 0 or ℜ0h = 1. From this, we observe that E0h is the

only singleton in D1 = {(S, Ih, Rh) ∈ ℜ3
+ : dL

dt = 0}. Therefore, by the principle in [11] the disease free equilibrium
E0h is globally asymptotically stable if ℜ0h < 1. □

3.1.7 Endemic Equilibrium Point

To find the endemic equilibrium point E∗
h = (S∗, I∗h, R

∗
h) we considered the steady state of the system (3.1) for

all state variables. The endemic equilibrium occurs when the disease persists in a population. The followings are the
endemic equilibrium:

S∗ =
Λ

µℜ0h

I∗h =
Λ

γ
(ℜ0h − 1)

R∗
h =

Λβ2

µγ
(ℜ0h − 1).

From this we can infer that the endemic equilibrium exists if ℜ0h > 1.

3.1.8 Global Stability of Endemic Equilibrium Point

Theorem 3.4. If ℜ0h > 1, then endemic equilibrium point E∗
h the system (3.1) is globally asymptotically stable.

Proof . To prove the global stability condition of the endemic equilibrium point E∗
h we construct a Lypunov function

L as shown below

L =

(
S − S∗ − S∗ ln

S∗

S

)
+

(
Ih − I∗h − I∗h ln

I∗h
Ih

)
+

(
Rh −R∗

h −R∗
h ln

R∗
h

Rh

)
. (3.6)

Differentiating (3.6) on both sides with respect to time results

dL

dt
=

(
S − S∗

S

)
dS

dt
+

(
Ih − I∗h

Ih

)
dIh
dt

+

(
Rh −R∗

h

Rh

)
dRh

dt
. (3.7)

Now substituting (3.1) into (3.7) we obtain that dL
dt = A−B. Here

A = Λ+ (λ2 + µ)S∗ + λ2S + β2Ih + (β2 + θ2 + d2 + µ)I∗h + β2Ih + µR∗
h

and

B = (λ2 + µ)S + Λ2
S∗

S
+ (β2 + θ2 + d2 + µ)Ih + λ2S

I∗h
Ih

+ µRh + β2Ih
R∗

h

Rh
.

Thus, if A < B, then dL
dt ≤ 0 and dL

dt = 0 if and only if S = S∗, Ih = I∗h, Rh = R∗
h. From this we observe that

E∗
h = (S = S∗, Ih = I∗h, Rh = R∗

h) is the largest compact invariant singleton set in D1 = {(S∗, I∗h, R
∗
h) ∈ ℜ3

+ : dL
dt = 0}.

Therefore, by the principle in [11] the endemic equilibrium point E∗
h is globally asymptotically stable in the invariant

region if A < B. □

3.2 Typhoid fever model

The typhoid only model (3.7) is obtained from the system (2.1− 2.8) by setting Ih = Ith = Rh = R = λ2 = ε2 =
θ2 = δ = 0. Then it is obtained 

dS
dt = Λ+ αRt − (λ1 + µ)S
dIt
dt = λ1S − (β1 + θ1 + ε1 + d1 + µ)Ih
dRt

dt = β1It − (α+ µ)Rt

dB
dt = rB + εIt

(3.8)

where λ1 = νB
K+B is the force of infections of typhoid fever. With initial conditions S(0) = S0, It(0) = It0, Rt(0) =

Rt0, B(0) = B0.
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3.2.1 Invariant Region

The invariant region where the solution of the system (3.7) is bounded. For the model in (3.1) let the total
population be

N2 = S + It +Rt (3.9)

Taking the time derivative on both sides in (3.8) and using the system (3.7) we get

dN2

dt
= Λ− µN2 − d1It (3.10)

In the absence of death due to HAV i.e., d1 = 0 equation (3.9) becomes

dN2

dt
≤ Λ− µN2 (3.11)

Rearranging and evaluating the differential inequality in (3.11) as t → ∞, we obtain

D2 =

{
(S, It, Rt) ∈ ℜ3

+ : 0 ≤ N2 ≤ Λ

µ

}
.

Therefore, the solution of the system in (3.7) is bounded in D2.

3.2.2 Positivity of Solution

It is assumed that the initial condition of the model is non-negative, the solution of the model is also positive for
non-negative initial conditions.

Theorem 3.5. Let D2 = {(S, It, Rt, Bt) ∈ ℜ4
+ : S0 > 0, Ih0 > 0, Rh0 > 0, B0 > 0} then the solutions {S, Ih, Rh, B >

0} are positive for future time.

Proof . Let t1 be defined as shown below

t1 = sup{t > 0 : S(τ) > 0, It(τ) > 0, Rt(τ) > 0, B(τ) > 0 for all τ ∈ [0, t]}.

Since S0 > 0, It0 > 0, Rt0 > 0, B0 > 0, t1 > 0. If t1 < ∞, then necessarily S or It or Rt or B is zero at t1 < ∞.
From the system (3.7) taking the first equation

dS

dt
= Λ− (λ1 + µ)S. (3.12)

Now using variation of constant formula the solution of (3.12) at t1 is obtained as

S(t1) = S0 exp

[
−
∫ t1

0

(λ1 + µ)Sds

]
+

∫ t1

0

(Λ exp

[
−
∫ t1

0

(λ1 + µ)τdτ

]
dS.

Since all the variable are positive in [0, t1], we have S(t1) > 0. Similarly it can be shown that It(t1) > 0, Rt(t1) > 0
and B(t1) > 0 which is a contradiction. Hence, t1 = ∞. Therefore, all the solutions are positive for future time. □

3.2.3 Disease Free Equilibrium

The disease free equilibrium point of the model in (3.7) is obtained at It = Rt = B = 0. Thus, E0t = (Λµ , 0, 0, 0).

3.2.4 Basic reproduction number ℜt

The basic reproduction number ℜt is obtained by using the next generation matrix method as shown below. Using
the second and third equation of the system (3.7) we have

dIt
dt

= λ1S − (β1 + θ1 + ε1 + d1 + µ)It
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and
dB

dt
= rB + εIt.

By the principle of next generation matrix, we have

g =

[
(β1 + θ1 + ε1 + d1 + µ)It

−rB − ε1It

]
Then

F =

[
0 Λν

µK

0 0

]
and G−1 =

[
1

β1+θ1+ε1+d1+µ 0
−ε1

r(β1+θ1+ε1+d1+µ) −r

]

So,

FG−1 =

[ ε1Λν
rµK(β1+θ1+ε1+d1+µ)

−rΛν
µK

0 0

]
The eigne values of FG−1 are 0 and ε1Λν

rµK(β1+θ1+ε1+d1+µ) . Therefore, the basic reproduction number ℜt is given by

ℜt =
ε1Λν

rµK(β1 + θ1 + ε1 + d1 + µ)
.

3.2.5 Local Stability of Disease Free Equilibrium

Theorem 3.6. The disease free equilibrium point E0t is locally asymptotically stable if ℜt < 1 and unstable if ℜt > 1.

Proof . To prove the theorem the Jacobean matrix of (3.7) at disease free equilibrium point E0t is constructed as
follows:

JE0t
=


0 0 α − Λν

µK

0 −(β1 + θ1 + ε1 + d1 + µ) 0 Λν
µK

0 β1 −(α+ µ) 0
0 ε1 0 r

 (3.13)

The characteristic polynomial of (3.13) is

(−µ− λ∗)[−(α+ µ)− λ∗][λ
∗2 + (β1 + θ1 + ε1 + d1 + µ)λ∗ − Λν

µK
(
−1

ℜt
+ 1)] = 0.

This implies λ∗
1 = −µ, λ∗

2 = −(α+µ) and λ∗2+(β1+ θ1+ ε1+ d1+µ)λ∗− Λν
µK (−1

ℜt
+1) = 0. By the Routh-Huarth

criteria the roots of the above quadratic equation will be negative provided that the coefficients are positive i.e.,

(β1 + θ1 + ε1 + d1 + µ) > 0 and − Λν

µK
(
−1

ℜt
+ 1) > 0.

This implies ℜt < 1. Therefore, the disease free equilibrium E0t is locally asymptotically stable if ℜt < 1 and
unstable if ℜt > 1. □

3.2.6 Global Stability of Disease Free Equilibrium point E0t

Theorem 3.7. The disease free equilibrium point E0t is globally asymptotically stable if ℜt < 1 and unstable if
ℜt > 1.

Proof . For typhoid only model since the Metzler conditions do not met the disease free equilibrium point is not
globally asymptotically stable. □
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3.2.7 Endemic Equilibrium Point

The endemic equilibrium point E∗
t = (S∗, I∗t , R

∗
t , B

∗) exists and it occurs when the disease persists in the commu-
nity. It can be obtained when we solve the system (3.7) at a steady state as follows:

Λ + αR∗
t − (λ1 + µ)S∗ = 0 (3.14)

λ1S
∗ − (β1 + θ1 + ε1 + d1 + µ)I∗t = 0 (3.15)

β1I
∗
t − (α+ µ)R∗

t = 0 (3.16)

rB∗ + εI∗t = 0. (3.17)

Thus, we have the following results

S∗ =
r

ε1
(β1 + θ1 + ε1 + d1 + µ)(K +B∗) (3.18)

I∗t =
rε1Λ + µKr2(β1 + θ1 + ε1 + d1 + µ)

ε1[−αβ1r + (ν + µ)(β1 + θ1 + ε1 + d1 + µ)]
(3.19)

R∗
t =

β1I
∗
t

α+ µ
(3.20)

B∗ =
ε1Λ + µKr(β1 + θ1 + ε1 + d1 + µ)

αβ1r − (ν + µ)(β1 + θ1 + ε1 + d1 + µ)
(3.21)

3.2.8 Global Stability of Endemic Equilibrium

Theorem 3.8. If ℜt > 1, then the endemic equilibrium point E∗
t of the model (3.7) is globally asymptotically stable.

Proof . To prove the global stability condition of the endemic equilibrium point E∗
t we construct a Lypunov function

L as shown below.

L =

(
S − S∗ + S∗ ln

S∗

S

)
+

(
It − I∗t + I∗t ln

I∗t
It

)
+

(
Rt −R∗

t +R∗
t ln

R∗
t

Rt

)
+

(
B −B∗ +B∗ ln

B∗

B

)
. (3.22)

Differentiating (3.22) on both sides with respect to time results

dL

dt
=

(
S − S∗

S

)
dS

dt
+

(
It − I∗t

It

)
dIt
dt

+

(
Rt −R∗

t

Rt

)
dRt

dt
+

(
B −B∗

B

)
dB

dt
. (3.23)

Now substituting (3.7) into (3.23) we obtained that dL
dt = X − Y , where

X = Λ+ αR∗
t − (λ1 + µ)S∗ + λ1S + (β1 + θ1 + ε1 + d1 + µ)I∗t + β1It + (α+ µ)R∗

t + rB + ε1It

and

Y = (λ1 + µ)S + Λ
S∗

S
+ αRt

S∗

S
+ λ1S

I∗t
It

+ (β1 + θ1 + ε1 + d1 + µ)It + β1It
R∗

t

Rt
+ (α+ µ)Rt + rB∗ + ε1It

B∗

B
.

Thus, if X < Y , then dL
dt ≤ 0 and dL

dt = 0 if and only if S = S∗, It = I∗t , Rt = R∗
t , B = B∗. From this, we observe

that E∗
t = (S∗, I∗t , R

∗
t , B

∗) is the largest compact invariant singleton set in D2 = {(S∗, I∗t , R
∗
t , B

∗) ∈ ℜ4
+ : dL

dt = 0}.
Therefore, by the principle in [11] the endemic equilibrium point E∗

t is globally asymptotically stable in the invariant
region if X < Y . □
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3.3 HAV-Typhoid Co-infection model

The HAV-typhoid co-infection model is given in the following eight systems of non-linear differential equations.

dS
dt = Λ+ αRt − (λ1 + λ2 + µ)S
dIt
dt = λ1S + bδ Ith − (β1 + θ1 + ε1 + d1 + µ)It
dIh
dt = λ2S + a(1− b)δ Ith − (β2 + θ2 + d2 + µ)Ih
dIth
dt = θ1It + θ2Ih − (δ + ε3 + d3 + µ)Ith

dRt

dt = β1It − (α+ µ)Rt
dRh

dt = β2Ih − µRh

dR
dt = (1− a)(1− b)δ Ith − µR
dB
dt = rB + ε1It + ε2Ith

(3.24)

where λ1 = νB
K+B and λ2 = γ(Ih(t)+ϑIth(t))

N are force of infections of typhoid fever and HAV disease respectively.
With initial conditions S(0) = S0, It(0) = It0, Ih(0) = Ih0, Ith(0) = Ith0, Rt(0) = Rt0, Rh(0) = Rh0, R(0) = R0, and
B(0) = B0.

3.3.1 The Invariant Region

The invariant region in which the solution of the system (3.24) is bounded. Let total population for the given
model is N

N = S + It + Ih + Ith +Rt +Rh +R. (3.25)

Taking the time derivative on both sides in (3.25) and using the system (3.24), we get

dN

dt
= Λ− µN − (d1It + d2Ih + d3Ith). (3.26)

In the absence of death due to typhoid fever or HVA or both i.e., d1 = d2 = d3 = 0 equation (3.27) becomes

dN

dt
≤ Λ− µN. (3.27)

Rearranging and evaluating the differential inequality in (3.28) as t → ∞ we obtain

D =

{
(S, It, Ih, Ith, Rt, Rh, R) ∈ ℜ7

+ : 0 ≤ N ≤ Λ

µ

}
.

Therefore, the solution of the system in (3.24) is bounded in D.

3.3.2 Positivity of Solution

It is assumed that the initial condition of the model (3.24) is non-negative, and can be shown that the solution of
the model is also positive.

Theorem 3.9. Let
D = {(S, It, Ih, Ith, Rt, Rh, R) ∈ ℜ7

+ : S0 > 0, It0 > 0, Rt0 > 0}.

Then the solutions {S, It, Ih, Ith, Rt, Rh, R} are positive for future time.

Proof . Let t3 be defined as shown below

t3 = sup{t > 0 : S(τ) > 0, It(τ) > 0, Ih(τ) > 0, Ith(τ) > 0, Rt(τ) > 0, Rh(τ) > 0, R(τ) > 0 for all τ ∈ [0, t]}.

Since S0 > 0, It0 > 0, Ih0 > 0, Ith0 > 0, Rt0 > 0, Rh0 > 0, R0 > 0, we have t3 > 0. If t3 < ∞, then necessarily S or
It or Ih or Ith or Rt or Rh or R is zero at t3 < ∞. From the system (3.24) taking the first equation

dS

dt
= Λ+ αRt − (λ1 + λ2 + µ)S. (3.28)
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Now using variation of constant formula the solution of (3.29) at t3is obtained as

S(t3) = S0 exp

[
−
∫ t3

0

(λ1 + λ2 + µ)Sds

]
+

∫ t3

0

(Λ + αRt) exp

[
−
∫ t3

0

(λ1 + λ2 + µ)τdτ

]
dS.

Since all the variable are positive in [0, t3], we have S(t3) > 0. Similarly, it can be shown that It(t3) > 0, Ih(t3) > 0,
Ith(t3) > 0, Rt(t3) > 0, Rh(t3) > 0 and R(t3) > 0 which is a contradiction. Hence, t3 = ∞ Therefore, all the solutions
are positive for future time. □

3.3.3 Disease Free Equilibrium

The disease free equilibrium point of the co-infection model in (3.24) is obtained at It = Ih = Ith = Rt = Rh =
R = B = 0. Thus, E0 = (Λµ , 0, 0, 0, 0, 0, 0, 0).

3.3.4 Basic reproduction number ℜ0

To obtain the basic reproduction number ℜ0 of the model (3.24) we used the next generation matrix method as
shown below.

dIt
dt

= λ1S + bδ Ith − (β1 + θ1 + ε1 + d1 + µ)It

dIh
dt

= λ2S + a(1− b)δIth − (β2 + θ2 + d2 + µ)Ih

dIth
dt

= θ1It + θ2Ih − (δ + ε3 + d3 + µ)Ith

dB

dt
= rB + ε1It + ε2Ith.

Then by the principle of next generation matrix, we have

f =

[
νB

K+BS
γ(Ih(t)+ϑIth(t))

N S

]
and v =


(β1 + θ1 + ε1 + d1 + µ)It − bδ Ith
(β2 + θ2 + d2 + µ)Ih − a(1− b)δIth
(δ + ε2 + d3 + µ)Ith − (θ1It + θ2Ih)

−rB − ε1It − ε2Ith


Then

F =


0 0 α Λν

µK

0 Λγ
µ

Λγϑ
µ

Λν
µK

0 0 0 0
0 0 0 0

 and V =


l1 0 −bδ 0
0 l2 l3 0

−θ1 −θ2 l4 0
−ε1 0 −ε2 −r


where l1 = β1 + θ1 + ε1 + d1 + µ, l2 = β2 + θ2 + d2 + µ, l3 = −a(1− b)δ and l4 = δ + ε2 + d3 + µ. Then

FV −1 =


Λνε1[l2(θ1+l4)−θ2l3]

Kµdet(V )
Λν(θ2ε1l1−bδθ2ε1)

Kµdet(V )
Λνc34

Kµdet(V )
Λνc44

Kµdet(V )
Λγθ1(−l3r+brl2φ)

µdet(V )
Λγ(c22+φc23)

µdet(V )
Λγc33(1+φ)

µdet(V )
Λγ(c42+φc43)

µdet(V )

0 0 0 0
0 0 0 0


where c22 = r(l1l4 − bδθ1), c23 = θ2l1r, c32 = −l1l3r, c33 = l1l2r, c34 = ε2(l1l2 − bδε1l2), c44 = l1(l2l4 − θ2l3)− bδθ1θ2,
c42 = c43 = 0, and det(V ) = r(l1l2l4 + l1l2θ2 − bδθ1l2). The eigne values of FV −1 are λ∗

1 = λ∗
2 = 0, λ∗

3 = ε1νΛ
µKl1r

= ℜt0

and λ∗
4 = γ

l2
= ℜh0. Therefore, the basic reproduction number is ℜ0 is given by ℜ0 = max{ℜt0,ℜh0}.

3.3.5 Local Stability of Disease Free Equilibrium

Theorem 3.10. The disease free equilibrium point E0 is locally asymptotically stable if ℜ0 < 1 and unstable if
ℜ0 > 1.
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Proof . To prove the theorem the Jacobean matrix of (3.24) at disease free equilibrium point E0 is constructed as
follows:

JE0
=



−µ 0 −γ −γφ α 0 0 − Λν
µK

0 A1 0 bδ 0 0 0 Λν
µK

0 0 A2 A3 0 0 0 0
0 θ1 θ2 A4 0 0 0 0
0 β1 0 0 A5 0 0 0
0 0 β2 0 0 −µ 0 0
0 0 0 A6 0 0 −µ 0
0 ε1 0 ε2 0 0 0 r


(3.29)

where A1 = −(β1+θ1+ε1+d1+µ), A2 = −(β2+θ2+d2+µ), A3 = a(1−b)δ, A4 = −(δ+ε2+d3+µ), A5 = −(α+µ)
and A6 = (1− a)(1− b)δ. The characteristic polynomial of (3.31) is

(−µ− λ∗)(−µ− λ∗)(−µ− λ∗)(−r − λ∗)(−A5 − λ∗)(−A6 − λ∗)(λ∗2 − rbδA1λ
∗ − rθ2ε1A5) = 0.

This implies λ∗
1 = −µ, λ∗

2 = −µ, λ∗
3 = −µ, λ∗

4 = −r, λ∗
5 = A5, λ

∗
6 = A2 and λ∗2 − rbδA1λ

∗ − rθ2ε1A5 = 0. By the
Routh-Huarth criteria the roots of the above quadratic equation will be negative provided that ℜ0t < 1 and if ℜ0h < 1.
Therefore, the disease free equilibrium point E0 is locally asymptotically stable if ℜ0 < 1 and unstable if ℜ0 > 1. □

3.3.6 Global Stability of Disease Free Equilibrium point

In this section, the global stability of the disease free equilibrium point is analyzed by using the techniques used
in [18]. The system in (3.24) can be written in the form:{

dXS

dt = A(XS −XDFE,S) +A1Xi

dXi

dt = A2Xi

(3.30)

Here XS is the vector representing the non-transmitting compartment and Xi is the vector representing the
transmitting compartments. The disease free equilibrium point E0 is globally asymptotically stable if matrix A has
only negative eigne values and A2 is Metzler (i.e. the off-diagonal elements of A2 are non-negative).

For the model equation (3.24), we have:

XS = (S,Rt, Rh, R)T and Xi = (It, Ih, Ith, B)T ,

where the superscript T refers to a transpose of the matrix. We need to check whether a matrix A for non-transmitting
compartments has real negative eigne values and that A2 is Metzler matrix. From the equation for non-transmitting
compartments in the model it is obtained:

A =


−(λ1 + λ2 + µ) α 0 0

0 0 0 0
0 0 −µ 0
0 0 0 −µ

 , A1 =


0 0 0 0
β1 θ2 0 0
0 β2 0 0
0 0 (1− a)(1− b)δ 0


and

A2 =


−(β1 + θ1 + ε1 + d1 + µ) 0 bδ νS

K+B

0 −(β2 + θ2 + d2 + µ) a(1− b)δ 0
θ1 θ2 −(δ + ε2 + d3 + µ) 0
ε1 0 ε2 r


From the matrix A it can be checked that all the eigne values are real and negative. Moreover, all the off-diagonal

elements of A2 are non-negative. Therefore, the disease free equilibrium point is globally asymptotically stable.

3.3.7 The Endemic Equilibrium point

The endemic equilibrium point E∗ for the co-infection model (3.24) occurs when both diseases persists in a com-
munity. To obtain it we evaluate the system (3.24) at its steady state and we obtained the following result:

S∗ =
Λ+αR∗

t

λ1+λ2
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Table 1: Parameter values for typhoid model

Parameters Descriptions values source
α Proportion of typhoid recovered groups who are joining susceptible subclass 0.8 [12]
µ Natural mortality rate 0.02 Estimated
d1 Typhoid induced mortality rate 0.005 Assumed
d2 HAV induced mortality rate 0.002 Assumed
d3 HAV and typhoid induced mortality rate 0.1 Assumed
γ Infectious rate of HAV 0.01 Assumed
β1 Recovery rate of typhoid by natural immunity 0.071 Estimated
β2 Recovery rate of HAV by natural immunity 0.034 Estimated
θ1 Rate of typhoid infected class joining the co-infection class 0.002 Assumed
θ2 Rate of HAV infected class joining the co-infection class 0.003 Assumed
δ Rate of removal of HAV-typhoid co-infection class 0.4 Assumed
r Rate of growth of salmonella bacteria 7 Assumed
ν Ingestion rate of salmonella bacteria 0.6 Assumed
K Concentration of salmonella bacteria 100,000 Assumed
ε1 Discharge rate of salmonella bacteria from typhoid infected class 0.7 Assumed
ε2 Discharge rate of salmonella bacteria from HAV-typhoid co- infected class 0.5 Assumed

I∗t =
c4R

∗
t

β1

I∗h =
µR∗

h

β2

I∗th =
β2θ1c4R

∗
t+β1θ2µR

∗
h

β1β2c3

R∗
t = Λβ1(β1λ1+c3λ2)

β1c1c4(λ1+λ2)−[θ1c4(λ1+λ2)+αλ2β1c4+bδθ1β1c4(λ1+λ2)+αλ1β2
1 ]

R∗
h =

R∗
t [c1c4(λ1+λ2)−bδθ1(λ1+λ2)−β1αλ1]−Λλ1β1

bδµθ2β1(λ1+λ2)

R∗ =
(1−a)(1−b)δβ2θ1c4R

∗
t+β1θ2µR

∗
h

µβ1β2c3

B∗ =
ε1I

∗
t +ε2I

∗
th

r
where c1 = β1 + θ1 + ε1 + d1 + µ, c2 = β2 + θ2 + d2 + µ, c3 = δ + ε2 + d3 + µ, c4 = α+ µ.

3.3.8 Impact of Typhoid fever on HAV

In this section the impact of typhoid fever on HAV disease and vice versa is determined. To see the impact of
typhoid fever on HAV infected individual the following techniques are used:

ℜh =
γ

β2 + θ2 + d2 + µ
(3.31)

and

ℜt =
ε1Λν

rµK(β1 + θ1 + ε1 + d1 + µ)
. (3.32)

From (3.33) we get

µ =
γ

ℜh
− (β2 + θ2 + d2). (3.33)

Substituting (3.35) into (3.34), we get

ℜt =
ε1Λν

[ γ
ℜh

− (β2 + θ2 + d2)][β1 + θ1 + ε1 + d1 +
γ
ℜh

− (β2 + θ2 + d2)]Kr
. (3.34)

To determine the impact of typhoid over HAV and vice-versa we take the partial derivative of ℜh or ℜt with respect
to each other as follows

∂ℜt

∂ℜh
=

ε1Λν

Krµ2(β1 + θ1 + ε1 + d1 + µ)2
> 0 (3.35)

From (3.35) it is possible to conclude HAV disease increases the burden of typhoid cases and similarly it is possible to
show typhoid fever increases the burden of HAV cases.
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3.3.9 Existence of backward bifurcation

The existence of a backward bifurcation can be proved by applying the centre manifold theorem on system (3.24).
Consider the ingestion rate ν and µ as bifurcation parameters so that ℜt = 1 and ℜh = 1 if and only if

ν = ν∗ =
rµK(β1 + θ1 + ε1 + d1 + µ)

ε1Λ
and γ = γ∗ = β2 + θ2 + d2 + µ.

Now we use the following change of variables: S = x1, It = x2, Ih = x3, Ith = x4, Rt = x5, Rh = x6, R = x7, B = x8

and N = x1+x2+x3+x4+x5+x6+x7+x8. Using vector notation −→x = (x1, x2, x3, x4, x5, x6, x7, x8)
T , HAV-Typhoid

co-infection model can be expressed in vector notation as
−→
x

′
= F (−→x )

x1 = Λ+ αx5 − (λ1 + λ2 + µ)x1

x2 = λ1x1 + bδ x4 − (β1 + θ1 + ε1 + d1 + µ)x2

x3 = λ2x1 + a(1− b)δ x4 − (β2 + θ2 + d2 + µ)x3

x4 = θ1x2 + θ2x3 − (δ + ε3 + d3 + µ)x4

x5 = β1x2 − (α+ µ)x5

x6 = β2x3 − µx6

x7 = (1− a)(1− b)δ Ith − µx7

x8 = rx8 + ε1x2 + ε2x4

(3.36)

where λ1 = νx8

K+x8
and λ2 = γ(x3+ϑx4)

N . Then we use the Jacobean matrix at disease free equilibrium as follows

JE0
=



−µ 0 −γ −γφ α 0 0 − Λν
µK

0 A1 0 bδ 0 0 0 Λν
µK

0 0 A2 A3 0 0 0 0
0 θ1 θ2 A4 0 0 0 0
0 β1 0 0 A5 0 0 0
0 0 β2 0 0 −µ 0 0
0 0 0 A6 0 0 −µ 0
0 ε1 0 ε2 0 0 0 r


(3.37)

where A1 = −(β1+θ1+ε1+d1+µ), A2 = −(β2+θ2+d2+µ), A3 = a(1−b)δ, A4 = −(δ+ε2+d3+µ), A5 = −(α+µ),
A6 = (1 − a)(1 − b)δ. JE0

has a simple zero eigen value, together with other eigenvalues having negative real parts.
Hence the centre manifold theorem [5] can be applied.

By calculating the right and the left eigenvectors of JE0
denoted by −→w = (w1, w2, w3, w4, w5, w6, w7, w8)

T and
−→v = (v1, v2, v3, v4, v5, v6, v7, v8)

T respectively. We obtained
w1 = (− γ

µ + l1γφ
l3µ

)w3 − α
µw5 − Λν

µKw8, w2 = µ
ε1
w8 +

ε2l2
l3

w3, w4 = − l3
l2
w3, w6 = l3

l2
w3, w7 = − µl2

l3l6
w3, v1 = v5 = v6 =

v7 = 0, v2 = µ2K
Λν v8, v3 = − bδµ2K

Λν v8 +
θ2

theta1l2
(µ

2l1K
Λν + ε1)v8, and v4 = − 1

θ1l2
(µ

2l1K
Λν + ε1)v8.

To compute a and b we use the following formula

a =

n∑
k,j,i=1

vkwiwj
∂2f

∂xi∂xj
(S0, 0, 0, 0, 0, 0, 0, 0) and b =

n∑
k,j,i=1

vkwi
∂2f

∂xi∂v∗
(S0, 0, 0, 0, 0, 0, 0, 0).

After some rigorous computations, we obtained that

a = v2w1w8
ν

K
+ v2w1w3

γ

Λ
(1− l2φ

l3
) and b = v1w1

µφ

Λ
.

Whenever the coefficient b is positive, it follows from [5] that we have the following lemma.

Lemma 3.11. Suppose that b > 0. Then we have the following result:

1. System (3.24) will undergo a backward bifurcation if the coefficient v2w1w8
ν
K + v2w1w3

γ
Λ (1−

l2φ
l3

) > 0.

2. System (3.24) will undergo transcritical bifurcation if the coefficient
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v2w1w8
ν
K + v2w1w3

γ
Λ (1−

l2φ
l3

) < 0.

Notice: If a is positive then the disease free equilibrium is locally asymptotically stable but not globally stable.
This implies the disease persist even if the basic reproduction number is reduced below unity. If a is negative then the
disease free equilibrium may be globally stable.

4 Sensitivity Analysis

In this section sensitivity analysis of the basic parameters of the model is evaluated based on the parameter values
given in table 1. Sensitivity analysis on typhoid fever

νℜt =
∂ℜt

∂ν
× ν

ℜt
= 1 > 0

rℜt =
∂ℜt

∂r
× r

ℜt
= 1 > 0.

Using similarly approach, we obtain εℜt
1 > 0,βℜt

1 < 0, dℜt
1 < 0, Kℜt > 0 and µℜt < 0.

Sensitivity analysis on HAV disease are as follow

γℜh =
∂ℜh

∂γ
× γ

ℜh
= 1 > 0

Λℜh =
∂ℜh

∂Λ
× Λ

ℜh
= 1 > 0

Similarly, the sensitivity of each parameters are summarized in table 2 below

Table 2: Table2. Sensitivity index table.

Parameters Descriptions Sensitivity index
ν Ingestion rate +ve
r Growth rate of salmonella bacteria +ve
K Concentration of salmonella bacteria +ve
ε1 Discharge rate of salmonella bacteria from typhoid infected individuals +ve
µ Natural mortality rate -ve
d1 Typhoid induced mortality rate -ve
β1 Recovery rate of typhoid by natural immunity -ve
γ The infectious rate of HAV +ve
θ1 Rate of typhoid infected class joining the co-infection class +ve
β2 Recovery rate of HAV by natural immunity -ve
d2 HAV induced mortality rate -ve

The sensitivity index in Table 2 shows that increasing the value of the parameters K, ν, γ, r and ε1 have an impact
in increasing the burden of typhoid fever while the remaining parameters remains constant. The parameters β1, β2, d1
and µ decreases the burden of typhoid fever while the remaining parameter values remain constant.

5 Extension into an Optimal control

In this section, we applied different control methods for the system (3.24) by using [8]. The optimal control model
is an extension of HAV-typhoid model by incorporating the following five controls strategies mentioned below.

1. u1 is the prevention effort of HAV disease, that protect susceptible from contracting HAV disease by using
personal needles and proper hygiene.

2. u2 is the prevention effort of typhoid disease, that protect susceptible from contracting the disease by using
proper hygiene.

3. u3 is the treatment effort of HAV infected individuals.
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4. u4 is the treatment effort of typhoid infected individuals.

5. u5 is the effort used to eliminate Salmonella bacteria from the environment and providing pure water.

After incorporating u1, u2, u3, u4 and u5 in co-infections of HAV-typhoid model (3.24), we get the following optimal
model of co-infection of HAV-Typhoid disease.

dS
dt = Λ+ αRt − [(1− u2)λ1 + (1− u1)λ2 + µ]S
dIt
dt = (1− u2)λ1S + (bδ + u4)Ith − (β1 + u2)It − (θ1 + ε1 + d1 + µ)It
dIh
dt = (1− u1)λ2S + (a(1− b)δ + u4)Ith − (β2 + u3)Ih − (θ2 + d2 + µ)Ih
dIth
dt = θ1It + θ2Ih − (δ + u4)Ith − (ε3 + d3 + µ)Ith

dRt

dt = (β1 + u2)It − (α+ µ)Rt
dRh

dt = (β2 + u3)Ih − µRh

dR
dt = ((1− a)(1− b)δ + u4)Ith − µR
dB
dt = (r − u5)B + ε1It + ε2Ith

(5.1)

where λ1 = νB
K+B and λ2 = γ(Ih(t)+ϑIth(t))

N are force of infections of typhoid fever and HAV disease respectively.
With initial conditions S(0) = S0, It(0) = It0, Ih(0) = Ih0, Ith(0) = Ith0, Rt(0) = Rt0, Rh(0) = Rh0, R(0) = R0, and
B(0) = B0.

The control functions, u1(t), u2(t), u3(t), u4(t) and u5(t) are bounded, Lebesgue integrable functions, which are
defined as

U = {(u1(t), u2(t), u3(t), u4(t), u5(t)) : 0 ≤ ui(t) < 1fori = 1, 2...5, and 0 ≤ t ≤ T}.

We need to obtain a control U, S, It, Ih, Ith, Rt, Rh, R and B associated with state variables that can minimize the
proposed objective function J and the form of objective functional is taken in line with the literature on epidemic
model [17], given by:

J = min
u1,u2,u3,,u4,,u5

∫ tf

0

(a1It + a2It + a3Ith +
1

2

5∑
i=1

wiu
2
i )dt (5.2)

where a1, a2, a3 and wi are positive. The expression 1
2wiu

2
i represents costs which are associated with the controls ui

and tf is the final time. Now we want to find the controls u∗
1, u

∗
2, u

∗
3, u

∗
4, u

∗
5, such that

J(u∗
1, u

∗
2, u

∗
3, u

∗
4, u

∗
5) = min{J(u1, u2, u3, u4, u5) : u1, u2, u3, u4, u5 ∈ U}

where U = {J(u1, u2, u3, u4, u5)} is a measurable set and t ∈ [0, tf ] for the control set.

5.1 Hamiltonian and Optimality System

The necessary condition for the optimal pair is obtained using the principle in [14]. Therefore, using this principle
we get a Hamiltonian which is defined as:

H(S, It, Ih, Ith, Rt, Rh, R,B, t) =L(It, Ih, Ith, u1, u2, u3 + u4 + u5) + h1
dS

dt
+ h2

dIt
dt

+ h3
dIh
dt

+ h4
dIth
dt

+ h5
dRt

dt
+ h6

dRh

dt
+ h7

dR

dt
+ h8

dB

dt

where

L(It, Ih, Ith, u1, u2, u3 + u4 + u5) = a1It + a2It + a3Ith +
1

2

5∑
i=1

wiu
2
i

and hi is an adjoint variable to be determined using Pontryagin’s Maximum Principle.

Theorem 5.1. For an optimal control sets u1, u2, u3, u4 and u5 that minimizes J over U , there are adjoint variables
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h1, h2, ...h8 such that:

dh1

dt = [(1− u2)λ1 + (1− u1)λ2 + µ]h1 − λ1(1− u1)h2λ2(1− u1)h3

dh2

dt = −a1 − h2(β1 + u2 + θ1 + ε1 + d1 + µ)− h4θ1 − (β1 + u2)h5 − ε1h8

dh3

dt = −a2 − h1(1− u1)γS − h3[(1− u1)γS − (β2 + u3 + θ2 + d2 + µ)]− h4θ2 − (β2 + u3)h6

dh4

dt = −a3 − h1(1− u1)γφS − h2(bδ + u4)− h3[a(1− b)δ + u4]

...+ h4(δ + d3 + ε1 + µ)− h7[(1− b)(1− b)δ + u4]− ε2h8

dh5

dt = −h1α+ h5(α+ µ)
dh6

dt = h6µ
dh7

dt = h7µ
dh8

dt = h1(1− u1)
νBS

(K+B)2 − h2(1− u2)
νBS

(K+B)2 − h8(r − u5)

(5.3)

with transversality conditions, λi(tf ) = 0 for i = 1, 2, ...8. Furthermore, we obtained the control set (u∗
1, u

∗
2, u

∗
3, u

∗
4, u

∗
5)

characterized by ∂H
∂u∗

i
= 0 for i = 1, 2, ..., 8. Hence, we obtained

u∗
1(t) = max{0,min(1, σ1)}

u∗
2(t) = max{0,min(0.85, σ2)}

u∗
3(t) = max{0,min(1, σ3)}

u∗
4(t) = max{0,min(1, σ4)}

u∗
5(t) = max{0,min(1, σ5)}

where σ1 = (h3−h1)(It+φIth)
Nw1

, σ2 = (h2−h1)νBS
(K+B)w2

+ (h2−h5)It
w2

, σ3 = (h3−h6)Ih
w3

, σ4 = (h4−h2−h3−h7)Ith
w4

and σ5 = (h8B
w5

.

Proof . The adjoint variables and transversality conditions are standard results of Pontryagin’s maximum prin-
ciple’. To obtain the adjoint equations we differentiate the Hamiltonian H with respect to the state variables
S, It, Ih, Ith, Rt, Rh, R and B respectively and then we obtain:

dh1

dt
=− ∂H

∂S
= [(1− u2)λ1 + (1− u1)λ2 + µ]h1 − λ1(1− u1)h2λ2(1− u1)h3

dh2

dt
=− ∂H

∂It
= −a1 − h2(β1 + u2 + θ1 + ε1 + d1 + µ)− h4θ1 − (β1 + u2)h5 − ε1h8

dh3

dt
=− ∂H

∂Ih
= −a2 − h1(1− u1)γS − h3[(1− u1)γS − (β2 + u3 + θ2 + d2 + µ)]− h4θ2 − (β2 + u3)h6

dh4

dt
=− ∂H

∂Ith
= −a3 − h1(1− u1)γφS − h2(bδ + u4)− h3[a(1− b)δ + u4] + · · ·

+ h4(δ + d3 + ε1 + µ)− h7[(1− b)(1− b)δ + u4]− ε2h8

dh5

dt
=− ∂H

∂Rt
= −h1α+ h5(α+ µ)

dh6

dt
=− ∂H

∂Rh
= h6µ

dh7

dt
=− ∂H

∂R
= h7µ

dh8

dt
=− ∂H

∂B
= h1(1− u1)

νBS

(K +B)2
− h2(1− u2)

νBS

(K +B)2
− h8(r − u5).
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Again using the method of (Pontryagin et.al, 1986), we obtain the controls by solving ∂H
∂u∗

i
= 0 for i = 1, 2, ..., 8,

Then

u∗
1 =

(h3 − h1)(It + φIth)

Nw1

u∗
2 =

(h2 − h1)νBS

(K +B)w2
+

(h2 − h5)It
w2

u∗
3 =

(h3 − h6)Ih
w3

u∗
4 =

(h4 − h2 − h3 − h7)Ith
w4

u∗
5 =

h8B

w5
.

Thus, writing u∗
1, u

∗
2, u

∗
3, u

∗
4 and u∗

5 using standard control arguments involving the bounds on the controls, we
obtained:

u∗
1 =


σ1, if 0 < σ1 < 1;

0, if σ1 ≤ 0;

1, if σ1 ≥ 1

, u∗
2 =


σ2, if 0 < σ2 < 1;

0, if σ2 ≤ 0;

1, if σ2 ≥ 1

u∗
3 =


σ3, if 0 < σ3 < 1;

0, if σ3 ≤ 0;

1, if σ3 ≥ 1

u∗
4 =


σ4, if 0 < σ4 < 1;

0, if σ4 ≤ 0;

1, if σ4 ≥ 1

u∗
5 =


σ5, if 0 < σ5 < 1;

0, if σ5 ≤ 0;

1, if σ5 ≥ 1

Hence, the following optimality system is constructed

dS
dt = Λ+ αRt − [(1− u2)λ1 + (1− u1)λ2 + µ]S
dIt
dt = (1− u2)λ1S + (bδ + u4)Ith − (β1 + u2)It − (θ1 + ε1 + d1 + µ)It
dIh
dt = (1− u1)λ2S + (a(1− b)δ + u4)Ith − (β2 + u3)Ih − (θ2 + d2 + µ)Ih
dIth
dt = θ1It + θ2Ih − (δ + u4)Ith − (ε3 + d3 + µ)Ith

dRt

dt = (β1 + u2)It − (α+ µ)Rt
dRh

dt = (β2 + u3)Ih − µRh

dR
dt = ((1− a)(1− b)δ + u4)Ith − µR
dB
dt = (r − u5)B + ε1It + ε2Ith
dh1

dt = [(1− u2)λ1 + (1− u1)λ2 + µ]h1 − λ1(1− u1)h2λ2(1− u1)h3

dh2

dt = −a1 − h2(β1 + u2 + θ1 + ε1 + d1 + µ)− h4θ1 − (β1 + u2)h5 − ε1h8

dh3

dt = −a2 − h1(1− u1)γS − h3[(1− u1)γS − (β2 + u3 + θ2 + d2 + µ)]− h4θ2 − (β2 + u3)h6

dh4

dt = −a3 − h1(1− u1)γφS − h2(bδ + u4)− h3[a(1− b)δ + u4]

...+ h4(δ + d3 + ε1 + µ)− h7[(1− b)(1− b)δ + u4]− ε2h8

dh5

dt = −h1α+ h5(α+ µ)
dh6

dt = h6µ
dh7

dt = h7µ
dh8

dt = h1(1− u1)
νBS

(K+B)2 − h2(1− u2)
νBS

(K+B)2 − h8(r − u5)

(5.4)

with the initial conditions S(0) = S0, It(0) = It0, Ih(0) = Ih0, Ith(0) = Ith0, Rt(0) = Rt0, Rh(0) = Rh0, R(0) = R0,
B(0) = B0 and transversality conditions λi(tf ) = 0, for i = 1, 2, ...8. □

6 Numerical Simulations

In this section, we have applied an epidemic model with various control measures. We applied a Pontryagin’s
Maximum Principle to determine the necessary conditions for the optimal control of hepatitis-A and typhoid fever
co-infection. Numerical simulations was carried out to show the impacts of various control measures in minimizing
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the co-infections of hepatitis-A and typhoid disease. We used the following parameter values with varying control
measures for simulation purpose. Letting α = 0.8, µ = 0.02, d1 = 0.005, d2 = 0.002, d3 = 0.1, β1 = 0.071, β2 = 0.037,
θ1 = 0.002, θ2 = 0.003, σ = 0.4, ν = 0.6, r = 7, ε1 = 0.7, ε2 = 0.5, γ = 0.36, K = 100, 000, T = 3, a1 = 2, a2 = 1,
a3 = 3, w1 = 2, w2 = 1, w3 = 2, w4 = 3, w5 = 4, and initial conditions S(0) = 5, 000, It(0) = 800, Ih(0) = 300, Ith(0) =
500, Rt(0) = 400, Rh(0) = 200, R(0) = 300, andB(0) = 15, 000.

The time dependent control solution is obtained by solving the optimality system (5.2), which consists of the state
system, the adjoint system and transversality condition. Based on the parameter values given above we analyzed and
interpreted the numerical solutions of the optimality system and the corresponding results for various control values.
We anticipated the following four strategies for numerical simulation of the co-infection model:

1. The prevention effort of HAV and typhoid disease (u1 ̸= 0, u2 ̸= 0, u3 = 0, u4 = 0, u5 = 0).
2. The prevention effort of HAV and treatment of typhoid disease (u1 ̸= 0, u2 = 0, u3 = 0, u4 ̸= 0, u5 = 0).
3. The prevention effort of typhoid fever and treatment of HAV (u1 = 0, u2 ̸= 0, u3 ̸= 0, u4 = 0, u5 = 0).
4. Using all intervention efforts(u1 ̸= 0, u2 ̸= 0, u3 ̸= 0, u4 ̸= 0, u5 ̸= 0).

6.1 Control with prevention only

The simulation diagram in figure 2 and 3 shows the control profile of the prevention effort on HAV and typhoid
disease while the other controls are set to zero. From the simulation diagram we conclude that an optimized prevention
has a significant impact in eradicating the co infection from the community in specified time. Therefore, a good hygiene
practice can leads to the eradication of the co-infection of HAV and typhoid fever disease from the community. This
result agrees with the guideline in [15].

Figure 2: Simulations of the HAV-typhoid model showing the effect of prevention of the co-infections of the diseases

6.2 Control with prevention effort of HAV and treatment of typhoid disease

The simulation diagram in figure 4 and 5 shows the control profile of the prevention effort on HAV and treatment
of typhoid disease. From the simulation diagram we observe that an optimized prevention of HAV and treatment of
typhoid disease has an impact in minimizing the burden the co infection from the community.

6.3 Control with prevention effort of typhoid fever and treatment of HAV

We next examined the effect of the prevention effort of typhoid disease and supportive treatments used for HAV
infected population. The simulation diagram in figure 6 and 7 shows applying these strategies has a significant effect
in minimizing the burden of the disease as compared to the case without control.
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Figure 3: Simulations diagram of the prevention of HAV and prevention of typhoid fever.

Figure 4: Simulations of the co-infection with prevention of HAV and treatment of typhoid fever

Figure 5: Simulations diagram with prevention of HAV and treatment of typhoid fever

6.4 Using all the intervention efforts

Lastly, we examined the case where all controls, including prevention of HAV and typhoid fever, treatment and
mass cleaning of the environment. In this strategy all the controls (u1, u2, u3, u4, u5) are used to optimise the objective
functional J.The simulation diagram in figure 8 and 9 shows applying all the intervention strategies can significantly
eliminate the co infection of HAV and typhoid fever from the community in a specified time. Related to this result it
is imperative to practice good hygiene, predominantly thorough hand washing before food preparation and after toilet
use to prevent the disease. There are also three monovalent inactivated hepatitis A vaccines, two combined hepatitis
A and hepatitis B vaccine and two combined hepatitis A and typhoid vaccines currently licensed for use [4]. Clinical
trials have demonstrated that these vaccines are highly immunogenic and effective at preventing hepatitis A infection
in up to 95
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Figure 6: Simulations of the co-infection with prevention of typhoid and treatment of HAV

Figure 7: Simulations diagram of the prevention of typhoid fever and treatment HAV

Figure 8: Simulations diagram showing the effect of all control measures on the transmission of the co-infection of HAV –typhoid diseases

7 Discussions and Conclusions

In this study, we formulated and analyzed a deterministic mathematical model for the transmission dynamics
of HAV and typhoid co infection with optimal control measures. Various control measures was compared and the
effectiveness of each control strategies were examined. Our choice of controls u1, u2, u3, u4 and u5 agrees with the
reports in [4]. We have shown that there exists a feasible region where the model is well posed mathematically and
biologically meaningful. The basic reproduction number that represents the epidemic indicator was obtained by using
the next generation matrix. It was shown that there is a unique disease free equilibrium point for each sub-model, if the
pathogen fitness is less than unity. It was also proved that the model has a unique endemic equilibrium if the pathogen
fitness is greater than unity. The steady state points were obtained and their local and global stability conditions were
investigated. A qualitative and numerical simulation of the model was carried out and various results were obtained
as it is mentioned in section 6. The sensitivity analysis of the model parameter revealed that ingestion rate (ν) and
infectious rate of HAV (γ) are most sensitive in escalating the transmission of the disease. Moreover, it was proved
that the co infection of the model exhibit a backward bifurcation whenever v2w1w8

ν
K + v2w1w3

γ
Λ (1 −

l2φ
l3

) > 0 This
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Figure 9: Simulation diagram with all control measures

implies the disease persist even if the basic reproduction number is reduced below unity.

Further, the characterization of an optimal control problem was established by using Pontryagin’s maximum
principle. A numerical simulation of the model was conducted and different combinations of control measures were
compared. Figure 3 suggests that using a good hygiene practice can leads to the elimination of the co infection of
HAV and typhoid fever from the community. Figure 5 and 7 illustrates prevention and treatment has a significant
impact in controlling the transmission of the co infection as compared to the cases without control. Finally it was
observed that applying all the control measures will leads to total eradication of the co infection of HAV and typhoid
disease from the community.
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