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Abstract

The contemporary theoretical inquest concerns itself with an updated mathematical model involving intraguild (IG)
predation in which the IG predator acts as a generalist predator with the inclusion of harvesting in the resource
population. Due attention is paid to the positivity and boundedness of the outcomes of the system under consideration.
All the conceivable ecologically feasible equilibria are explored for their existence and stability under certain conditions.
Special emphasis is put forward on the consequence of harvesting for the present model system. The occurrences of
Hopf-bifurcation with respect to harvesting parameters involved in the harvesting effort of the model system are
captured. The subsistence of the possible bionomic equilibria is, however, not ruled out from the present pursuit.
The optimal harvesting policy is initiated and duly carried out with Pontryagin’s maximum principle. Numerical
simulations are performed towards the end to comply with the objectives of the agreement of the numerical outcomes
with their analytical counterparts and the applicability of the model is validated thereby.
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1 Introduction

Towards the beginning of twentieth century, the fundamental predator-prey interacting species model was put
forward by eminent researchers Lotka and Volterra with the employment of a pair of coupled nonlinear ordinary
differential equations. Since then quite a good number of interacting species models of diverse categories have been
proposed and explored ceaselessly [1]. Way back in 1997, Holt and Polis [3] characterized intraguild predation (IGP)
[4, 11] as a type of interaction representing a combination of both predation and competition, because both species
rely on the same prey resources and also benefit from preying upon one another. When two species compete for shared
limited resources and eat each other as well, the system is often called symmetric IGP. However, for asymmetric IGP
both the species compete for shared resources and either of them (designated by IG predator) eats the other (called
IG prey).The system under contemplation takes into account an asymmetric IGP where IG predator is treated as
a generalist predator that has an alternative food source. There are many well-established examples of intraguild
predation in ecological community (cf. Table 1). It is exclaimed that there are quite a few IGP models where the
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shared resource is of economic importance and the resource is continuously harvested. Interested readers may go
through the work undertaken by Bampfyled and Lewis [5] for many more instances of such IGP representations. The
present article concerns itself with a three-species food chain model by means of intraguild predation and the inclusion
of prey harvesting as conducted by Yun Kang and Lauren Wedekin [2]. One may refer to the topics and modus
operandi of the dynamical systems [7, 8, 9] to carry out mathematical analysis of the proposed model.

In the wake of rising demand of economic gain and human exigency, the management of renewable / biological
resources alongwith the harvesting of interacting species are well known to humans in fishery, forestry and wildlife
management [14]. Consequently, the growing need for sustainable expansion of policy for propitious management of
renewable resources is experienced in diverse perspectives of human activities to conserve the ecosystem. As a result,
quite a good number of eminent ecologists and economists focused their attention to the scientific management of
the resources (harvesting) exploitation. In recent times, the interactive predator-prey system is being projected to
carry out these important perceptions having relevance to the management of biological resources [15, 16]. Despite
the ecological reasoning behind exploring such IGP models, there are justifications in reality like many people harvest
members of ecological community for food, business etc. Of all these species which are harvested by humans are
members of ecological community exhibiting intraguild predation. The harvesting of interacting species possesses
a strong impact on the dynamics of predator-prey system which sensibly depends on the characteristics of applied
harvesting strategy.

It is an well established fact that the existence of every species is ecologically significant in a natural environment.
In the widespread ecological phenomenon of intraguild predation, the predation process involves the two consumer
species that share a regular resource. In an intraguild predation system, the economically significant resources may
be destroyed either by IG prey or by IG predator but both of them are ecologically significant in some way or other
[17, 18, 19, 20, 21, 22]. In view of this, one should be aware of the effect of prey harvesting on ecological community
before some actions are taken as harvesting species at one level can have unnecessary consequences on another. One
may refer to Table 1 for cotton, apples etc. as of economic concern. An attempt is made at this juncture to investigate
firstly how the harvesting of these resources influences the ensuing IG prey and IG predator and secondly to explore the
possibility of having bionomic equilibria together with the interior optimal solution in order to optimize the earnings
through harvesting using Pontryagin’s maximum principle.

The present exploration is organized sequentially as follows. The formulation of the mathematical model for the
problem undertaken together with the basic preliminaries are discussed in Section 2. Section 3 concerns with the local
stability analysis of the equilibria together with the dynamical attributes of the system. The influence of harvesting on
the interacting species of the model system is investigated analytically in Section 4. Section 5 includes the existence
of feasible bionomic equilibria while the optimal harvesting policy for the proposed system is incorporated in Section
6. Section 7 deals with the numerical simulation based on the set of model parameter values for the purpose of
demonstrating the outcomes so as to validate the theoretical findings. Finally, the present article ends with concluding
remarks mentioning salient observations made out of the proposed system together with their ecological relevance
presented in Section 8.

2 The mathematical model formulation and its basic preliminaries

To investigate the qualitative dynamics of intraguild predator-prey system, the proposed model is an extension
of the model offered by Yun Kang and Lauren Wedekin [2]. Special attention is focused on harvesting strategy as
a possible extension for new findings. In the present study, the following three-dimensional (3D) continuous time
intraguild predation model with linear prey harvesting is taken into account as

dP

dT
= rpP

(
1− P

Kp

)
− agGP − amPM − ahP, (2.1a)

dG

dT
= G

(
egagP − aMG

G2 + b2
− dg

)
, (2.1b)

dM

dT
= M

(
rm

(
1− M

km

)
+ emamP +

emaG2

G2 + b2
)
, (2.1c)

where P (t), G(t) and M(t) signify the shared prey, IG prey, and generalist IG predator population size respectively
at time t. All the ecological parameters rp, Kp, ag, am, ah, eg, dg, a, b, rm, Km and em of the system (2.1), assume
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IG predator IG prey Shared resource Location
Bigeyed bugs (Geocoris

punctipes,
G. pallens,G.bullatus,

G. uligosus)

Lepidopteran pests
of cotton:

whiteflies, mites,
bollworm Cotton Southern U.S

Minute pirate bug
(Orius tristicolor),
insidious flower bug

(O. insidiosus)
Thrips, spider mites,
small caterpillars

Agricultural
crops, cotton Southern U.S

Green lacewings
(Chrysoperla carnea,

C.rufilabris)
Aphids, spider mites,
whiteflies, moths

Cotton, sugar beet
and vineyards

North America,
Russia,

Germany, Europe

Zetzellia mali
(predaceous mites)

Apple rust mite,
European red mite,

two-spotted spider mite Apples Apple orchards

Euseius tularensis
( predaceous mites)

Citrus red mite,
citrus thrips,

scale insects, whiteflies Citrus fruit Citrus plantations
Neoseiulus californicus,
Phytoseiulus persimilis
(predaceous mites)

Red spider mites
(Tetranychus spp.)

Vegetables and
greenhouse crops Spain

Decollate snail
(Rumina decollata)

Brown gardensnail
(Helix aspersa)

Citrus crops
and seedlings California

Epistrophe balteata,
Paragus qudrifasciatus,

Syrphus corollae
Cotton aphid

(Aphis gossypii) Cotton,alfalfa China
Syrphid fly larvae
(hoverfly larvae)

Russian wheat aphid
(Diuraphis noxia)

Spring barley
(Hordem vulgare) Ethiopia

Episyrphus balteatus
(hoverflies,

syrphid family)

Winter wheat aphid
(Metopolophium

dirhodium) Winter wheat Germany
Pseudodorus clavatus

(hoverflies,

syrphid family)
Brown citrus aphid
(Toxoptera citridia) Citrus fruit North America

Pipiza festiva Gall forming aphids Fruit trees Southeastern Spain

Table 1: Examples of intraguild predation in natural environment.
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only positive values and will be treated as constants throughout the investigation process. The parameters rp and rm
characterize the maximum rate of growth of the resource (shared prey) and IG predator, respectively. Kp and Km are
the carrying capacities of the resource and IG predator respectively. ag and am are the predation rates of IG prey and
IG predator for resource, respectively. The biological meaning of a is maximum population of IG prey killed by IG
predator. b represents the IG prey density at which the population killed by IG predator reached half of its maximum.
eg and em are the efficiency of biomass conversion between the respective trophic levels. dg is the natural death rate
of IG prey. In this investigation, we believe that the shared prey (resource) species in the model (2.1) is of commercial
/ economical importance. The prey species is continuously being harvested with a constant rate ah. Now, the system

(2.1) is simplified by letting x = p
Kp

, y =
agG
rp

, z = amM
rp

, t = rpT .

The non-dimensional form of the system (2.1) is given by,

dx

dt
= x

(
1− x− y − z − k

)
, (2.2a)

dy

dt
= γ1y

(
x− a1yz

y2 + β2
− d1

)
, (2.2b)

dz

dt
= γ2z

(
a3 − a4z + x+

a2y
2

y2 + β2

)
, (2.2c)

where k = ah

rp
, γ1 =

egagKp

rp
, a1 = a

amegKp
, β =

bag

rp
, d1 =

dg

Kpegag
, γ2 =

emamKp

rp
, a3 =

amemKp

rp
, a4 =

rprm
KpKmema2

m
,

a2 = a
amKp

.

2.1 Positive invariance and boundedness of the system (2.2)

One is well aware of the fact that an ecologically meaningful system should be positively invariant and bounded in
R3

+. Here these properties of the system will be shown. Clearly, system (2.2) is positively invariant in R3
+ (see, e.g.

[23, Theorem 5.2.1]). Then it follows from the first equation of system (2.2) that

dx

dt
= x

(
1− x− y − z − k

)
.

This implies,

dx

dt
≤ x

(
1− x

)
.

By the comparison principle of ODE, we have

lim sup
t→∞

x(t) ≤ 1.

Similarly,

dz

dt
= γ2z

(
a3 − a4z + x+

a2y
2

y2 + β2

)
≥ γ2z

(
a3 − a4z

)
.

This implies that

lim inf
t→∞

z(t) ≥ a3
a4

.

On the other hand,

dz

dt
= γ2z

(
a3 − a4z + x+

a2y
2

y2 + β2

)
≤ γ2z

(
a3 − a4z + 1 + a2

)
implies that

lim sup
t→∞

z(t) ≤ a3 + a2 + 1

a4
.
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To show y is bounded, consider the function v = γ1x+ y.

Now,

dv

dt
= γ1x

(
1− x− z − k

)
+ γ1y

(
− a1yz

y2 + β2
− d1

)
≤ γ1

(
1− d1y

)
= γ1

(
1− vd1 + d1γ1x

)
≤ γ1

(
1 + d1γ1 − vd1

)
.

This implies that

lim sup
t→∞

v(t) ≤ 1 + d1γ1
d1

.

This shows that y is bounded and consequently the system (2.2) is bounded. Moreover the species z is persistent in
the system (2.2).

2.2 Existence of equilibria of the model system (2.2)

One may now study the existence of equilibrium points of the system (2.2). Particular interest is paid on the
interior equilibrium point. The following are all possible feasible equilibrium points:

(i) The trivial equilibrium point E0(0, 0, 0);

(ii) The equilibrium point in the absence of IG prey and IG predator E1(1− k, 0, 0) if k < 1;

(iii) The equilibrium point in the absence of resource and IG prey E2(0, 0,
a3

a4
);

(iv) The equilibrium point in the absence of only IG predator E3(d1, 1− d1 − k, 0) if d1 + k < 1;

(v) The equilibrium point in the absence of IG prey only E4

(a4(1−k)−a3

1+a4
, 0, 1+a3−k

1+a4

)
if k < min

{
1 + a3, 1− a3

a4

}
.

The interior equilibrium point can be obtained by solving the system of equations given by

1− x− y − z − k = 0, (2.3a)

x− a1yz

y2 + β2
− d1 = 0, (2.3b)

a3 − a4z + x+
a2y

2

y2 + β2
= 0. (2.3c)

Now putting the value of x from the first equation in the third equation we get,

z =
a3 + 1− k − y

1 + a4
+

a2y
2

(1 + a4)(y2 + β2)
.

Putting this value of z in the second equation, one may obtain a polynomial equation in y of degree 5 given by,

a4y
5 +

(
a4k + a2 + a4d1 − a4 − a1 + d1 + a3

)
y4 +

(
a1 + a1a3 + a2a1 − a1k + 2a4β

2
)
y3+(

2a3β
2 − β2a1 + 2a4β

2k − 2a4β
2 + a2β

2 + 2d1β
2 + 2a4β

2d1
)
y2+(

β2a1 + a3β
2a1 + a4β

4 − β2a1k
)
y + β4

(
a3 − a4 + a4d1 + d1 + a4k

)
= 0.

This equation can be written as

A0y
5 +A1y

4 +A2y
3 +A3y

2 +A4y +A5 = 0, (2.4)

where,

A0 = a4 ,

A1 = a4k + a2 + a4d1 − a4 − a1 + d1 + a3,

A2 = a1 + a1a3 + a1a2 − a1k + 2a4β
2,

A3 = 2a3β
2 − a1β

2 + 2a4β
2k − 2a4β

2 + a2β
2 + 2d1β

2 + 2d1a4β
2,

A4 = a1β
2 + a1a3β

2 + a4β
4 − ka1β

2,

A5 =
(
a3 − a4 + a4d1 + d1 + a4k

)
β4.
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Also, after some manipulations one may obtain the expressions of x and z in terms of y given by

x =
d1β

2 + a1y − a1ky − a1y
2 + d1y

2

y2 + β2 + a1y
, (2.5)

and

z =

(
y2 + β2

)(
1− k − d1 − y

)
y2 + β2 + a1y

. (2.6)

Hence one obtains the value of y from (2.4), the values of x and z can also be found out. Now, for the existence
and uniqueness of the interior equilibrium point we have the following theorem.

Theorem 1. Assume that all parameters a1, a2, a3, a4, k, d1, β, γ1, γ2 are positive. Let

k = max
{a1 + a4 − a2 − a4d1 − d1 − a3

a4
,
2a4 − a2 − 2d1 − 2a4d1 − 2a3 + a1

2a4

}
k = min

{a1 + a1a3 + a1a2 + 2a4β
2

a1
,
a1 + a1a3 + a4β

2

a1
,
a4 − a3 − d1a4 − d1

a4

}
.

If
(H1) : k < k < k

is satisfied, then Eq. (2.4) has a unique positive real root, denote by ȳ. Furthermore, assume that

(H2) : ȳ < 1− k − d1

holds. Then system (2.2) has a unique positive equilibrium Ē = (x̄, ȳ, z̄) which is given by

x̄ =
d1β

2 + a1ȳ − a1kȳ − a1ȳ
2 + d1ȳ

2

ȳ2 + β2 + a1ȳ
,

z̄ =

(
ȳ2 + β2

)(
1− k − d1 − ȳ

)
ȳ2 + β2 + a1ȳ

.

(2.7)

Proof . Using the assumption (H1) we have A0 > 0, A1 > 0, A2 > 0, A3 > 0, A4 > 0, A5 < 0. Hence using Descartes’
rule of signs, the equation (2.4) has a unique positive solution y = ȳ. Now using the condition (H2) along with (2.6)
we obtain

z(= z̄) =

(
ȳ2 + β2

)(
1− k − d1 − ȳ

)
ȳ2 + β2 + a1ȳ

> 0. (2.8)

Then it follows from (2.3b) that

x(= x̄) =
a1ȳz̄

ȳ2 + β2
+ d1 > 0.

Hence, the interior equilibrium Ē = (x̄, ȳ, z̄) exists uniquely. □

3 Local stability analysis of the system (2.2)

In this section, one may discuss the local stability behaviour of the equilibrium points. At a general equilibrium
point (x, y, z) the Jacobian matrix of the system is given by

J =


1− 2x− y − z − k −x −x

γ1y
γ1(x−d1)(y

2+β2−a1yz)
y2+β2 − a1γ1yz(β

2−y2)
(y2+β2)2 −γ1a1y

2

y2+β2

γ2z
2a2γ2β2yz
(y2+β2)2 −2γ2a4z

 .
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3.1 Dynamics around E0

Theorem 2. E0 is unstable.

Proof . Since the Jacobian matrix at E0 has a zero eigenvalue, one can not use the linear stability analysis method.
To show that E0 is unstable it is sufficient to show that not all trajectories starting in a small ball of radius r > 0
approaches E0. For that one may take the starting point as x(0) = x0 (such that x0 < 1− k ), y(0) = 0 and z(0) = 0.
Then y(t) = 0 and z(t) = 0 for all t. Now,

dx

dt
= x(1− x− k).

Then one gets
dx

x(1− x− k)
= dt.

On integration,
x

1− x− k
= Ce(1−k)t,

and thus one gets

x =
1− k

1 + 1
C e−(1−k)t

.

where, C is a constant and it can be obtained by using the initial condition x = x0 at t = 0. Using this condition we
have x0 = 1−k

1+ 1
C

and C = x0

1−k−x0
> 0 (assuming k < 1 always). Thus x ≥ 1−k

1+ 1
C

for all t. Thus x(t) does not converge

to 0 as t −→ ∞, which implies the proof of the theorem is complete. □

3.2 Dynamics around E1

Theorem 3. E1 is unstable.

Proof . To show that E1 is unstable one may consider the trajectory with initial condition as x(0) = 1− k, y(0) = 0
and z(0) = z0 > 0. Then y(t) = 0 for all t. Now,

dz

dt
= γ2z(a3 − a4z + x)

≥ γ2z(a3 − a4z),

or,

dz

z(a3 − a4z)
≥ γ2dt.

On integration we get,
z

a3 − a4z
≥ Ĉea3γ2t.

Hence we have

z ≥ a3

a4 +
1

Ĉea3γ2t

≥ a3

a4 +
1
Ĉ

,

where Ĉ is an arbitrary positive constant. This implies that z(t) does not converge to 0 as t −→ ∞. Hence E1 =
(1− k, 0, 0) is locally unstable in nature and the proof is finished. □
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3.3 Dynamics around E2

Theorem 4. E2 is locally asymptotically stable if a3

a4
+ k > 1 and unstable if a3

a4
+ k < 1.

Proof . At the equilibrium E2 = (0, 0, a3

a4
) the Jacobian matrix is

J2 =


(
1− a3

a4
− k

)
0 0

0 −d1γ1 0

γ2
a3

a4
0 −2γ2a3

 .

The eigenvalues of J2 are given by
(
1− a3

a4
− k

)
, −d1γ1 and −2γ2a3. Then, by Routh-Hurwitz criteria E2 is stable if

a3

a4
+ k > 1 and unstable if a3

a4
+ k < 1. □

3.4 Dynamics around E3

Theorem 5. E3 is unstable.

Proof . The persistence of the species z implies that E3 = (d1, 1− k − d1, 0) is locally unstable. □

3.5 Dynamics around E4

At the equilibrium E4 =
(a4(1−k)−a3

1+a4
, 0, (1+a3)−k

1+a4

)
the Jacobian matrix is

J4 =


−a4(1−k)−a3

1+a4
−a4(1−k)−a3

1+a4
−a4(1−k)−a3

1+a4

0 γ1
(a4(1−k)−a3

1+a4
− d1

)
0

γ2
( (1+a3)−k

1+a4

)
0 −2γ2a4

( (1+a3)−k
1+a4

)
 =


J11 J12 J13

J21 J22 J23

J31 J32 J33

 .

Clearly, J11 < 0, J12 < 0, J13 < 0, J21 = 0, J23 = 0, J31 > 0, J32 = 0, J33 < 0.

Theorem 6. The feasible equilibrium point E4 is locally asymptotically stable if k > 1− d1(1+a4)+a3

a4
and unstable if

k < 1− d1(1+a4)+a3

a4
.

Proof . The characteristic equation of J4 is given as follows

λ3 +A1λ
2 +A2λ+A3 = 0, (3.1)

where,

A1 = −(J11 + J22 + J33),

A2 = J11J22 + J11J33 + J33J22 − J12J21 − J13J31 − J23J32,

A3 = J11J23J32 + J12J21J33 + J13J22J31 − J11J22J33 − J12J23J31 − J13J21J32.

One may assume the feasibility conditions of E4. Suppose J22 < 0, i.e., a4(1−k)−a3

1+a4
< d1 or k > 1− d1(1+a4)+a3

a4
. Then

A1 > 0 and A3 > 0. Now the expression for A1A2 −A3 is given by

A1A2 −A3 =− J2
11J22 − J2

11J33 − J2
22J33 − J2

22J11 − J2
33J11 − J2

33J22 − 2J11J22J33+

J11J13J31 + J11J12J21 + J22J12J21 + J22J23J32 + J33J23J32 + J33J13J31+

J12J23J31 + J13J21J32.

In view of the signs of the Jacobian entries one gets A1A2 − A3 > 0. Thus all the Routh-Hurwitz conditions hold.

Hence, E4 is locally asymptotically stable. If k < 1− d1(1+a4)+a3

a4
then J22 > 0. So one obtains A3 < 0, which implies

that the characteristic Eq. (3.1) has at least a positive real root and thus E4 is unstable. This completes the proof of
the theorem.

□
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3.6 Dynamics around the interior equilibrium point Ē = (x̄, ȳ, z̄)

At the equilibrium Ē = (x̄, ȳ, z̄) the Jacobian matrix is

J̄ =


−x̄ −x̄ −x̄

γ1ȳ −a1γ1ȳz̄(β
2−ȳ2)

(ȳ2+β2)2 −γ1a1ȳ
2

ȳ2+β2

γ2z̄
2a2γ2β

2ȳz̄
(ȳ2+β2)2 −2γ2a4z̄

 =


J11 J12 J13

J21 J22 J23

J31 J32 J33

 .

Theorem 7. The interior equilibrium point Ē = (x̄, ȳ, z̄) is locally asymptotically stable if β > ȳ
√
1 + 2a2γ2β2

a1γ1ȳ2 and

a4 > a1

2 .

Proof . It is clear from the Jacobian matrix that J11 < 0, J12 < 0, J13 < 0, J21 > 0, J23 < 0, J31 > 0, J32 > 0,

J33 < 0. Now suppose β > ȳ
√
1 + 2a2γ2β2

a1γ1ȳ2 which implies that β > ȳ. Consequently, we have J22 < 0. Now

A1 = −(J11 + J22 + J33),

A2 = J11J22 + J11J33 + J33J22 − J12J21 − J13J31 − J23J32,

A3 = J11J23J32 + J12J21J33 + J13J22J31 − J11J22J33 − J12J23J31 − J13J21J32,

Clearly A1 > 0. Also, A3 > 0 provided that J21J33 − J31J23 < 0 which is true if a4 > a1

2 . Now the expression for
A1A2 −A3 is given by −J2

11J22 − J2
11J33 − J2

22J33 − J2
22J11 − J2

33J11 − J2
33J22 − 2J11J22J33 + J11J13J31 + J11J12J21 +

J22J12J21 + J22J23J32 + J33J23J32 + J33J13J31 + J12J23J31 + J13J21J32.

In this expression all terms except J13J21J32 are positive in sign. We see

J13J21J32 + J12J21J22 > 0 if J13J32 + J12J22 > 0.

Now,

J13J32 + J12J22 > 0

implies that,

a1γ1x̄ ȳ z̄(β2 − ȳ2)

(ȳ2 + β2)2
− 2a2γ2β

2x̄ ȳ z̄

(ȳ2 + β2)2
> 0

or,

a1γ1(β
2 − ȳ2)− 2a2γ2β

2 > 0

or,

β > ȳ

√
1 +

2a2γ2β2

a1γ1ȳ2
.

Hence the proof is finished. □

3.7 Hopf-bifurcation around Ē

In the subject of bifurcation one may investigate the topological change of behaviour of a dynamical system by
reason of a small change in the system parameter. As Ē is the most important biological state of an interacting species
ecosystem and the central focus of this model system lies on the linear prey harvesting term kx on the resource, one
prefers k as the bifurcating parameter of the system around the interior equilibrium point Ē.

Theorem 8. The system (2.2) exhibits a Hopf-bifurcation at Ē = (x̄, ȳ, z̄) for a suitable value of k = k[hb] assuming
the parametric restrictions for the local stability of Ē.
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Proof . By Routh-Hurwitz conditions, the necessary and sufficient conditions for all roots of the characteristic
equation to have negative real part is A1 > 0, A3 > 0 and A1A2−A3 > 0 which is proved in the previous theorem. To
have Hopf-bifurcation, one needs A1A2−A3 = 0 for some values of k say k = k[hb]. Since A2 > 0 at k = k[hb], for some
k > ϵ > 0 there is an interval (k[hb] − ϵ, k[hb] + ϵ) in which A2 > 0. Thus, for k ∈ (k[hb] − ϵ, k[hb] + ϵ) the characteristic
equation can not have real positive roots. Now k = k[hb], the characteristic equation becomes (λ2 + A2)(λ+ A1) = 0
which has three roots λ1 = i

√
A2, λ2 = −i

√
A2, λ3 = −A1. For k ∈ (k[hb] − ϵ, k[hb] + ϵ), the roots can be written in

general form as:

λ1 = α(k) + iβ(k),

λ2 = α(k)− iβ(k),

λ3 = −A1(k).

Now one may verify the transversality condition

Re
(dλi

dk

)
k=k[hb] ̸= 0 i = 1, 2.

Substituting λj = α(k)± iβ(k), j = 1, 2 into the characteristic equation and differentiating with respect to k we obtain

ω(k)α̇(k)− ϕ(k)β̇(k) + η(k) = 0,

ϕ(k)α̇(k) + ω(k)β̇(k) + µ(k) = 0,

where,

ω(k) = 3α2(k) + 2A1(k)α(k) +A2(k)− 3β2(k),

ϕ(k) = 6α(k)β(k) +A1(k)β(k),

η(k) = α2(k)Ȧ1(k) + Ȧ2(k)α(k) + Ȧ3(k)− Ȧ1(k)β
2(k),

µ(k) = 2α(k)β(k)Ȧ1(k) + Ȧ2(k)β(k).

Since ϕ(k)µ(k) + ω(k)η(k) ̸= 0 we have,

Re
[dλj

dk

]
k=k[hb] = −ϕµ+ ωη

ϕ2 + ω2

̸= 0, j = 1, 2,

and λ3(k) = −A1(k) ̸= 0. Hence the proof is complete. □

4 Effect of the harvesting parameter k on species x, y and z

4.1 Effect on the species x

We have,

dx

dt
= x

(
1− x− y − z − k

)
.

This implies,

dx

dt
≤ x

(
1− k − x

)
or, ( 1

x
+

1

1− k − x

)
dx ≤ (1− k)dt.

On integration one gets

x ≤ 1− k

1 +Ae−(1−k)t

≤ 1− k

where A is a positive constant. Also, 1−k
1+Ae−(1−k)t → 1− k as t → ∞. Now if we take k → 1, then the species x(t) will

extinct as t → ∞.
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Figure 1: Time series plot of x for different values of k corresponding to the parameter values a1 = 1.1, a2 = 0.01, a3 = 0.01,
a4 = 3.7, d1 = 0.15, γ1 = 11, γ2 = 0.1, β = 0.21 and x(0) = 0.03, y(0) = 0.4, z(0) = 0.03.

4.2 Effect on the species z

As in the previous result we have seen that, lim inft→∞ z(t) ≥ a3

a4
, for any value of k, z(t) will not extinct i.e.

as t → ∞ the species z will exist in the system. This is biologically meaningful because z species is the generalist
predator.
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Figure 2: Time series plot of z for different values of k corresponding to the parameter values a1 = 1.1, a2 = 0.01, a3 = 0.01,
a4 = 3.7, d1 = 0.15, γ1 = 11, γ2 = 0.1, β = 0.21 and x(0) = 0.03, y(0) = 0.4, z(0) = 0.03.

4.3 Effect on the species y

We have

dy

dt
= γ1y

(
x− a1yz

y2 + β2
− d1

)
.

Since all the species x, y, z are shown to be bounded, ∃M > 0 such that y2 + β2 ≤ M . Also we have z(t) ≥ a3

a4
for all

t and x(t) ≤ 1− k for all t. Combining all these we have

dy

dt
≤ γ1y

(
1− k − a1a3

Ma4
y
)

≤ γ1y
(
1− k −Ny

)
,
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where N = a1a3

Ma4
,

or,

(
1

y
+

N

1− k −Ny
)dy ≤ γ1(1− k)dt.

On integration one gets,

y ≤ 1− k

N +Ae−γ1(1−k)t

where, A > 0 is a constant of integration. This shows that y(t) → 0 as t → ∞ and k → 1. This implies that if k
approaches to 1, then y(t) goes to extinction as t → ∞.

t
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Figure 3: Time series plot of y for different values of k corresponding to the parameter values a1 = 1.1, a2 = 0.01, a3 = 0.01,
a4 = 3.7, d1 = 0.15, γ1 = 11, γ2 = 0.1, β = 0.21 and x(0) = 0.03, y(0) = 0.4, z(0) = 0.03.

5 Bionomic equilibrium

The term bionomic equilibrium [12] is developed from the concept of biological equilibrium and economic equilib-
rium. The economic equilibrium occurs when TR (total revenue obtained by selling the harvested thing) equals TC
(the total cost for effort devoted to harvesting).
Let p1 = price per unit biomass of x;
q1 = harvesting cost per unit effort of x.
The economic rent N = TR− TC = (p1x− q1)k.

So the bionomic equilibrium is obtained from the solution of the system

x
(
1− x− y − z − k

)
= 0, (5.1a)

γ1y
(
x− a1yz

y2 + β2
− d1

)
= 0, (5.1b)

γ2z
(
a3 − a4z + x+

a2y
2

y2 + β2

)
= 0, (5.1c)

(p1x− q1)k = 0. (5.1d)

We have no interest in the case k = 0, so we assume k ̸= 0. Then, from the fourth equation x = q1
p1
.

Now if y = 0, then from the third equation z = 0 or z = 1
a4

(
a3 +

q1
p1

)
.

If z = 0 then y = 0. Now x = q1
p1
, y = 0, z = 0 implies that k = p1−q1

p1
.

If x = q1
p1
, y = 0, z = 1

a4

(
a3 +

q1
p1

)
then k = p1a4−q1a4−p1a3−q1

p1a4
.

Thus we have the following bionomic equilibrium points (x, y, z, k)
(i)

(
q1
p1
, 0, 0, p1−q1

p1

)
provided p1 > q1.



Mathematical modelling of intraguild predation and its dynamics of resource harvesting 849

(ii)
(
q1
p1
, 0, 1

a4

(
a3 +

q1
p1

)
, p1a4−q1a4−p1a3−q1

p1a4

)
provided p1a4 − q1a4 − p1a3 − q1 > 0;

and the interior equilibrium which can be obtained by solving the following system,(
1− x− y − z − k

)
= 0, (5.2a)(

x− a1yz

y2 + β2
− d1

)
= 0, (5.2b)

(
a3 − a4z + x+

a2y
2

y2 + β2

)
= 0, (5.2c)

(p1x− q1) = 0. (5.2d)

We then have x∞ = q1
p1

and z∞ = x∞−d1

a1y∞
(y2∞ + β2) provided d1 < q1

p1
, where y∞ is a positive root of

a1a3y − a4(x∞ − d1)(y
2 + β2) + a1x∞y +

a1a2y
3

y2 + β2
= 0,

which can be written in the form

ay4 + by3 + cy2 + dy + e = 0, (5.3)

where

a = −a4(x∞ − d1) < 0,

b = a1a3 + a1x∞ + a1a2 > 0,

c = −2β2a4(x∞ − d1) < 0,

d = a1a3β
2 + a1x∞β2 > 0,

e = −a4β
2(x∞ − d1) < 0.

Multiplying both site of (5.3) by a we get,

a2y4 + aby3 + acy2 + ady + ae = 0.

Let the left hand expression be expressed as the difference of two squares of the form (ay2 + 2by + λ)2 − (my + n)2.
Comparing with the left hand expression of (5.3) one gets,

6ac = 4b2 + 2aλ−m2,

4ad = 4bλ− 2mn,

ae = λ2 − n2.

Eliminating m, n we get,

4(bλ− ad)2 = (2aλ+ 4b2 − 6ac)(λ2 − ae),

which gives

2aλ3 − 6acλ2 + (8abd− 2a2e)λ+ (6a2ce− 4ab2e− 4a2d2) = 0. (5.4)

Now,

4abd− a2e = (x∞ − d1)a4β
2
[
a24(x∞ − d1)

2β2 − 4a21(a3 + x∞ + a2)(a3 + x∞)
]

> 0,

if

a24(x∞ − d1)
2β2 > 4a21(a3 + x∞ + a2)(a3 + x∞),

or,

a24(
q1
p1

− d1)
2β2 > 4a21(a3 +

q1
p1

+ a2)(a3 +
q1
p1

).
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Also,

6a2ce− 4ab2e− 4a2d = 2(x∞ − d1)
2β2a24

[
6a24β

4(x∞ − d1)
2 − 2a21(a3 + x∞ + a2)

2β2−
2a21β

2(x∞ + a3)
2
]

>0,

provided,

3a24β
2(x∞ − d1)

2 >
[
a21(a3 + x∞ + a2)

2 − (x∞ + a3)
2
]
.

Then (5.4) has at least one negative root say λ = −λ∗. The relation n2 = λ2 − ae implies that |n| < |λ∗|. So the
solution of (5.3) is given by the roots of the quadratic equations

ay2 + (2b+m)y + (−λ∗ + n) = 0,

and ay2 + (2b−m)y + (−λ∗ − n) = 0.

Here, both the equations have either two positive solutions or no solution. The first quadratic equation has two
positive solutions if

(2b+m) > 2
√
a(−λ∗ + n) > 0,

and the second equation has two positive solutions if

(2b−m) > 2
√

a(−λ∗ − n),

or,

(2b+m) > 2
[√

a(−λ∗ − n) +m
]
.

Hence we have the following theorem:

Theorem 9. The interior bionomic equilibrium points are (x, y, z, k) =
(
x∞, yi∞, zi∞, 1 − x∞ − yi∞ − zi∞

)
provided(

1− x∞ − yi∞ − zi∞ > 0
)
for i = 1, 2, 3, 4 if the following conditions hold:

(i) q1 > p1d1

(ii) a24(
q1
p1

− d1)
2β2 > 4a21(a3 +

q1
p1

+ a2)(a3 +
q1
p1

)

(iii) 3a24β
2(x∞ − d1)

2 >
[
a21(a3 + x∞ + a2)

2 − (x∞ + a3)
2
]

(iv) (2b+m) > max
[
2
√

a(−λ∗ + n), 2(
√

a(−λ∗ − n) +m)
]

where x∞ = q1
p1
, yi∞ are the positive roots of (5.3) and zi∞ = x∞−d1

a1yi
∞

(
(yi∞)2 + β2

)
.

6 Optimal harvesting policy

To obtain optimal harvesting policy [6, 10], one may consider the present value J of a continuous time-stream of
revenue

J =

∫ ∞

0

e−δt
(
(p1x− q1)k

)
(t)dt,

where δ denotes the instantaneous annual rate of discount and k is the control variable. The objective is to maximize
J subject to the state equations

dx

dt
= x

(
1− x− y − z − k

)
,

dy

dt
= γ1y

(
x− a1yz

y2 + β2
− d1

)
,

dz

dt
= γ2z

(
a3 − a4z + x+

a2y
2

y2 + β2

)
,
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by invoking Pontryagin’s maximum principle. The Hamiltonian of the corresponding problem is

H =e−δt(p1x− q1)k + λ1x
(
1− x− y − z − k

)
+ λ2γ1y

(
x− a1yz

y2 + β2
− d1

)
+

λ3γ2z
(
a3 − a4z + x+

a2y
2

y2 + β2

)
,

where λ1, λ2, λ3 are adjoint variables. For optimality the necessary condition is

∂H

∂k
= 0,

i.e.,

e−δt
(
p1x− q1

)
− λ1x = 0. (6.1)

The corresponding adjoint equations are

dλ1

dt
= −∂H

∂x
= λ1(−1 + 2x+ y + z + k) + e−δtp1k + λ2γ1y + λ3γ2z,

dλ2

dt
= −∂H

∂y
= −λ1x− λ2γ1

[
y
β2 − y2

y2 + β2
(−a1z) + (x− a1yz

y2 + β2
− d1)

]
− λ3γ2za2

β2 − y2

y2 + β2
,

dλ3

dt
= −∂H

∂z
= −λ1x− λ2

γ1y
2a1

y2 + β2
− λ3γ2

[
− a4z + (a3 − a4z + x+

a2y
2

y2 + β2
)
]
,

(6.2)

that is, 
λ̇1

λ̇2

λ̇3

 =


a11 a12 a13

a21 a22 a23

a31 a32 a33




λ1

λ2

λ3

+


e−δtp1k

0

0

 , (6.3)

where
a11 = (−1 + 2x + y + z + k), a12 = γ1y, a13 = γ2z, a21 = −x, a22 = −γ1

[
y β2−y2

y2+β2 (−a1z) + (x − a1yz
y2+β2 − d1)

]
,

a23 = −γ2za2
β2−y2

y2+β2 , a31 = −x, a32 = −γ1y
2a1

y2+β2 , a33 = −γ2
[
− a4z + (a3 − a4z + x+ a2y

2

y2+β2 )
]
. Now we assume that the

solution of (6.3) is of the form:

λ1 = e−δtM1(x, y, z, t), λ2 = e−δtM2(x, y, z, t), λ3 = e−δtM3(x, y, z, t),

where M1, M2, M3 be continuously differentiable functions. Then we have

−δM1 = a11M1 + a12M2 + a13M3 + p1k,

−δM2 = a21M1 + a22M2 + a23M3,

−δM3 = a31M1 + a32M2 + a33M3.

This can be put in the matrix form given by
a11 + δ a12 a13

a21 a22 + δ a23

a31 a32 a33 + δ




M1

M2

M3

 =


−p1k

0

0

 .

Let

A =


a11 + δ a12 a13

a21 a22 + δ a23

a31 a32 a33 + δ

 .
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Then

|A| = δ3 + (a11 + a22 + a33)δ
2 + (a11a33 + a22a33 + a11a22 − a13a31 − a12a21 − a23a32)δ

+ (a11a22a33 − a11a23a32 − a12a21a33 + a12a31a23 + a13a21a32 − a13a31a22).

which is not identically equal to 0, so |A| ≠ 0. Hence A−1 exists. Now

adj(A) =
(a22 + δ)(a33 + δ)− a23a32 (a13a32 − a12a33 − a12δ) (a12a23 − a13a22 − δa13)

(a23a31 − a21a33 − δa21) (a11 + δ)(a33 + δ)− a13a31 (a13a21 − a23a11 − a23δ)

(a21a32 − a31a22 − a31δ) (a12a31 − a11a32 − a32δ) (a11 + δ)(a22 + δ)− a12a21

 .

Hence, the solution for M1, M2 and M3 is given by
M1

M2

M3

 =
adj(A)

|A|


−p1k

0

0

 . (6.4)

Solving (6.4) yields

M1 =

(
(a22 + δ)(a33 + δ)− a23a32

)
(−p1k)

|A|
,

M2 =
(a23a31 − a21a33 − δa21)(−p1k)

|A|
,

M3 =
(a21a32 − a31a22 − a31δ)(−p1k)

|A|
.

Then the optimality condition (6.1) takes the form

p1x− q1 −
(
(a22 + δ)(a33 + δ)− a23a32

)
(−p1k)

|A|
x = 0.

Thus the interior optimal solution (x, y, z, k) for a given value of δ can be found by solving the system of equations
given by (

1− x− y − z − k
)
= 0,(

x− a1yz

y2 + β2
− d1

)
= 0,

(
a3 − a4z + x+

a2y
2

y2 + β2

)
= 0,

p1x− q1 −
(
(a22 + δ)(a33 + δ)− a23a32

)
(−p1k)

|A|
x = 0.

(6.5)

Example: Let a1 = 1.1, a2 = 0.01, a3 = 0.01, a4 = 3.7, d1 = 0.15, γ1 = 11, γ2 = 0.1, β = 0.21, x(0) = 0.03,
y(0) = 0.4, z(0) = 0.05, δ = 0.3, p1 = 2.5, q1 = 0.4. Then solving the above system using MAPLE, we get the interior
optimal solutions (0.1808, 0.0242, 0.0516, 0.7434) and (0.3693, 0.4201, 0.1047, 0.1060).

7 Numerical study

The present numerical simulation bears the potential for the validity of the theory carried out in this investigation
by way of showing a close agreement between experiment and theory. We perform numerical simulation to validate
our analytical findings of the previous sections by making use of the appropriate computing software MATLAB and
MAPLE. We consider three sets of parameter values provided in the following Table 2.
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a1 a2 a3 a4 d1 γ1 γ2 β k
Set I 1.1 0.01 0.01 3.7 0.15 11 0.1 0.21 0.45
Set I I 1.1 0.01 1.5 1.7 0.15 11 0.1 0.21 0.45
Set I I I 1.1 0.01 1.1 2.2 0.15 11 0.1 0.21 0.45

Table 2: A particular set of system parameter values

The unstable behaviour of E0 is shown in the Figure 4. For the parameter values as in Set I, E1 = (0.55, 0, 0) and
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Figure 4: Unstable behaviour of the trivial equilibrium E0 for the parameter values taken from Set I and the initial values
x(0) = 0.002, y(0) = 0.004, z(0) = 0.003.
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Figure 5: Unstable behaviour of the equilibrium E1 for the parameter values taken from Set I and the initial values x(0) = 0.5,
y(0) = 0.004, z(0) = 0.003 and x(0) = 0.57, y(0) = 0.004, z(0) = 0.003.

in concert with the theory it is always unstable. The unstable behaviour of E1 is shown in the Figure 5. From the
theoretical findings, E2 is locally stable if a3

a4
+ k > 1 and unstable if a3

a4
+ k < 1. Here the parameter values in Set

I satisfy the condition a3

a4
+ k = 0.453 < 1 and hence for this set of parameter values E2 is locally unstable. On the

other hand the parameter values in Set II satisfy the condition a3

a4
+ k = 1.33 > 1 and hence for this set of parameter

values E2 is locally stable. According to the theory we have E3 is always unstable. The local unstable behaviour is

shown in the Figure 8. The condition for stability of the equilibrium point E4 is k > 1− d1(1+a4)+a3

a4
. If we choose the

parameter values from the Set III, then the condition for stability holds and hence E4 = (0.0344, 0, 0.5156) is stable.
The behaviour around E4 is shown in the Figure 9.

If we choose the parameter values from Set I, then the interior equilibrium point Ē = (0.35079, 0.101193, 0.09802)

exists uniquely. Also this set of parameter values satisfies the condition for stability β > ȳ
√
1 + 2a2γ2β2

a1γ1ȳ2 and a4 > a1

2 .

The stability behaviour around Ē is shown in the Figures 10 and 11.
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Figure 6: Unstable behaviour of the equilibrium E2 for the parameter values taken from Set I and the initial values x(0) = 0.005,
y(0) = 0.006, z(0) = 0.44.
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Figure 7: Stable behaviour of the equilibrium E2 for the parameter values taken from Set II for different initial values.
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Figure 8: Unstable behaviour of the equilibrium E3 = (0.15, 0.4, 0) for the parameter values taken from Set I and the initial
values x(0) = 0.14, y(0) = 0.35, z(0) = 0.003.
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Figure 9: Stable behaviour of the equilibrium E4 = (0.0344, 0, 0.5156) for the parameter values taken from Set III and for
different initial values.
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Figure 10: Stable behaviour of the equilibrium point Ē for the parameter values taken from Set I and the initial values x(0) = 0.3,
y(0) = 0.003, z(0) = 0.031.
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Figure 11: Time series plot of the system around the equilibrium point Ē for the parameter values taken from Set I and the
initial values x(0) = 0.3, y(0) = 0.003, z(0) = 0.031.
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One may notice the occurrence of Hopf-bifurcation around the interior equilibrium point Ē with respect to the
bifurcating parameter k. For numerical confirmation one may keep the fixed set of parameter values other than k as in
Set I. Then a Hopf-bifurcation takes place near the interior equilibrium point for the value of the bifurcation parameter
k = 0.2276 maintaining the values of other parameters fixed. The relevant bifurcation diagram relating to the system
parameter k is exposed in the Figure 12. The bifurcation diagram with respect to the significant parameter β in
Figure 13 demonstrates that there is a specific interval of β where the system provides periodic solution and outside
that interval the system is in the stable platform. For bifurcation diagram of the system (2.2) presented in Figure 12,
the successive maxima of x, y and z in the ranges [0.0, 1.0], [0.0, 7.0] and [0.02, 0.14] respectively as a function of k in
the range 0.0 ≤ k ≤ 0.9 and the other parameters are provided in the figure caption. The other bifurcation diagram is
offered in Figure 13, the successive maxima of x, y and z in the ranges [0.05, 0.7], [0.0, 1.8] and [0.05, 0.18] respectively
as a function of β in the range 0.0 ≤ β ≤ 0.9 and the other parameters are provided in the figure caption.

The oscillating behaviour of the species x, y, z and the phase diagram as well is revealed in the Figures 14 and
15. The phase diagram, as shown in Figure 15 is a limit cycle. It is observed that for the feasible Set I of parameter
values, model system (2.2) have asymptotically stable behaviour with the system parameter k = 0.24 in the Figures 16
and 17. As a consequence taking k as control parameter it is feasible to derive the intraguild predator-prey system to
required equilibrium point and to avoid the cyclic behaviour of the system. It is worth mentioning that for the system
parameter values a1 = 0.1, a2 = 0.01, a3 = 0.01, a4 = 0.97, d1 = 0.15, γ1 = 11, γ2 = 0.01, β = 0.21 and k = 0.2,
model system (2.2) have strange limit cycle in the Figure 18. The strange attractor in xyz-view of the model system
for the system parameter values a1 = 0.1, a2 = 0.01, a3 = 0.01, a4 = 0.7, d1 = 0.15, γ1 = 12, γ2 = 0.01, β = 0.21 and
k = 0.2 is also presented in the Figure 19.
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Figure 12: Bifurcation diagrams for all the interacting species with respect to k corresponding to the parameter values a1 = 1.1,
a2 = 0.01, a3 = 0.01, a4 = 3.7, d1 = 0.15, γ1 = 11, γ2 = 0.1 and β = 0.21 with initial value x(0) = 0.03, y(0) = 0.4, z(0) = 0.05.

8 Concluding remarks

The work undertaken in the present article copes with the response of the dynamical system comprising two prey
and one generalist IG predator species. A general structure of the system is initiated with the use of different functional
responses suitable for the type of interactions between the species. The stability characteristics of the proposed model
system are examined in detail analytically with special attention to the boundary equilibrium points. The stability
properties of the coexistence equilibrium positions of the system are also explored. It is interesting to perceive from
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Figure 13: Bifurcation diagrams for all the interacting species with respect to β corresponding to the parameter values a1 = 1.1,
a2 = 0.01, a3 = 0.01, a4 = 3.7, d1 = 0.15, γ1 = 11, γ2 = 0.1 and k = 0.21.
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Figure 14: Oscillating behaviour of the system for k = 0.22 and the values of other parameters are taken from Set I with initial
conditions x(0) = 0.3, y(0) = 0.003, z(0) = 0.031.
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Figure 15: Phase portrait of the system for the parameter values k = 0.22 and the values of other parameters are taken from
Set I.
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Figure 16: Time series plot of the system for the parameter values k = 0.24 and the values of other parameters are taken from
Set I with x(0) = 0.3, y(0) = 0.003, z(0) = 0.031.
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Figure 17: Phase portrait of the system for the parameter values k = 0.24 and the values of other parameters are taken from
Set I.
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Figure 18: Strange limit cycle for the parameters a1 = 0.1, a2 = 0.01, a3 = 0.01, a4 = 0.97, d1 = 0.15, γ1 = 11, γ2 = 0.01,
β = 0.21 and k = 0.2 with initial value x(0) = 0.37, y(0) = 0.45, z(0) = 0.04.

Figure 19: Strange attractor [13] of the system for the parameters a1 = 0.1, a2 = 0.01, a3 = 0.01, a4 = 0.7, d1 = 0.15, γ1 = 12,
γ2 = 0.01, β = 0.21 and k = 0.2 with initial value x(0) = 0.37, y(0) = 0.45, z(0) = 0.04.
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numerical simulation that the system reveals both the stability and the bifurcation as well around the coexistence
equilibrium with reference to the resource harvesting parameter. One may also note that in the event of gradual
increase of resource harvesting, it contributes to extinction of the resource and the IG prey but the IG predator
survives due to resource harvesting. This observation agrees well with the natural ecosystem.

The prime objective of the present three-dimensional IG predation model is to investigate the influence of harvesting
on the equilibrium abundances of IG predator species. One may conclude from the contemporary study that prey
harvesting can also destabilize the tri-trophic predator-prey interacting system in presence of intraguild mechanism.
By and large, it may be established in the undergoing modelling framework that resource harvesting is a key survival
strategy for resource (prey) in the presence of generalist IG predator. The harvesting parameter may be treated as a
controlling parameter by virtue of which the system switches from stable to limit cycle around its interior equilibrium
position. A sufficient condition is derived for the existence of the interior bionomic equilibrium point. The optimal
solution for the optimal harvesting policy based on the derived system of equations is not ruled out, however, from
the present pursuit.

In the future, one may extend this research work in several ways, e.g., the harvesting policy can be divided into
two categories-linear and nonlinear groups. Constant harvesting effort could significantly impact the intraguild (IG)
predation dynamics. Incorporating nonlinear harvesting effort in our model system could be another exciting research.
The inclusion of self-diffusion in the proposed intraguild (IG) predation model may exhibit complex spatiotemporal
pattern dynamics. Different kinds of simulated Turing patterns may be interpreted depending on the local system’s
ecological parameters and diffusion coefficients [24, 25, 26, 27]. One may extend or modelled this work further by
considering environmental fluctuations in the ecological systems as an open system scenerio.
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