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Abstract

In this article, we consider k-quasi-∗-class A operator T ∈ B(H) such that TX = XS for some X ∈ B(K,H) and prove
the Fuglede-Putnam type theorem when adjoint of S ∈ B(K) is k-quasi-∗-class A or dominant operators. Among
other things, we prove that two quasisimilar k-quasi-∗-class A operators have equal essential spectra.
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1 Introduction

Let H and K be separable complex Hilbert spaces, and let B(H,K) denote the algebra of all bounded linear
operators from H to K. When H = K, we write B(H) for B(H,H). Throughout this paper, the range and the null
space of an operator T will be denoted by R(T ) and ker(T ), respectively. Let M and M⊥ be the norm closure and the
orthogonal complement of the subspace M of H. The classical Fuglede-Putnam theorem [10, Problem 152] asserts that
if T ∈ B(H) and S ∈ B(K) are normal operators such that TX = XS for some X ∈ B(K,H), then T ∗X = XS∗. The
references [25, 24, 26, 29, 15] are among the various extensions of this celebrated theorem for non-normal operators.
According to [32] an operator T ∈ B(H) is dominant if

R(T − λI) ⊆ R(T − λI)∗ for all λ ∈ σ(T ),

where σ(T ) denote the spectrum of T . From [6], it is seen that this condition is equivalent to the existence of a positive
constant Mλ such that

(T − λI)(T − λI)∗ ≤ M2
λ(T − λI)∗(T − λI)

for each λ ∈ C. An operator T is called M -hyponormal if there is a constant M such that Mλ ≤ M for all λ ∈ C. If
M = 1, T is hyponormal. Hence we have the following inclusion:

{Hyponormal} ⊆ {M -hyponormal} ⊆ {Dominant}.

Recall [2, 7] that T ∈ B(H) is called hyponormal if T ∗T ≥ TT ∗, paranormal (resp., ∗-paranormal) if
∥∥T 2x

∥∥ ≥ ∥Tx∥2

(resp.,
∥∥T 2x

∥∥ ≥ ∥T ∗x∥2) for all unit vectors x ∈ H. Following [7] and [13] we say that T ∈ B(H) belongs to class A if
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|T 2| ≥ |T |2, where |T |2 = T ∗T . Recently, B. P. Duggal al et. [5] considered the following new class of operators: We
say that T ∈ B(H) belongs to ∗-class A if |T 2| ≥ |T ∗|2. From [2] and [7], it is well known that

{Hyponormal} ⊂ {Class A} ⊂ {Paranormal}

and
{Hyponormal} ⊂ {∗-class A} ⊂ {∗-paranormal}.

More recently, the authors of [14] have extended ∗-class A operators to quasi-∗-class A operators. An operator

T ∈ B(H) is said to be quasi-∗-class A if T ∗|T 2|T ≥ T ∗|T ∗|2T , and quasi-∗-paranormal if ∥T ∗Tx∥2 ≤
∥∥T 3x

∥∥ ∥Tx∥ for
all x ∈ H. Hence we have the following inclusion:

{Hyponormal} ⊂ {∗-class A} ⊂ {∗-paranormal} ⊂ {quasi-∗-paranormal}.

As a further generalization, Mecheri [20] introduced the class of k-quasi-∗-class A operators. An operator T is said to
be a k-quasi-∗-class A operator if

T ∗k(|T 2| − |T ∗|2)T k ≥ 0,

where k is a positive integer number.
For T ∈ B(H) and S ∈ B(K), we say that FP-theorem holds for the pair (T, S) if TX = XS implies T ∗X = XS∗,

R(X) reduces T , and ker(X)⊥ reduces S, the restrictions T |R(X)
and S|ker(X)⊥ are unitary equivalent normal operators

for all X ∈ B(K,H). We say that an operator S is quasi-affine transform of an operator T if there exists an injective
operator X with dense range such that TX = XS. Two operators T ∈ B(H) and S ∈ B(K) are quasisimilar if there
exist quasiaffinities X ∈ B(H,K) and Y ∈ B(K,H) such that XT = SX and Y S = TY . In general quasisimilarity need
not preserve the spectrum and essential spectrum. However, in special classes of operators quasisimilarity preserves
spectra. For instance, it is well known that two quasisimilar hyponormal operators have equal spectrum and equal
essential spectrum.
Recently in [21, 25, 26, 29, 30, 32], the author investigated some extensions of Fuglede-Putnam theorems involving
class A, w-hyponormal, dominant, and spectral operators.

Recall [18] that an operator T ∈ B(H) is said to have the single-valued extension property (SVEP) if for every
open subset D of C and any analytic function f : D → H such that (T − z)f(z) ≡ 0 on D, it results f(z) ≡ 0 on D.
We say that a Hilbert space operator satisfies Bishop property (β) if, for every open subset D of C and every sequence
fn : D → H of analytic functions with (T − z)fn(z) converges uniformly to 0 in norm on compact subsets of D, fn(z)
converges uniformly to 0 in norm on compact subsets of D. It is well known that,

Bishop property (β) =⇒ single-valued extension property (SVEP),

see [4, 17] for further details.
In the present article, we seek some extensions of Fuglede-Putnam type theorems involving k-quasi-∗-class A and

dominant operators. Let U be an open set in C. Stampfli [32] investigated the equation (T − λI)f(λ) ≡ x for some
non-zero x ∈ H and f : U → H in an effort to discover necessary and/or sufficient condition for analyticity of f when
T is a dominant operator. In this note, we show that if T ∈ B(H) be k-quasi-∗-class A, if 0 /∈ δ ⊆ C be closed, and
if there exists a bounded function f : C \ δ → H such that (T − λI)f(λ) ≡ x for some nonzero x ∈ H, then f is
analytic at every non zero point and hence f has analytic extension everywere on C \ δ. In section 3, we show that if
T, S ∈ B(H) are quasisimilar k-quasi-∗-class A operators, then they have equal spectrum and essential spectrum.

2 Fuglede-Putnam Type Theorems

Throughout this article we would like to present some known results as propositions which will be used in the
sequel.

Proposition 2.1. [34] Let T ∈ B(H) and S ∈ B(K). Then the following assertions are equivalent.

1. If TX = XS, where X ∈ B(K,H), then T ∗X = XS∗,

2. If TX = XS, where X ∈ B(K,H), then R(X) reduces T , ker(X)⊥ reduces S, the restrictions T |R(X)
and

S|ker(S)⊥ are normal.

Proposition 2.2. If T ∈ B(H) is a ∗-class A operator, then T is a ∗-paranormal operator
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It is well known that a normal part of hyponormal is reducing. This result remains true for ∗-class A operators.

Proposition 2.3. [19, 20, 28, 31] Let T ∈ B(H) be ∗-class A operator and let M be an invariant subspace of T . Then
the following assertions hold.

(i) The restriction T |M is ∗-class A operator.

(ii) If the restriction T |M is normal, then M reduces T .

As a consequence of Proposition 2.2 and Theorem 5 of [3], we have

Proposition 2.4. Let T and S be ∗-class A operators and TX = XS∗. Then

(i) R(X) reduces T and ker(X) reduces S.

(ii) T |R(X)
and S∗|ker(S)⊥ are unitarily equivalent normal operators.

Recall from [27] that an operator T ∈ B(H) is said to be a k-quasi-∗-paranormal operator if∥∥T ∗T kx
∥∥2 ≤

∥∥T k+2x
∥∥∥∥T kx

∥∥
for all unit vector x ∈ H, where k is a positive integer number.

Proposition 2.5. [27, Theorem 2.4] Let T ∈ B(H). If T is k-quasi-∗-class A operator, then T is k-quasi-∗-paranormal
operator

Theorem 2.6. Let T ∈ B(H). If T is a k-quasi-∗-class A with dense range, then T is ∗-class A operator.

Proof . Since T has dense range, R(T k) = H. Then there exists a sequence {xn} ⊂ H such that lim
n−→∞

T kxn = y.

Since T is a k-quasi-∗-class A, we have〈
T k|T 2|T kxn, xn

〉
≥

〈
T k|T ∗|2T kxn, xn

〉〈
|T 2|T kxn, T

kxn

〉
≥

〈
|T ∗|2T kxn, T

kxn

〉
for all n ∈ N

By the continuity of the inner product, we have〈
(|T 2| − |T ∗|2)y, y

〉
≥ 0.

Therefore T is a ∗-class A operator. □

Corollary 2.7. Let T ∈ B(H). If T is a k-quasi-∗-class A and not ∗-class A, then T is not invertible.

Corollary 2.8. Suppose that T is non-zero k-quasi-∗-class A and it has no nontrivial T -invariant closed subspace.
Then T is ∗-class A operator.

Proof . Since T has no non-trivial invariant closed subspace, it has no non-trivial hyperinvariant subspace. But
ker(T k) and R(T k) are hyperinvariant subspaces, and T ̸= 0, hence, ker(T k) ̸= H and R(T k) ̸= {0}. Therefore

ker(T k) = {0} and R(T k) = H. In particular, T has dense range. It follows from Corollary 2.6 that T is ∗-class A
operator. □ It is well-known that if T is ∗-class A and a closed subspace M of H is T -invariant, then T |M is ∗-class
A. We obtain a similar result for a k-quasi-∗-class A operator.

Proposition 2.9. The restriction T |M of a k-quasi-∗-class A operator T to a T -invariant closed subspace M of H is
k-quasi-∗-class A operator.

Proof . Let P be the projection of H onto M. Thus we can represent T as the following matrix with respect to the
decomposition M⊕M⊥,

T =

(
A B
0 C

)
.
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Put A = T |M and we have (
A 0
0 0

)
= TP = PTP.

Since T is k-quasi-∗-class A, we have
PT ∗k(|T 2| − |T ∗|2)T kP ≥ 0.

We remark that

PT ∗k|T ∗|2T kP = PT ∗kP |T ∗|2PT kP = PT ∗kPTT ∗PT kP

=

(
A∗k|A∗|2Ak + |B∗Ak|2 0

0 0

)
≥

(
A∗k|A∗|2Ak 0

0 0

)
and by Hansen’s inequality, we have

PT ∗k|T 2|T kP = PT ∗kP (T ∗2T 2)
1
2PT kP

≤ PT ∗k(PT ∗2T 2P )
1
2T kP

=

(
A∗k 0
0 0

)(
|A2|2 0
0 0

) 1
2
(
Ak 0
0 0

)
=

(
A∗k 0
0 0

)(
|A2| 0
0 0

)(
Ak 0
0 0

)
=

(
A∗k|A2|Ak 0

0 0

)
Then (

A∗k|A2|Ak 0
0 0

)
≥ PT ∗k|T 2|T kP

≥ PT ∗k|T ∗|2T kP ≥
(
A∗k|A∗|2Ak 0

0 0

)
and so A is k-quasi-∗-class A operator on M. □
We give a structure for k-quasi-∗-class A operators.

Theorem 2.10. [28] Let T ∈ B(H) be a k-quasi-∗-class A operator. If the range of T k is not dense and

T =

(
T1 T2

0 T3

)
on H = R(T k)⊕ ker(T ∗k),

then T1 is ∗-class A, T k
3 = 0 and σ(T ) = σ(T1) ∪ {0}.

For a ∗-class A operator T we have ker(T−λ) ⊆ ker(T−λ)∗ for every λ ∈ C. We have a similar result for k-quasi-∗-class
A under restricted condition on λ as follows.

Theorem 2.11. Suppose that T is a k-quasi-∗-class A. Then ker(T − α) ⊆ ker(T − α)∗ for each α ̸= 0.

Proof . We may assume that x ̸= 0. Let M be a span of {x}. Then M is an invariant subspace of T and let

T =

(
λ T2

0 T3

)
on H = M⊕M⊥.

Let P be the projection of H onto M, where T |M = λ ̸= 0. To end the proof, it is suffices to show that T2 = 0. Since

T is k-quasi-∗-class A operator and x = T k
(

x
λk

)
∈ R(T k), we have P (|T 2| − |T ∗|2)P ≥ 0. By Hansen’s inequality, we

have (
|λ|2 0
0 0

)
=

(
PT ∗2T 2P

) 1
2

≥ P |T 2|P ≥ P |T ∗|2P =

(
|λ|2 + |T ∗

2 |2 0
0 0

)
and so T2 = 0. □ From this theorem we obtain the following corollary.
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Corollary 2.12. Suppose that T is a k-quasi-∗-class A and α, β ∈ σp(T ) \ {0} with α ̸= β. Then ker(T − α) ⊥
ker(T − β).

Proof . Let x ∈ ker(T − α) and y ∈ ker(T − β). Then Tx = αx and Ty = βy. Therefore

α ⟨x, y⟩ = ⟨αx, y⟩ = ⟨Tx, y⟩ = ⟨x, T ∗y⟩ =
〈
x, βy

〉
= β ⟨x, y⟩ .

Hence α ⟨x, y⟩ = β ⟨x, y⟩ and so (α−β) ⟨x, y⟩ = 0. But α ̸= β, hence ⟨x, y⟩ = 0. Consequently ker(T −α) ⊥ ker(T −β).
□

Theorem 2.13. If T is k-quasi-∗-class A, has the representation T = λ ⊕ T1 on ker(T − λ) ⊕ ker(T − λ)⊥, where
λ ̸= 0 is an eigenvalue of T , then T1 is k-quasi-∗-class A with ker(T1 − λ) = {0}.

Proof . Since T = λ⊕ T1, then T =

(
λ 0
0 T1

)
and we have

T ∗k|T 2|T k − T ∗k|T ∗|2T k =

(
|λ|2(k+1) 0

0 T ∗k
1 |T 2

1 |T k
1

)
−

(
|λ|2(k+1) 0

0 T ∗k
1 |T ∗

1 |2T k
1

)
=

(
0 0
0 T ∗k

1 |T 2
1 |T k

1 − T ∗k
1 |T ∗

1 |2T k
1

)
Since T is k-quasi-∗-class A, then T1 is k-quasi-∗-class A. Let x ∈ ker(T1 − λ). Then

(T − λ)

(
0
x2

)
=

(
0 0
0 T1 − λ

)(
0
x2

)
=

(
0
0

)
.

Hence x2 ∈ ker(T1 − λ). Since ker(T1 − λ) ⊆ ker(T − λ)⊥ and hence x2 = 0. □

Theorem 2.14. [28] If T is a k-quasi-∗-class A, then T has Bishop’s property (β). Hence T has the single-valued
extension property (SVEP).

Lemma 2.15. [31] If the restriction T |M of the k-quasi-∗-class A operator T ∈ B(H) to an invariant subspace M is
injective and normal, then M reduces T .

Remark 2.16. The condition T |M is injective in Lemma 2.15 is indispensable because ker(T ) for k-quasi-∗-class A
operator T is not always reducing.

In [25], the author considered the situation S and T ∗ are w-hyponormal operators and proved FP-theorem for (S, T )
if either S or T is injective. Now we study FP-theorem for the case that T and S∗ are k-quasi-∗-class A operators
with the condition that either T or S∗ is injective.

Theorem 2.17. Let T ∈ B(H) and S∗ ∈ B(K) be k-quasi-∗-class A operators such that TX = XS for X ∈ B(K,H).
If T or S∗ is injective, then FP-theorem holds for (T, S).

Proof . Suppose T and S∗ are k-quasi-∗-class A operators and TX = XS for any operator X ∈ B(K,H). Since R(X)
is invariant under T and ker(X)⊥ is invariant under S∗, we decompose T, S and X into

T =

(
T1 T2

0 T3

)
on H = R(X)⊕R(X)

⊥
,

S =

(
S1 S2

0 S3

)
on K = ker(X)⊥ ⊕ ker(X),

and

X =

(
X1 0
0 0

)
on ker(X)⊥ ⊕ ker(X) → R(X)⊕R(X)

⊥
,

where T1 and S∗
1 are ∗-class A operators by Theorem 2.10, and

X1 : ker(X)⊥ → R(X)
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is injective with dense range. From TX = XS, we have

T1X1 = X1S1. (2.1)

First consider the case where T is injective. Clearly, T1 is injective. It is not difficult to show from (2.1) that
S1 is injective or equivalently, R(S∗

1 ) is dense. Incidently, S∗
1 turns out to be a ∗-class A operator. In particular,

ker(S∗
1 ) ⊂ ker(S1) and hence ker(S∗

1 ) = {0} . From (2.1), it is easy to see that T ∗
1 is injective, thereby T1 is ∗-class

A. Next consider the case that S∗ is injective. Then S∗
1 is injective and so T ∗

1 is injective by (2.1). Obviously, T1 is
an injective ∗-class A operator, and by (2.1), S1 is injective. Therefore, S∗

1 is ∗-class A. Ultimately, if either T or S∗

is injective, then T1 and S∗
1 are both ∗-class A operators. Then by Proposition 2.1, Proposition 2.4 and Equation 2.1,

we obtain
T ∗
1X1 = X1S

∗
1

and T1, S1 are normal operators. Since T1 and S1 are injective, T2 = S2 = 0 by Lemma 2.15. Hence

T ∗X = T ∗
1X1 = X1S

∗
1 = XS∗.

The rest of the proof follows from Proposition 2.1. □

Corollary 2.18. Let T ∈ B(H) and S∗ ∈ B(K) be k-quasi-∗-class A operators with reducing kernels. Then FP-
theorem holds for (T, S).

Proof . By hypothesis, we can write T = T1 ⊕ T2 on H = H1 ⊕H2 and S = S1 ⊕ S2 with respect to K = K1 ⊕ K2,
where T1 and S1 are normal parts and T2 and S2 are pure parts. Let

X =

(
X1 X2

X3 X4

)
on K1 ⊕K2 → H1 ⊕H2.

From TX = XS, we have (
T1X1 T1X2

T2X3 T2X4

)
=

(
X1S1 X2S2

X3S1 X4S2

)
.

The underlying kernel conditions ensures of T2 and S∗
2 are injective. The operator T2 is injective k-quasi-∗-class A

and S1 normal. From the above matrix relation, we have T2X3 = X3S1. Then by applying Theorem 2.17, we have
T ∗
2X3 = X3S

∗
1 , R(X3) reduces T2 and T2|R(X3)

is normal and so X3 = 0. In a similar manner we obtain X2 = 0 from

T1X2 = X2S2 and X4 = 0 from T2X4 = X4S2. Since T1 and S1 are normal and since T1X1 = X1S1, required result
follows from classical Fuglede-Putnam theorem and Proposition 2.1. □

Theorem 2.19. If T ∗ ∈ B(H) is ∗-class A, S ∈ B(K) is dominant, and if XT = SX for X ∈ B(H,K), then
XT ∗ = S∗X.

Proof . From XT = SX we know that ker(X)⊥ and R(X) are invariant subspaces of T ∗ and S, respectively. Hence
T ∗|ker(X)⊥ is ∗-class A and S|R(X)

is also dominant by [36, Lemma 2]. By the decompositions H = ker(X)⊥⊕ker(X),

K = R(X)⊕R(X)
⊥
, we have

T =

(
T1 0
∗ T2

)
, S =

(
S1 ∗
0 S2

)
, X =

(
X1 0
0 0

)
.

Here T ∗
1 = T |ker(X)⊥ is ∗-class A,S1 = S|R(X)

is dominant and X1 is injective with dense range. We obtain XlT1 =

S1X1 from XT = SX. Hence, T1 and S1 are normal by Lemma 2.15 and X1T
∗
1 = S∗

1X1, by the Famous Putnam-
Fuglede theorem. Then, by [36, Lemma 1] and [19, Theorem 2.2] , ker(X)⊥ and R(X) reduces T ∗ and S to normal
operators, respectively. Therefore, we have

T =

(
T1 0
0 T2

)
, S =

(
S1 0
0 S2

)
.

Hence we obtain XT ∗ = S∗X. □
Now we consider the situation that where T is a k-quasi-∗-class A operator and S∗ is a dominant operator.

Theorem 2.20. Let T ∈ B(H) be k-quasi-∗-class A and let S∗ ∈ B(K) be dominant such that TX = XS for
X ∈ B(K,H). If T or S∗ is injective, then FP-theorem holds for (T, S).
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Proof . Suppose that T ∈ B(H) be k-quasi-∗-class A and S∗ ∈ B(K) is dominant such that TX = XS forX ∈ B(K,H).
Since R(X) is invariant under T and ker(X)⊥ is invariant under S∗, we can write T, S and X as follows:

T =

(
T1 T2

0 T3

)
on H = R(X)⊕R(X)

⊥
,

S =

(
S1 S2

0 S3

)
on K = ker(X)⊥ ⊕ ker(X),

and

X =

(
X1 0
0 0

)
on ker(X)⊥ ⊕ ker(X) → R(X)⊕R(X)

⊥
.

From TX = XS, we have
T1X1 = X1S1, (2.2)

where T1 is ∗-class A by Theorem 2.10, S∗
1 is dominant by Lemma 2 of [36] and

X1 : ker(X)⊥ → R(X)

is injective with dense range. First assume that T is injective. Then , T1 is injective. From Equation 2.2, S1 is
injective. Since S∗

1 is dominant, it turns out to be injective. By Equation 2.2, we have T ∗
1 is injective. Ultimately, T1

is ∗-class A. Applying Proposition 2.19 to Equation 2.2, we obtain

T ∗
1X1 = X1S

∗
1

and T1, S1 are normal operators. Since T1 injective, T2 = 0 by Lemma 2.15. Also S2 = 0 by Proposition 2.3. Next
assume S∗ is injective. Then S∗

1 is injective. Then by Equation 2.2, T ∗
1 is injective. Ultimately, T1 turns out to be

∗-class A. Conclude as before that
T ∗
1X1 = X1S

∗
1

and T1, S1 are injective normal operators and so T2 = S2 = 0. Hence,

T ∗X = T ∗
1X1 = X1S

∗
1 = XS∗.

The rest of the proof follows from Proposition 2.1. □

Corollary 2.21. Let T ∈ B(H) be dominant and let S∗ ∈ B(K) be k-quasi-∗-class A operator such that TX = XS
for X ∈ B(K,H). If T or S∗ is injective, then FP-theorem holds for (T, S).

Proof . From TX = XS, we have S∗X∗ = X∗T ∗. Applying Theorem 2.20, it follows that SX∗ = X∗T . The rest of
the proof follows from Proposition 2.1. □

Corollary 2.22. Let T ∈ B(H) be k-quasi-∗-class A operator with reducing kernel and let S∗ ∈ B(K) be dominant
operator such that TX = XS for X ∈ B(K,H). Then FP-theorem holds for (T, S).

Proof . Let T ∈ B(H) be k-quasi-∗-class A operator with reducing kernel and let S∗ ∈ B(K) be dominant operator.
We decompose T, S and X as follows:

T =

(
T1 0
0 0

)
on H = ker(T )⊥ ⊕ ker(T ),

S =

(
S1 0
0 0

)
on K = ker(S)⊥ ⊕ ker(S).

Let

X =

(
X1 X2

X3 X4

)
on ker(S)⊥ ⊕ ker(S) → ker(T )⊥ ⊕ ker(T ).

From TX = XS, we have (
T1X1 T1X2

0 0

)
=

(
X1S1 0
X3S1 0

)
.

The equations T1X2 = 0 and X3S1 = 0 yields X2 = X3 = 0 because T1 and S∗
1 are injective. Applying Theorem 2.20

to T1X1 = X1S1, it follows T
∗
1X1 = X1S

∗
1 . This achieves the proof. □

Stampfli and Wadhwa [32] proved if T be dominant and S a normal operator and if TX = XS where X ∈ B(H) has
dense range, then T is a normal operator. This remarkable result for k-quasihyponormal operators has been studied
by Gupta and P.B. Ramanujan [9]. Now we show this result remains true for k-quasi-∗-class A operators.
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Theorem 2.23. Let T be a k-quasi-∗-class A and let S a normal operator. If S is quasi-affine transform of T , then
T is a normal operator unitarily equivalent to S.

Proof . Let T be a k-quasi-∗-class A. By Theorem 2.10, decompose T on H = R(T k)⊕ ker(T ∗k) as follows:

T =

(
T1 T2

0 T3

)
where T1 = T |R(Tk)

is ∗-class A and T k
3 = 0. Let S1 = S|R(Sk)

. Decompose

S =

(
S1 0
0 0

)
.

Obviously, S1 is normal. Let X1 = X|R(Sk)
. Then

X1 : R(Sk) → R(T k)

is injective and has dense range. From TX = XS, we have T1X1 = X1S1. Since T1 is ∗-class A and since S1 is normal,
it follows from [19, Theorem 2.2] that T1 is normal operator unitary equivalent to S1. Consequently, R(T k) reduces
T and so T2 = 0 by Lemma 2.15. Since X∗(ker(T ∗k)) ⊂ ker(S∗k) = ker(S∗),

X∗T ∗
3 x = X∗T ∗x = S∗X∗x,

for each x ∈ ker(T ∗k). Since X has dense range, X∗ is one to one. Therefore, T ∗
3 x = 0 for each x ∈ ker(T ∗k). Hence,

T3 = 0 and so T =

(
T1 0
0 0

)
is normal. This achieves the proof. □

The following result proved for hyponormal operators by Radjabalipour [23]. This result for k-quasihyponormal with
a condition 0 /∈ δ and its consequences has been studied by Gupta [8].

Proposition 2.24. [33] Let T ∈ B(H) be dominant. Let δ ⊂ C be closed. If there exists a bounded function
f(z) : C \ δ → H such that (T − zI)f(z) ≡ x for some non-zero x ∈ H, then f(z) is analytic on C \ δ.

In the following theorem, we show this result hold true in the case of k-quasi-∗-class A operators.

Theorem 2.25. Let T ∈ B(H) be k-quasi-∗-class A and let 0 /∈ δ ⊂ C be closed. If there exists a bounded function
f(λ) : C \ δ → H such that (T − λI)f(λ) ≡ x for some non-zero x ∈ H, then f is analytic at every non zero point and
hence f has analytic extension everywhere on C \ δ.

Proof . Suppose that T is a k-quasi-∗-class A. By Theorem 2.10, decompose T on H = R(T k)⊕ ker(T ∗k) as follows:

T =

(
T1 T2

0 T3

)
,

where T1 is ∗-class A and T k
3 = 0.

Let f(λ) = f1(λ)⊕ f2(λ) and x = x1 ⊕ x2 are the decomposition of f and x, respectively. Then

(T1 − λI)f1(λ) + T2f1(λ) ≡ x1

(T3 − λI)f2(λ) ≡ x2

Since T k
3 = 0 and since 0 /∈ δ, f2(λ) = (T3−λI)x2 can be extended to a bounded entire function. Since k-quasi-∗-class

A operators satisfies single valued extension property, we conclude x2 = 0 (see, [18, Proposition 1.2.16 9(f)]). Hence
f2(λ) = 0. Therefore, for all λ /∈ δ,

(T1 − λI)f(λ) ≡ x1.

T1 is ∗-class A ensures f is analytic at every non zero point and hence f has analytic extension everywhere on C \ δ
by Proposition 2.24. This achieves the proof. □

Definition 2.26. [1] Let T ∈ B(H). Then
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(i) the spectral manifold (analytic), denoted by XT (δ), of an operator T is defined as follows:

XT (δ) = {x ∈ H : (T − λI)f(λ) ≡ x for some analytic function

f(λ) : C \ δ → H} .

(ii) a closed subspace M of H is said to be hyperinvariant of T ∈ B(H) if M is invariant under every operator which
commutes with T .

From Theorem 2.25, XT (δ) ̸= {0} for k-quasi-∗-class A operators and we know by Theorem 2.14 that k-quasi-∗-class
A operators satisfies single valued extension property. The above results yields the following result by the method of
[23, Proposition 2].

Corollary 2.27. Let T ∈ B(H) be k-quasi-∗-class A and let 0 /∈ δ ⊂ C be closed. If there exists a bounded function
f : C \ δ → H such that (T − λI)f ≡ x for some non-zero x ∈ H, then T has non zero hyperinvariant subspace M
with σ(T |M) ⊆ δ. In particular, M is a nontrivial invariant subspace of T if δ is proper subset of σ(T ).

3 Quasisimilarity

Recall that an operator X ∈ B(H) is called a quasiaffinity if X is injective and has dense range. For T, S ∈ B(H),
if there exist quasiaffinities X and Y ∈ B(H) such that TX = XS and Y T = SY , then we say that T and S are
quasisimilar. It is well-known that in finite dimensional spaces quasiaffinity coincides with similarity; but in infinite
dimensional spaces quasiaffinity is a much weaker relation than similarity. Similarity preserves the spectrum and
essential spectrum, but this is not true for quasiaffinity. Many researchers have studied what conditions can insure
two quasisimilar operators have equal spectrum and essential spectrum. For instance, R. Yingbin and Y. Zikun
[35] proved that quasisimilar p-hyponormal operators have equal spectrum and essential spectrum; I. H. Jeon et al.
[11] proved that quasisimilar injective p-quasihyponormal operators have equal spectrum and essential spectrum; A.
H. Kim [16] proved that quasisimilar (p, k)-quasihyponormal operators have equal spectrum and essential spectrum
respectively. Recently, I. H. Jeon et al. [12] proved that quasisimilar quasi-class A operators have equal spectrum
and essential spectrum. In the following, we point out that quasisimilar k-quasi-∗-class A operators also have equal
spectrum and essential spectrum.

Proposition 3.1. [19, Proposition 1.1] If T is a ∗-class A operator, then T has Bishop’s property (β).

Proposition 3.2. [22] If both T and S have Bishop’s property (β) and if they are quasisimilar, then σ(T ) = σ(S)
and σe(T ) = σe(S) hold.

As a consequence of Proposition 3.1 and Proposition 3.2, we have

Corollary 3.3. If T and S are quasisimilar ∗-class A operators, then they have equal spectrum and essential spectrum.

Also, as a consequence of Theorem 2.14 and Proposition 3.2, we have

Corollary 3.4. If T and S are quasisimilar k-quasi-∗-class A operators, then they have equal spectrum and essential
spectrum.

Two operators T ∈ B(H) and S ∈ B(K) are densely similar if there exist X ∈ B(H,K) and Y ∈ B(K,H) such that
XT = SX and Y S = TY , and are with dense ranges.

Theorem 3.5. If k-quasi-∗-class A operators T, S ∈ B(H) are densely similar, then they have equal essential spectrum.

Proof . Since T and S are k-quasi-∗-class A operators, both T and S satisfies Bishop property (β). Then by applying
[18, Theorem 3.7.13], it follows that they have equal essential spectrum. □
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