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Abstract

A metric modular on a set X is a function w : (0,00) x X x X — [0, 00| written as (A, z,y) — wyx(z,y) satisfying,
for all z,y,z € X, the following three properties: x = y if and only if wy(z,y) = 0 for all A > 0; wx(z,y) = wi(y,x)
for all A > 0; watpu(z,y) < wialx,2) +wu(y, 2) for all A, x> 0. In this paper we define a Hausdorff topology on metric
modular spaces and prove some known results of metric spaces including Baire’s theorem and Uniform limit theorem
for metric modular spaces.
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1 Introduction

In 1950, Nakano [I5] initiated the study of modulars on linear spaces and the related theory of modular linear
spaces as generalizations of metric spaces. Next, Luxemburg [§], Mazur, Musielak and Orlicz [I0, [IT], 12] thoroughly
developed it extensively. Since then, the theory of modulars and modular spaces have been widely applied in the study
of interpolation theory [7, @] and various Orlicz spaces [16]. A modular yields less properties than a norm does, but
it makes a more sense in many special situations. Recall that the notion of partial modular metric space with some
fixed point results are given in [4]. In the formulation given by Kowzslowski [5] [6] a modular on a vector space X is
defined as follow.

Definition 1.1. Let X be a linear space over a field K (=R or C). A generalized function p : X — [0, o0] is called
a modular if it satisfies the following three conditions for elements A\, u € K, x,y € X

(i) p(z) =0 if and only if x = 0;

(ii) p(Ax) = p(x) for all scalar A with [A| = 1;
(115) p(Ax + py) < p(z) + p(y) for all scalar A\, p > 0 with A+ p = 1.

If the condition (iii) is replaced by p(Az + py) < A p(z) + plp(y) when X'+ p! =1 and A, > 0 with an ¢ € (0, 1], then
p is called an t-convexr modular. 1-convex modulars are called conver modulars. For a modular p, there corresponds a
linear subspace X, of X, given by X, := {z € X : p(Ax) = 0as Az — 0}. In this case X, is called a modular space.
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For example if X =R and 3 € (0, 1], then the function p : X — [0, 00] defined by p(z) = |z|? is a modular.

Example 1.2. [T7] Let ¢ : [0,00) — R be a function defined by (0) = 0 and ¢(¢t) > 0 for all ¢ > 0, and
lim;_, o, ¥ (t) = co. If moreover v is convex, continuous and nondecreasing, then v is called an Orlicz function. For
a measure space (X,>_, ), suppose that L°(u) is the set of all measurable functions on X. For each f € L%(u),
define py (f) = [ ¥(|f])dp. Then, py is a modular and the corresponding modular space is called an Orlicz space and
denoted by

Ly ={f € L°(w)] py(Af) = Oas A — 0}.

One can check that Ly is py-complete.

In 2006, Vyacheslav Chistyakov [2], [3] introduced the concept of a metric modular on a set, inspired partly by the
classical linear modulars on function spaces employed by Nakano [13] [14], [I5].

Here, we recall the definition of a metric modular on a nonempty set.
Definition 1.3. Let X be a nonempty set. A metric modular on X is a function
w: (0,00) x X x X — [0, 0],
written as (A, z,y) — wx(z,y), that satisfies the following three axioms:
(1) wx(z,y) =0 for all A > 0 and z,y € X if and only if z = y.
(2) wx(z,y) = wr(y,x) for all A > 0 and z,y € X.
(3) wryp(z,y) <wr(z,z) +wu(y,z) for all A, p >0 and z,y,z € X.

A metric modular space is an ordered pair (X, w), where X is a set and w is a metric modular on X. Throughout the
paper, we suppose that metric modular w has only finite values and A — wy(z,y) is continuous.

Example 1.4. [3] Let X be a set. Then,

00 T #Y,
wg(fmy):{o ey

define a metric modular on X.

Example 1.5. [J] Let (X, d) be a metric space with metric d and at least two points. The following indexed objects
w are simple examples of metric modulars on a set X.

(1) wi(z,y) = d(z,y);
(2) wi(z,y) = dg&%), where ¢ : (0,00) — (0, 00) is a nondecreasing continuous function;
00 d(z,y) = A,
3) wi(z,y) =
(%) ui(e.0) {0 e
0 d(z,y) < A
4 —_ ’ )

In the sequel, We will write wf\ simply w’/ when no confusion can arise. The following theorem states the relation
between modulars and metric modules in real linear spaces.

Theorem 1.6. [J] Let X be a real linear space.

(a) Given a functional p: X — [0, 00], we set

wy (2, y) =p(x;y)7 A> 0,2,y €X.

Then, p is a modular on X in the sense of Definition if and only if w is a metric modular on X.
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(b) Suppose that the function w : (0,00) x X x X — [0, oo] satisfy the following two conditions:
(1) wy(pz,0) =wa(x,0) for all \, x>0 and z € X;
"
(II) wy(x+ z,y+ 2) = wx(x,y) for all \,u >0 and x,y,z € X

Given z € X, we set p(x) = wy(x,0). Then, w is a metric modular on X if and only if p is a modular on X.

Motivated by the above literature, in this paper we define a Hausdorff topology on metric modular spaces and
present some well-known results of metric spaces such as Baire’s theorem and uniform limit theorem for metric modular
spaces.

2 Topology induced by a metric modular

We start this section with a lemma from [I] as follow.

Lemma 2.1. Let w be a metric modular on the set X. Then, for each z,y € X, the function A — wy(z,y) is
non-increasing.

Definition 2.2. Let (X, w) be a metric modular space and A > 0. Define a w-open ball By(z, €¢) with center x € X
and radius € > 0 as
By(z,¢) = {y € X;wx(z,y) < €}

We say that A C X is a w-open set in X if and only if for every element = € X there exist A > 0 and € > 0 such that
By (z,¢) C A.

Theorem 2.3. Eavry w-open ball is a w-open set.

Proof . Consider a w-open ball By(z,¢). Then
y € Bxa(z,€) = wi(z,y) <e.

Assume that there is A\g < A such that wy(x,y) < wy,(z,y) < e. Now, consider the ball By_»,(y,€) such that
€0 < € —wy,(z,y). We claim that Bx_x,(y, €0) C Ba(z,€). If 2 € By_x,(y, €0), then wx_x,(y, z) < €. Therefore,

wi(x, 2) < way (2,Y) +wr_x, (Y, 2) < wyro(x,y) + €0 <€

Consequently, z € By(z,€) and hence Bx_x,(y,€0) C Ba(x,¢€). It remains to show that Ay exists. Choose 0 < A; < A.
By Lemma wx(z,y) < wy, (z,y). I wy, (x,y) <€ put A\g := A;. Otherwise, by continuity of A — wy(z,y) and
intermediate value theorem, there is A1 < Ag < A such that wy(z,y) < wx,(z,y) < e < wy, (z,y). O

Example 2.4. Let X be a non-empty set and A C X. Then
(0) A is an open set in (X,w") if and only if A is a single set or A = X;
(1) A is an open set in (X, w!) if and only if A is an open set in metric space (X, d);
(2) Ais an open set in (X, w?) if and only if A is an open set in metric space (X, d);
(3) For all A >0, e >0 and x € X we have By(z,¢) = {y € X : wi(z,y) <e} ={y € X : d(z,y) < \};

(4) for all A > 0, ¢ > 0 and = € X we have By(z,¢) = {y € X 1 wi(z,y) < e} ={y € X : d(z,y) < \}.

The next example is a direct consequence of Theorem 2.3

Corollary 2.5. Let (X, w) be a metric modular space. Define
Tw={ACX:z€ A 3IXN>0,e>0 st By(x,e) C A}.

Then, (X, 7,) is a topological space.
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Theorem 2.6. Let (X, w) be a metric modular space. Then, 7, is Hausdorff.

Proof . Let z,y be two distinct points of X. For any A > 0, we have wy(z,y) > 0. Put wy(x,y) = r, for some r > 0.
Moreover, for By o(x,r/2) and By 2(y,7/2), we get By o(x,7/2) N By 2(y,7/2) = 0. In other words, if there exists an
element z such that z € By o(x,7/2) N By 2(y,7/2), then

r=wx(z,y) < wy2(T,2) +wrplz,y) <,

which leads us to a contradiction. Therefore, 7, is Hausdorff. [J

Definition 2.7. Let (X, w) be a metric modular space. A subset A of X is called w-bounded if and only if there
exist A > 0 and € > 0 such that wy(z,y) < € for all z,y € A.

It is easy to see that every subset A of metric modular space (X, w®) is bounded if and only if A is a single set. In
addition, the subset A of metric modular spaces (X, w?), i = 1,2, 3,4, is a bounded set if and only if A is a bounded
set in metric space (X, d).

Definition 2.8. A metric modular space (X, w) is called w-compact if each of its w-open covers has a finite subcover.
Indeed, X is w-compact if for every collection C' of w-open subsets of X with X = J; o U, there is a finite subset F
of C such that X = J,cpU.

Every w-compact set is w-bounded as it will be shown in the next result.

Theorem 2.9. Let (X,w) be a metric modular space. Then, every w-compact subset A of X is w-bounded. In
particular, every w-compact set is w-bounded.

Proof . Suppose that A > 0,e¢ > 0. Consider an open cover {By(z,¢) : * € A} of A. Since A is compact, there
exist x1,2,...,2, € A such that A C |JBx(zs,€). Let z,y € A. Then, € B(x;,¢€) and y € Bx(z;,€) for some ¢, j.
Therefore, wy(z,z;) < € and wy(y, z;) < €. Set

o = max{wy(zg,x) 1 1 <k <n,1 <t<n}
Then, o > 0. Now we have
w3 (2, y) < wa(z, z;) + walzi, ;) + walz),y) < 26+

Putting m > 2¢ + a, we get wi(m,y) < m for each z,y € A and so A is w-bounded. O]

Proposition 2.10. Let (X, w) be a metric modular space. Then, lim,, o, wx(x,,x) = 0, for all A > 0 if and only if

Tw

Ty — .

Proof . Suppose that lim,, o, wx(2,,x) =0, for all A > 0. Fix A > 0 and € > 0. Then there exists no € N such that
wx(xn, ) < € for all n > ng. It follows that z,, € By(z,¢€). Thus, x, —% .

Conversely, if z, =% z then for € > 0 and A > 0, there exists ng € N such that z, € By(x,¢€) for all n > ng. This
means that wy(x,,z) < ¢, for all n > ng. Therefore, lim,,_, oo wx(xy,z) = 0. O

Definition 2.11. Let (X, w) be a metric modular space. We define a w-closed ball with center x € X and radius
€>0,A>0as
Bilz,e] = {y € X; Ba(w,y) < ¢}.

Lemma 2.12. Every w-closed ball is a w-closed set.

Proof . Let y € Bj[z,€¢] and By = Bi(y,1). We know that B; N By[z,€] # (. Choose y; € By. Set By =
Bi/2(y,1/2) N By. Since By N By[x, €] # (), one can take yo € By N By[z,€]. This process can be repeated to find

Yn € Bp N Bylx, €]. It is obvious that y, 225 4. Now, for each n € N we have

w/\+1/n(y7x) < wl/n(yvyn) + w,\(yn,x) < 1/77‘ te
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Due to the continuity of the mapping A — w)(y,x), we find
nlglgo Wxy1/n (Y, T) = wA(Y, 7).

Consequently, wx(y, ) = limy, 00 Wx41/5(y, ) < €. Hence, y € B[z, A] which implies that By[z, A] is a w-closed set.
O

Definition 2.13. A sequence {z,} in a metric modular space X is said to be a w-Cauchy sequence if and only if for
each € > 0,\ > 0, there is ng > 0 such that wy(Zn4+m,xn) < € for all n > ng,m > 0.
If every w-Cauchy sequence is convergent in 7,,-topology, then X is called w-complete metric modular set.

Theorem 2.14. Let X be a w-complete metric modular set. Then, the intersection of a countable number of dense
w-open sets is dense.

Proof . Assume that By is a nonempty w-open set and Dy, Ds, D3, ... dense w-open sets in X. Since B, N Dy is
nonempty w-open set, there are 21 € B,ND; and 0 < A\; < 1,0 < ¢; < 1 such that By, [x1,€1] C B,ND;. Due to being
dense Do, there are x5 € By, (x1,€61) N Do and 0 < A2 < 1/2 and €5 < 1/2 such that By, [z2, €] C By, (z1,€1) N Ds.
Similarly by induction, we can find z,, € By, ,(¢n-1,€n—1) N D, and 0 < A, < 1/n,0 < €, < 1/n such that
By, [Tn,€n] C Ba,_,(Tn—1,€n—1) N Dy. Given A > 0, € > 0, we choose Ny > 0 such that 1/Ny < € and 1/Ny < A.
Then for every n > Ny, we have

w)x(xna-rn-i-m) < wl/n(l‘nvxn-‘rm) < 1/” <e

The relation above shows that {z,} is a w-cauchy sequence. Due to the w—completenss of X, we obtain z,, Do
for some z € X. On the other hand, xy1m € Bi,(zn,€,) for all m > 0. It follows from Lemma that « €
By, [Tn,€n] C Bn_1(n_1,€n—1) N Dy, for all n. Therefore, z € By N (ND,,) # 0. O

Definition 2.15. Let (X,w) be a metric modular space. A collection of sets {A, }ner is said to have modular
diameter zero if and only if for each pair A > 0,€ > 0, there exists N € I such that wy(x,y) < € for all z,y € An.

The next result is a version of Baire’s theorem for metric modular spaces.

Theorem 2.16. Let (X, w) be a metric modular space. Then, X is w-complete metric modular set if and only if
every nested sequence of nonempty w-closed sets {A,}>2; with modular diameter zero have nonempty intersection.

Proof . Assume that X is w-complete metric modular set and {4, }22, is a nested sequence of nonempty w-closed
sets with modular diameter zero. Choose z,, € A,, for n € N. Since {A,} has modular diameter zero for each € > 0
and A > 0 there exists N > 0 such that wy(z,y) < € for all z,y € Ay. For every n,m > N, we choose z,, € 4, C Ayx
and z,, € A, C Ay. Thus, {x,} is a w—cauchy sequence. By assumption, x,, converges to x for some z € X. For
each n € N and k > n we have 2 € A,, and hence z € A,, = A,, for every n and € N2, A,,.

Conversely, suppose that every nested sequence of nonempty w-closed sets {4, }22; with modular diameter zero
have non-empty intersection. Let {z,} be a w-Cauchy sequence in X. Put B, = {z,,Zn41,...} and A, = B,. We
wish to show that {A,} has modular diameter zero. Let € > 0 and A > 0. Since {z,} is a w-Cauchy sequence, there
is N > 0 such that w)/3(z,y) < ¢/3 for all 2,y € By. Take 2,y € Ay. Then, there exist sequences {2, } and {y;} in
By such that z} converges to x and y. converges to y, and so for sufficiently large n, we have x. € By/3(x,¢/3) and
yp € By3(y,€/3). Hence

wi(w,y) < wA/3(fE7$71«L) + w)\/3(x:my}z) + wx/s(yi, y) <e

Consequently, {A,,} has modular diameter zero and hence NS ; A, # 0. Take 2 € N%2; A,. Then for € > 0, > 0,
there exists Ny such that wy_y/3(zn,,2) < €/3. Thus, for all n > Ny,

W (Tp, ) < Wy 3(Tn, TN, ) +wr_r/3(TN,, T) <€
Hence, x,, converges to x. Therefore, X is w-complete metric modular set. [

Definition 2.17. Let X be a non-empty set and (Y,w) be a metric modular space. We say a sequence {f,} of
functions from X to Y converges w-uniformly to a function f from X to Y if for given € > 0, A > 0, there exists ng € N
such that wy(fn(z), f(z)) < € for all n > ng and for all z € X.
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Theorem 2.18. Let f, : X — Y be a sequence of continuous functions from a topological space X to a metric
modular set (Y, w). If {f,} converges w-uniformly to f, then f is continuous.

Proof . Suppose that V is an w-open set. Let zg € f~(V). Since V is open, we can find ¢ > 0 and A > 0 such that
Bx(f(x0),€) € V. Since {f,} converges w-uniformly to f, there exists ng € N such that wy 3(fn(z), f(z)) < €/3 for
all n > ng and for all z € X. On the other hand, f,, is continuous and so we can find a neighborhood U of z( such
that f,,,(U) € Bx/3(fne(20),€/3). Hence, for all z € U we have

wa(f(@), f(20)) < wa3(f(@), fro () + Wiy (fro (%), fro (0)) + wr/3(fne (20), f(20)) <€
It follows from the relation above that f(U) C Bx(f(xo),e) CV. O
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