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Abstract

A metric modular on a set X is a function w : (0,∞) ×X ×X −→ [0,∞] written as (λ, x, y) 7→ wλ(x, y) satisfying,
for all x, y, z ∈ X, the following three properties: x = y if and only if wλ(x, y) = 0 for all λ > 0; wλ(x, y) = wλ(y, x)
for all λ > 0; wλ+µ(x, y) ≤ wλ(x, z)+wµ(y, z) for all λ, µ > 0. In this paper we define a Hausdorff topology on metric
modular spaces and prove some known results of metric spaces including Baire’s theorem and Uniform limit theorem
for metric modular spaces.
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1 Introduction

In 1950, Nakano [15] initiated the study of modulars on linear spaces and the related theory of modular linear
spaces as generalizations of metric spaces. Next, Luxemburg [8], Mazur, Musielak and Orlicz [10, 11, 12] thoroughly
developed it extensively. Since then, the theory of modulars and modular spaces have been widely applied in the study
of interpolation theory [7, 9] and various Orlicz spaces [16]. A modular yields less properties than a norm does, but
it makes a more sense in many special situations. Recall that the notion of partial modular metric space with some
fixed point results are given in [4]. In the formulation given by Kowzslowski [5, 6] a modular on a vector space X is
defined as follow.

Definition 1.1. Let X be a linear space over a field K (= R or C). A generalized function ρ : X −→ [0,∞] is called
a modular if it satisfies the following three conditions for elements λ, µ ∈ K, x, y ∈ X

(i) ρ(x) = 0 if and only if x = 0;
(ii) ρ(λx) = ρ(x) for all scalar λ with |λ| = 1;
(iii) ρ(λx+ µy) ≤ ρ(x) + ρ(y) for all scalar λ, µ ≥ 0 with λ+ µ = 1.

If the condition (iii) is replaced by ρ(λx+µy) ≤ λtρ(x)+µtρ(y) when λt+µt = 1 and λ, µ ≥ 0 with an t ∈ (0, 1], then
ρ is called an t-convex modular. 1-convex modulars are called convex modulars. For a modular ρ, there corresponds a
linear subspace Xρ of X, given by Xρ := {x ∈ X : ρ(λx) → 0 asλx→ 0}. In this case Xρ is called a modular space.
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For example if X = R and β ∈ (0, 1], then the function ρ : X −→ [0,∞] defined by ρ(x) = |x|β is a modular.

Example 1.2. [17] Let ψ : [0,∞) −→ R be a function defined by ψ(0) = 0 and ψ(t) > 0 for all t > 0, and
limt→∞ ψ(t) = ∞. If moreover ψ is convex, continuous and nondecreasing, then ψ is called an Orlicz function. For
a measure space (X,

∑
, µ), suppose that L0(µ) is the set of all measurable functions on X. For each f ∈ L0(µ),

define ρψ(f) =
∫
X
ψ(|f |)dµ. Then, ρψ is a modular and the corresponding modular space is called an Orlicz space and

denoted by
Lψ = {f ∈ L0(µ)| ρψ(λf) → 0 asλ→ 0}.

One can check that Lψ is ρψ-complete.

In 2006, Vyacheslav Chistyakov [2], [3] introduced the concept of a metric modular on a set, inspired partly by the
classical linear modulars on function spaces employed by Nakano [13, 14], [15].

Here, we recall the definition of a metric modular on a nonempty set.

Definition 1.3. Let X be a nonempty set. A metric modular on X is a function

w : (0,∞)×X ×X −→ [0,∞],

written as (λ, x, y) 7→ wλ(x, y), that satisfies the following three axioms:

(1) wλ(x, y) = 0 for all λ > 0 and x, y ∈ X if and only if x = y.

(2) wλ(x, y) = wλ(y, x) for all λ > 0 and x, y ∈ X.

(3) wλ+µ(x, y) ≤ wλ(x, z) + wµ(y, z) for all λ, µ > 0 and x, y, z ∈ X.

A metric modular space is an ordered pair (X,w), where X is a set and w is a metric modular on X. Throughout the
paper, we suppose that metric modular w has only finite values and λ 7→ wλ(x, y) is continuous.

Example 1.4. [3] Let X be a set. Then,

w0
λ(x, y) =

{
∞ x ̸= y,

0 x = y,

define a metric modular on X.

Example 1.5. [3] Let (X, d) be a metric space with metric d and at least two points. The following indexed objects
w are simple examples of metric modulars on a set X.

(1) w1
λ(x, y) = d(x, y);

(2) w2
λ(x, y) =

d(x,y)
ϕ(λ) , where ϕ : (0,∞) −→ (0,∞) is a nondecreasing continuous function;

(3) w3
λ(x, y) =

{
∞ d(x, y) ≥ λ,

0 d(x, y) < λ;

(4) w4
λ(x, y) =

{
0 d(x, y) ≤ λ,

∞ d(x, y) > λ;

In the sequel, We will write wjλ simply wj when no confusion can arise. The following theorem states the relation
between modulars and metric modules in real linear spaces.

Theorem 1.6. [3] Let X be a real linear space.

(a) Given a functional ρ : X −→ [0,∞], we set

wλ(x, y) = ρ
(x− y

λ

)
, λ > 0, x, y ∈ X.

Then, ρ is a modular on X in the sense of Definition 1.1 if and only if w is a metric modular on X.
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(b) Suppose that the function w : (0,∞)×X ×X −→ [0,∞] satisfy the following two conditions:

(I) wλ(µx, 0) = wλ
µ
(x, 0) for all λ, µ > 0 and x ∈ X;

(II) wλ(x+ z, y + z) = wλ(x, y) for all λ, µ > 0 and x, y, z ∈ X

Given x ∈ X, we set ρ(x) = w1(x, 0). Then, w is a metric modular on X if and only if ρ is a modular on X.

Motivated by the above literature, in this paper we define a Hausdorff topology on metric modular spaces and
present some well-known results of metric spaces such as Baire’s theorem and uniform limit theorem for metric modular
spaces.

2 Topology induced by a metric modular

We start this section with a lemma from [1] as follow.

Lemma 2.1. Let w be a metric modular on the set X. Then, for each x, y ∈ X, the function λ 7→ wλ(x, y) is
non-increasing.

Definition 2.2. Let (X,w) be a metric modular space and λ > 0. Define a w-open ball Bλ(x, ϵ) with center x ∈ X
and radius ϵ > 0 as

Bλ(x, ϵ) = {y ∈ X;wλ(x, y) < ϵ}.

We say that A ⊆ X is a w-open set in X if and only if for every element x ∈ X there exist λ > 0 and ϵ > 0 such that
Bλ(x, ϵ) ⊆ A.

Theorem 2.3. Eavry w-open ball is a w-open set.

Proof . Consider a w-open ball Bλ(x, ϵ). Then

y ∈ Bλ(x, ϵ) ⇒ wλ(x, y) < ϵ.

Assume that there is λ0 < λ such that wλ(x, y) ≤ wλ0
(x, y) < ϵ. Now, consider the ball Bλ−λ0

(y, ϵ0) such that
ϵ0 < ϵ− wλ0

(x, y). We claim that Bλ−λ0
(y, ϵ0) ⊆ Bλ(x, ϵ). If z ∈ Bλ−λ0

(y, ϵ0), then wλ−λ0
(y, z) < ϵ0. Therefore,

wλ(x, z) ≤ wλ0
(x, y) + wλ−λ0

(y, z) < wλ0
(x, y) + ϵ0 < ϵ.

Consequently, z ∈ Bλ(x, ϵ) and hence Bλ−λ0(y, ϵ0) ⊆ Bλ(x, ϵ). It remains to show that λ0 exists. Choose 0 < λ1 < λ.
By Lemma 2.1, wλ(x, y) ≤ wλ1(x, y). If wλ1(x, y) < ϵ, put λ0 := λ1. Otherwise, by continuity of λ → wλ(x, y) and
intermediate value theorem, there is λ1 < λ0 < λ such that wλ(x, y) ≤ wλ0

(x, y) < ϵ < wλ1
(x, y). □

Example 2.4. Let X be a non-empty set and A ⊆ X. Then

(0) A is an open set in (X,w0) if and only if A is a single set or A = X;

(1) A is an open set in (X,w1) if and only if A is an open set in metric space (X, d);

(2) A is an open set in (X,w2) if and only if A is an open set in metric space (X, d);

(3) For all λ > 0, ϵ > 0 and x ∈ X we have Bλ(x, ϵ) = {y ∈ X : w3
λ(x, y) < ϵ} = {y ∈ X : d(x, y) < λ};

(4) for all λ > 0, ϵ > 0 and x ∈ X we have Bλ(x, ϵ) = {y ∈ X : w4
λ(x, y) < ϵ} = {y ∈ X : d(x, y) ≤ λ}.

The next example is a direct consequence of Theorem 2.3.

Corollary 2.5. Let (X,w) be a metric modular space. Define

τw = {A ⊆ X : x ∈ A⇔ ∃λ > 0, ϵ > 0 s.t Bλ(x, ϵ) ⊆ A}.

Then, (X, τw) is a topological space.
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Theorem 2.6. Let (X,w) be a metric modular space. Then, τw is Hausdorff.

Proof . Let x, y be two distinct points of X. For any λ > 0, we have wλ(x, y) > 0. Put wλ(x, y) = r, for some r > 0.
Moreover, for Bλ/2(x, r/2) and Bλ/2(y, r/2), we get Bλ/2(x, r/2)∩Bλ/2(y, r/2) = ∅. In other words, if there exists an
element z such that z ∈ Bλ/2(x, r/2) ∩Bλ/2(y, r/2), then

r = wλ(x, y) ≤ wλ/2(x, z) + wλ/2(z, y) < r,

which leads us to a contradiction. Therefore, τw is Hausdorff. □

Definition 2.7. Let (X,w) be a metric modular space. A subset A of X is called w-bounded if and only if there
exist λ > 0 and ϵ > 0 such that wλ(x, y) < ϵ for all x, y ∈ A.

It is easy to see that every subset A of metric modular space (X,w0) is bounded if and only if A is a single set. In
addition, the subset A of metric modular spaces (X,wi), i = 1, 2, 3, 4, is a bounded set if and only if A is a bounded
set in metric space (X, d).

Definition 2.8. A metric modular space (X,w) is called w-compact if each of its w-open covers has a finite subcover.
Indeed, X is w-compact if for every collection C of w-open subsets of X with X =

⋃
U∈C U , there is a finite subset F

of C such that X =
⋃
U∈F U .

Every w-compact set is w-bounded as it will be shown in the next result.

Theorem 2.9. Let (X,w) be a metric modular space. Then, every w-compact subset A of X is w-bounded. In
particular, every w-compact set is w-bounded.

Proof . Suppose that λ > 0, ϵ > 0. Consider an open cover {Bλ(x, ϵ) : x ∈ A} of A. Since A is compact, there
exist x1, x2, . . . , xn ∈ A such that A ⊆

⋃
Bλ(xi, ϵ). Let x, y ∈ A. Then, x ∈ Bλ(xi, ϵ) and y ∈ Bλ(xj , ϵ) for some i, j.

Therefore, wλ(x, xi) < ϵ and wλ(y, xj) < ϵ. Set

α = max{wλ(xk, xt) : 1 ≤ k ≤ n, 1 ≤ t ≤ n}.

Then, α > 0. Now we have

w3λ(x, y) ≤ wλ(x, xi) + wλ(xi, xj) + wλ(xj , y) ≤ 2ϵ+ α.

Putting m > 2ϵ+ α, we get w3
λ(x, y) ≤ m for each x, y ∈ A and so A is w-bounded. □

Proposition 2.10. Let (X,w) be a metric modular space. Then, limn→∞ wλ(xn, x) = 0, for all λ > 0 if and only if

xn
τw−−→ x.

Proof . Suppose that limn→∞ wλ(xn, x) = 0, for all λ > 0. Fix λ > 0 and ϵ > 0. Then there exists n0 ∈ N such that

wλ(xn, x) < ϵ for all n > n0. It follows that xn ∈ Bλ(x, ϵ). Thus, xn
τw−−→ x.

Conversely, if xn
τw−−→ x then for ϵ > 0 and λ > 0, there exists n0 ∈ N such that xn ∈ Bλ(x, ϵ) for all n > n0. This

means that wλ(xn, x) < ϵ, for all n > n0. Therefore, limn→∞ wλ(xn, x) = 0. □

Definition 2.11. Let (X,w) be a metric modular space. We define a w-closed ball with center x ∈ X and radius
ϵ > 0, λ > 0 as

Bλ[x, ϵ] = {y ∈ X;Bλ(x, y) ≤ ϵ}.

Lemma 2.12. Every w-closed ball is a w-closed set.

Proof . Let y ∈ Bλ[x, ϵ] and B1 = B1(y, 1). We know that B1 ∩ Bλ[x, ϵ] ̸= ∅. Choose y1 ∈ B1. Set B2 =
B1/2(y, 1/2) ∩ B1. Since B2 ∩ Bλ[x, ϵ] ̸= ∅, one can take y2 ∈ B2 ∩ Bλ[x, ϵ]. This process can be repeated to find

yn ∈ Bn ∩Bλ[x, ϵ]. It is obvious that yn
τw−−→ y. Now, for each n ∈ N we have

wλ+1/n(y, x) ≤ w1/n(y, yn) + wλ(yn, x) ≤ 1/n+ ϵ.
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Due to the continuity of the mapping λ 7→ wλ(y, x), we find

lim
n→∞

wλ+1/n(y, x) = wλ(y, x).

Consequently, wλ(y, x) = limn→∞ wλ+1/n(y, x) ≤ ϵ. Hence, y ∈ Bλ[x, λ] which implies that Bλ[x, λ] is a w-closed set.
□

Definition 2.13. A sequence {xn} in a metric modular space X is said to be a w-Cauchy sequence if and only if for
each ϵ > 0, λ > 0, there is n0 > 0 such that wλ(xn+m, xn) < ϵ for all n > n0,m > 0.
If every w-Cauchy sequence is convergent in τw-topology, then X is called w-complete metric modular set.

Theorem 2.14. Let X be a w-complete metric modular set. Then, the intersection of a countable number of dense
w-open sets is dense.

Proof . Assume that B0 is a nonempty w-open set and D1, D2, D3, . . . dense w-open sets in X. Since Bo ∩ D1 is
nonempty w-open set, there are x1 ∈ Bo∩D1 and 0 < λ1 < 1, 0 < ϵ1 < 1 such that Bλ1 [x1, ϵ1] ⊆ Bo∩D1. Due to being
dense D2, there are x2 ∈ Bλ1

(x1, ϵ1) ∩D2 and 0 < λ2 < 1/2 and ϵ2 < 1/2 such that Bλ2
[x2, ϵ2] ⊆ Bλ1

(x1, ϵ1) ∩D2.
Similarly by induction, we can find xn ∈ Bλn−1

(xn−1, ϵn−1) ∩ Dn and 0 < λn < 1/n, 0 < ϵn < 1/n such that
Bλn

[xn, ϵn] ⊆ Bλn−1
(xn−1, ϵn−1) ∩ Dn. Given λ > 0, ϵ > 0, we choose N0 > 0 such that 1/N0 < ϵ and 1/N0 < λ.

Then for every n ≥ N0, we have
wλ(xn, xn+m) ≤ w1/n(xn, xn+m) ≤ 1/n < ϵ.

The relation above shows that {xn} is a w-cauchy sequence. Due to the w−completenss of X, we obtain xn
τw−−→ x

for some x ∈ X. On the other hand, xn+m ∈ Bλn
(xn, ϵn) for all m > 0. It follows from Lemma 2.12 that x ∈

Bλn
[xn, ϵn] ⊆ Bn−1(xn−1, ϵn−1) ∩Dn, for all n. Therefore, x ∈ B0 ∩ (∩Dn) ̸= ∅. □

Definition 2.15. Let (X,w) be a metric modular space. A collection of sets {An}n∈I is said to have modular
diameter zero if and only if for each pair λ > 0, ϵ > 0, there exists N ∈ I such that wλ(x, y) < ϵ for all x, y ∈ AN .

The next result is a version of Baire’s theorem for metric modular spaces.

Theorem 2.16. Let (X,w) be a metric modular space. Then, X is w-complete metric modular set if and only if
every nested sequence of nonempty w-closed sets {An}∞n=1 with modular diameter zero have nonempty intersection.

Proof . Assume that X is w-complete metric modular set and {An}∞n=1 is a nested sequence of nonempty w-closed
sets with modular diameter zero. Choose xn ∈ An for n ∈ N. Since {An} has modular diameter zero for each ϵ > 0
and λ > 0 there exists N > 0 such that wλ(x, y) < ϵ for all x, y ∈ AN . For every n,m ≥ N , we choose xn ∈ An ⊆ AN
and xm ∈ Am ⊆ AN . Thus, {xn} is a w−cauchy sequence. By assumption, xn converges to x for some x ∈ X. For
each n ∈ N and k > n we have xk ∈ An and hence x ∈ An = An for every n and x ∈ ∩∞

n=1An.

Conversely, suppose that every nested sequence of nonempty w-closed sets {An}∞n=1 with modular diameter zero
have non-empty intersection. Let {xn} be a w-Cauchy sequence in X. Put Bn = {xn, xn+1, . . .} and An = Bn. We
wish to show that {An} has modular diameter zero. Let ϵ > 0 and λ > 0. Since {xn} is a w-Cauchy sequence, there
is N > 0 such that wλ/3(x, y) < ϵ/3 for all x, y ∈ BN . Take x, y ∈ AN . Then, there exist sequences {x1n} and {y1n} in
BN such that x1n converges to x and y1n converges to y, and so for sufficiently large n, we have x1n ∈ Bλ/3(x, ϵ/3) and
y1n ∈ Bλ/3(y, ϵ/3). Hence

wλ(x, y) ≤ wλ/3(x, x
1
n) + wλ/3(x

1
n, y

1
n) + wλ/3(y

1
n, y) < ϵ.

Consequently, {An} has modular diameter zero and hence ∩∞
n=1An ̸= ∅. Take x ∈ ∩∞

n=1An. Then for ϵ > 0, λ > 0,
there exists N1 such that wλ−λ/3(xN1

, x) < ϵ/3. Thus, for all n > N1,

wλ(xn, x) ≤ wλ/3(xn, xN1
) + wλ−λ/3(xN1

, x) < ϵ.

Hence, xn converges to x. Therefore, X is w-complete metric modular set. □

Definition 2.17. Let X be a non-empty set and (Y,w) be a metric modular space. We say a sequence {fn} of
functions from X to Y converges w-uniformly to a function f from X to Y if for given ϵ > 0, λ > 0, there exists n0 ∈ N
such that wλ(fn(x), f(x)) < ϵ for all n ≥ n0 and for all x ∈ X.
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Theorem 2.18. Let fn : X −→ Y be a sequence of continuous functions from a topological space X to a metric
modular set (Y,w). If {fn} converges w-uniformly to f , then f is continuous.

Proof . Suppose that V is an w-open set. Let x0 ∈ f−1(V ). Since V is open, we can find ϵ > 0 and λ > 0 such that
Bλ(f(x0), ϵ) ⊆ V . Since {fn} converges w-uniformly to f , there exists n0 ∈ N such that wλ/3(fn(x), f(x)) < ϵ/3 for
all n ≥ n0 and for all x ∈ X. On the other hand, fn0

is continuous and so we can find a neighborhood U of x0 such
that fn0

(U) ⊆ Bλ/3(fn0
(x0), ϵ/3). Hence, for all x ∈ U we have

wλ(f(x), f(x0)) ≤ wλ/3(f(x), fn0
(x)) + wλ/3(fn0

(x), fn0
(x0)) + wλ/3(fn0

(x0), f(x0)) < ϵ.

It follows from the relation above that f(U) ⊆ Bλ(f(x0), ϵ) ⊆ V . □
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