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Abstract

This paper deals with the study of a coupled system of generalized impulsive integro-differential evolution equations
with periodic boundary value. We show the existence and uniqueness of the solution for the proposed problem using
Banach fixed point theorem. Another way was used to show the existence result with the aim of breaking out of the
widely used Theorems style, we take advantage Monch’s fixed point theorem using a non-compactness measure that
we introduced. Some examples are given to our obtained results.
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1 Introduction

The modeling of several real world problems by evolution equations has pushed researchers, notably mathemati-
cians, to research the development of this field (see [2] @} [l [6, [7, [8], [T0] [TT], 12, 13| 14} 16l 18, 19]). Different types of
integro-different equations that are a branch of evolution equations have been treated by several researchers [T, [17].
We quote that, in [I] the authors discussed with more details the following integro-differential equation

2 (t) = +f0 (t — s)z(s)ds + o(t, z(t)) for t € [0,a] and t # t;
Az (t;) = I( (t;)) fori=1,...,pand 0 <t; <ty <--- <tp <tpy1=a

2(0) = g(z)

where A and B are two closed linear operators. To show the existence of solution for this problem, they used Darbo’s
fixed point Theorem as a tool.
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From above, we were motivated to study the following coupled system of a more general class of impulsive periodic
boundary value integro-differential equations:

z'(t) = Az(t) + fot Bi(t — m)z(1)dT + p1(t, z(t), y(t)), t € (si,tit1], 1=0,1,2,---,m, (1)

y,(t) :By(t)—’—fg BQ(t_T)y(T)dT+§02(t7x(t)7y(t))7 te (Siati+1]7 i:071727"' » MM, (2)

z(t) = T( — ti)y1:(t, z(t), y(1)), t € (L, si, i=1,2,--+,m,

u(D) = S0~ (e, y®), e sl i=12m, "
z(s;) + gi(z,y) =z € X, i=1,--+,m,

y(si) + g2(z,y) = v; € X, i=1,---,m,

z(0) = z(a),

y(0) = y(a).

Provided, the operators A : D(A) C X — X and B : D(B) C X — X are the infinitesimal generators of a
uniformly continuous semigroup {7'(¢),t > 0} and {S(¢),t > 0} respectively on a Banach space X provided with a
norm ||.||, where they satisfy ||T'(¢)|| < Mre*T® and ||S(¢)|| < Mge¥s?®, By and By are two closed linear operators on
X which satisfy D(A) C D(B;) and D(B) C D(Bz), and for each x € X the maps t — By (t)x and t — By(t)x are
bounded differentiable and the maps t — B (t)z and ¢ — Bj(t)z are bounded uniformly continuous on [0, +00).

and the fixed points s; and t; satisfy
O0=s0<t1 <s51<ta < <ty <8 Stppy1 =a

are pre-fixed numbers, @1, @ : (S, tip1] X X X X — X, 14, o = ,(t,8] X X x X — X and ¢, g2 :
PC([0,a], X) x PC([0,a], X) — X are given functions, such that T'(t — ¢;)¢1; (¢, 2(t), y(t))|t=s, = x; — g1(x,y) and
S(t = ti)2i(t, x(t), y(t)e=s; = ¥i — g2(@,9); i =1,--- ,m.

To show the existence of solution for this problem we use Banach and Monch’s fixed point theorems and by
introducing a measure of noncompactness.

2 Preliminaries

In this section we recall same basic notions used to build our result.

Denote by B(Y') the set of all bounded subsets of a Banach space Y.
Definition 2.1. We say that m : B(Y) — R™ is a measure of noncompactness on Y if the following proprieties are
satisfied:

1. m(A) =0 if and only if A is precompact.

2. m(A) = m(A4), for all A € B(Y).
3. m(AUB) =max{m (A4),m(B)}, for all A, B € B(Y).

We recall the Kuratowski measure of noncompactness defined by
m(A) =inf {p > 0: A C UJL, A;,diam (4;) < p}, for A€ B(Y).

Now, we present the following theorem called Monch’s fixed point theorem on which we will be based to show the
existence of our solution.

Theorem 2.2. [I5] Let © be a bounded, closed, and convex subset of ¥ such that 0€Q, A:Q— Qis a continuous
mapping. Then, A has at least a fixed point if C'=¢o (A(C)) or C = A(C) U {0} = C' is compact for each C' C Q.
Where @0 (A(C)) is the closed convex hull of A(C).

Let
L>=(]0,a]) = {l : [0,a] — R : lis measurable and essentially bounded} .

With the following norm
l|zee = 1inf{8 > 0:|i(t)| < B, a.e.t€[0,al}

L*([0,a]) is Banach space.
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Definition 2.3. [3] A resolvent operator for the problem

2/ (t) = Az(t) + [J B(t — )a(r)dr,  t€[0,+00)
z(0) =z €Y.

is a bounded linear operator-valued function I'(¢) satisfying the following proprieties:

1. T'(0) = Iy. (Iy the identity of Y ) and there exist two constants N > 0, and b € R, such that ||['(t)|| < Ne®.

2. t — T'(t)y is strongly continuous for each y € Y.

3. I'(t) is bounded for t > 0. And for x € D(A),T'(-)z € C(Ry,D(A)) NC!(R,,Y) and satisfying the following
propriety

I (t)z = AT (t)x + /0 "B(t - )D(r)rdr = T(t) Az + /O "T(t— 1)B(P)adrt € [0.00),

For more details concerning the basic concepts used in this paper we refer [9].

3 Main result

Firstly, we provide the following result we need:
We define on B(X x X) the map m by

m(D x E) = max{m(D),m(E)}, for, C x D € B(X x X) C B(X) x B(X).
For D x E, F x G, € B(X x X), we have

m(D x E) =0« m(D) =0andm(E) =0 < D x Eis precompact,
m(D x E) = m(D x E) = max{m(D),m(E)} = max{m(D),m(E)} = m(D x E),

and

m((D x E)U (F x G)) = ﬁl((D UF)x (EU G)) = max{m(DUF),m(EUG)}
max{m(D),m(F), m(E),m(F)}
maX{fﬁ(D X E),ﬁz(F X G)}

So, m is a measure of noncompactness on X x X.

Now, we define the following spaces

PC([0,a],X) = {z:[0,a] — X : 2 € C([0,t1] U (ti, ;] U (si,tix1], X); 0 =1,---m,
z(t;), o(t]), z(s; ) and x(s;}) exist, withz(t; ) = z(t;) and 2(s; ) = z(s;) }

7

endowed with the norm ||z||pc = sup ||z(¢)||. And
te(0,a]

PC? := PC([0,a], X) x PC([0,a], X),
which is a Banach space with the following norm

1)z = llzllpe + lyllpe, for (z,y) € PC*.

Firstly, we give the expression of mild solution for the following impulsive integro-differential equation

' (t) = Az(t) + fot B(t — 7)z(7)dT + @(t, z(t)), t € (siytiti], i=0,1,2,--- ,m,
J}(t) :T(t—ti)wi(t,x(t))7 te (ti,si], i=1,2,---,m,

z(sq) +g(z) =z; € X, i=1,---,m,

z(0) = z(a).
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For t € [0,11], we have

z(t) = I't)z(0)+

= I'(t) {F(a) (zm — g(z)) + /Sa I'(a— T)@(T,I(T))dT:| + /OtF(t —7)p(T,x(T))dr

m

— IP()(0) (2 — g(x)) + T(2) / " Pla—r)p(r z(r))dr + / It - )l 2(r))dr

Let T';, Ty the resolvents associated with equations (1) and (2) respectively.

Now, we can define the form of our solution, it’s given in the following definition

Definition 3.1. We say that (z,y) is a mild solution of the problem (1.1) if (z,y) € PC? and satisfies the following
system

<r<t)1n<a> (zm = 91(2,9) + (1) [72, Tia = 7)ea(r,2(r), y()dr + [y T1(t = 7)r (7 2(7), ym)dT) re0.4]
Do) I2(a) (ym — g2(z,y)) + (1) f:m Iy(a — 7)p2(r, z(7), y(T))dT + f(f Dot — m)po(r,z(7),y(7))dr ’

20 _ ) (T —a1(e) + [L Tt = ) (r, 2(r), y(r))dr e (et P
(y(t)) ) \® (i — g2(2,)) + [1 Dot — T)p2(r,2(7), y(r))dr oree ot =
T(t — t3)eh1s(t, z(t), y(t)) for t € (i, 51, i=1,2,--+,m

S(t - ti)in(tv w(t)7 y(t))
Now, we pose the following hypotheses on which our existence result is based.

A The functions t — ¢;(t,z,y) and t — ¥;i(t,z,y); ; j = 1,2, are measurable on [0, a] for all (z,y) € X x X,
and continuous on X x X for a.e. t in (s;,t;41] and (&;, s;], respectively.

Ay There exit py, pa, V14, v2; € L2([0,a]); i =1,--- ,m, which satisfy
lloj(t 2, 9)ll < pj(t) A+ [zl + [lyl]) ; a-et € (si;tita]), and for all z, y € X; j=1,2,
and

Vit z, v)l| <wv(t) A+ [z +lyl); i=1---,m, a.et € (t;,s;], and for all z, y € X; j =1,2,

A3 There exists a constant ay, as > 0, such that

llgj(x,v)|| < o (14 ||zl|pc + ||lyllpc) a-et € [0,a], and for all z, y € PC([0,a], X); j =1,2.

A, For all bounded set © C X x X, and ¢ € [0, a], we have
m(p;(t,0)) < p;(t)m(O), and Mm(v;(t,0)) < v(t)m(O); i=1,--- ,m; j =1;2,
and for all bounded set © C PC?, we have

M(g;(0)) < a; sup m(O(t)), j = 1,2,
te[0,a]

where O(t) = {(z(t),y(t)) : (z,y) € PC?}, for all t € [0, a].

H; The functions ¢; € C([0,a] x X x X, X), ¥;; € C([s;,t;] x X x X, X); i =1,---,m; j = 1,2, and g1, g are
continuous.
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H; There exist constants Ly, Ly,,, Ly, > 0; 7 =1,2,4=1,--- ,m, such that, for j = 1;2

lles(tz1,y1) — @it z2,92) |l < Lo, (lz1 — @2l + llyr — y2|l), for each t € [s4,ti41]; 4 =0, ,m;, x5, yj € X,
I3 (t 21, y1) — 5 (t 22, y2) || < Ly, (lor — @2l + ly1 — y2ll), for each t € [ti, s3], =1,--- ,m, x5, y; € X,
llgj(z1,y1) — gj(z2,y2)|l < Lg; (lz1 — z2llpc + [ly1 — y2llpc) , for each z;, y; € PC([0,al, X).

To reduce the form of mathematical expressions, we use the following notations:

)\j = HNJJ'HLOQ gj = 121%13,Xm HVji”Loo’ Nj = t:[(l)p HFj(OHBa j= 1,2
s a

Ny (Nil|zmll + Niag +aNi Ay 4 aXy) + No (No||[ym || + Noao + aNada + ado)
1= 1- 4, 5
Ny (max; ||z;]| + a1 + aXr) + Na (max; ||y;|| + as + aXs)

1— (Ny (a1 +aX;) + Na (@2 4 adz))

o = )

— 62

16

51 = N1 (Nl()él + aNl)\l -+ (Z)\l) + N2 (NQOCQ + aNQ)\Q -+ (1)\2) s
0o = o1 Mrpe“T* + O'QMsewsa, 0= max{él, 52}

T3

K11 = N1 (Lg1N1 =+ LLP1N1 i:rlnaxm(ti—‘rl — Si) + chltl) R

)

K12 = Na <L92N2 + szNQ ) Ilnax (t¢+1 - Sl‘) + L4p2t1) R
1= [}
ko1 =  max Ly, Mre*T? and koo = max Ly, Mge*5?.
i=1,m i=1,m

After provided assumptions, now we are in a position to present our first existence result based on Banach’s fixed
point theorem.

Theorem 3.2. Let assumptions H; and Hs be satisfied. Suppose also that
K :=max {Kk11 + K12, ko1 + K22} < 1.

Then, the problem (1.1)) has a unique mild solution on [0, al.

Proof . We define on PC? the following operator

(Alz,9))(t) = (A1 (z,9) (), Aa(,9)(1)), (3.1)
where
L)1 (a) (@m — g1(z,y)) + (1) fsam I'(a—7)p1(r,z(r),y(r))dr + fot It —71)e1(r,z(7),y(7))dr, t € [0,t1]
A (z,y)(t) = Ii(t) (x, -0 (x,y)) + fsi I (t — 1)e1(m,x(1),y(r))dr, t € (si,tit1], i=1,2,---,m
T(t—ti)wli(t,x(t),y(t)), fort € (ti,si], i=1,2,---,m
and
F2(t)F2(a) (ym - 92(33’ y)) + I (t) fgam FQ(”‘ - 7)902(7—7 :E(T), y(T))dT + fot I% (t - 7—)@2(77 x(T)’ y(T))de te [0: tl]
Ao (z,y)(t) = Fg(t)(yi —gz(x,y)) —i—f; I (t — 1)pa(r,z(71),y(7))dT, for t € (si,ti+1], 1=1,2,---,m
St — ti)a(t, z(t), y(t)), for t € (ts, si], i=1,2,---,m

Let (z1,41), (x2,12) € PC?, we discuss all possible cases.
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Case 1: For t € [0,11], we have

IA1(z1,91)(t) — A (@2, 92) O < (O (a)gr(z1,y1) — ()1 (a)gr (2, y2)l

+I®)lls /a 111 (a — T)lille1 (T, 21(7), y1(7)) — p1(7, w2(7), y2(7))lldT

+/ 171 = 7)lBlle1 (T 21(7), ¥1(7)) = 1(7, 22(7), y2 (7)) ld7
0

IN

Lg, NT (lz1 — 22llpe + lly1 — v2llpc)

LN [ (oa(r) = 22l + 1 () = va(r) ) dr

Sm

t
TLp1 N1 /0 (lz1(7) = z2(T) | + ly2 (7) — w2 (D)) dr

N1 (Lgy N1+ Loy Ni(a = sm) + Lo t1) (|z1 — z2lpc + ly1 — y2ll»c)
N1 (Lg, N1+ Loy Ni(a = sm) + Lo, t1) [[(z1,91) — (z2,92)||2
k1 ll(z1,y1) — (w2, y2)ll2

ININ N

Similarly, we have

1A2(z1,y1)(t) — A2(z2, y2)(#) |l N2 (Lgy N2 + Ly Na(a — sm) + Lo t1) [[(z1,y1) — (w2, y2)|l2

r1z2l[(z1,91) — (@2, y2)ll2

ININ

Then, we obtain

I1A(z1, y1)(t) — Az2, y2) (1)l 1A1 (21, 91)(t) — A1 (@2, y2) (@) + [[A2(z1, y1)(t) — Aa(z2, y2) (@)

< (k11 +k12) (@1, 91) — (22, 92) 2
Case 2: Fort € (s;,t;41];1=1,--+ ,m, we have

A1 (21, y1)(#) = Ar(z2,32) (O < (1115 l91(z1,91) — 91(x2, y2) |

t
+ / 171t = D)lBlle1 (T 21(7), y1(7)) — 1 (7, 22(7), y2 (7)) |ldr

IN

Lg, N1 (lz1 — z2llpc + lly1 — y2llpc)

t
+Lw1Nl/_ (lz1(7) = z2(T) Il + ly2 (7) — w2 (D)) dr

IA

N (Lor + Loy _pax (61 =) onm) = o)l

IN

k11 ll(z1,y1) — (w2, y2)ll2

Likewise, we get

IA2(z1,y1)(t) — A2(z2, y2)(t)]]

IN

N2 (Lg2 + Ly, _max (tit1— Si)) [(z1,91) = (z2,92) 2

IN

riz(z1,91) — (z2,92)l2

Hence,
IA(z1, y1)(t) — Alm2, y2) ()] < (k11 + K12) [[(1,91) — (@2, 92)|2
Case 3: Fort € (t;,s;]; i =1,---,m, we have

A1 (21, y1)(t) — A1 (2, y2) (0| Tt — t)|llh1s (8, 1 (t), y1 (£) — Y1i(t, ma(t), y2 ()]
Lwl«iMTewTaH(xlayl) — (z2,92)ll2

r21 (@1, 91) — (z2,92)l2

[VANNVASVA

Similarly, we get

1A2(z1,y1)(t) — A2(z2, y2) ()| Ly, Mse®S®|[(z1,y1) — (z2,y2)ll2

razll(z1,91) — (w2, y2)ll2

ININ

Then, we have

(IA(z1,y1)(t) — Alz2, y2) (D] < (k21 + K22) [(21,91) — (z2,92) |2
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Finally, we get the following inequality
IA(z1,91) — Al y2)ll2 < max {k11 + K12, k21 + K22} [[(z1,91) — (22, ¥2) |2

Therefore, A is a contraction. So, according to Banach fixed point theorem, problem (/1.1)) has a unique mild solution.
[0 Using Monch'’s fixed point theorem, we present the second result of existence as follows:

Theorem 3.3. Suppose that assumptions A;-A4 are satisfied, in addition
5 < 1. (3.2)
Then problem ([1.1)) has at least one mild solution on [0, a].

Proof . To proof this result we transform our problem into fixed point, for this we consider the operator A : PC? —»
PC? defined in (3.1)), and we define the ball B, := {(z,y) € PC* : ||(z, )2 < r}, where

r > max{ry,rq,r3}.
Firstly, we prove that A is defined from B, into itself. Indeed:

Case 1: For (z,y) € B,, and t € [0, 1], we have

a
ALz, y)®I < ID@sIT@)s (lemll + g1 (@ v)l) + HFl(t)”B/ 111 (a — 7)lIslle1 (T, 2(1), y(7))lldr
Sm
t
+/0 17 (t = Dlisller (T, z(7), y(7))lldr
< NE(lzmll 4+ a1 + ||zllpe + lyllpe)) + aNTAL (1 + [|zllpe + llyllpe) + aNid (1 + ||zllpe + lyllpe)
< Ni(Nillzm|| + Niar + aN1iA1 + adi) + N1 (N1iag + aNids +adi)r

Similarly, we get

[A2(z,y) ()| < N2 (N2||lyml|| + Naaz + aNaAz + ar2) + Na (Noaz + aNada + ada)r

Then,

1A (z, y)l2 1AL (z, y)ll2 + |A2(z, y) |2

N1 (NlHl‘mH + Niag +alNi1A1 + a>\1)

+N2 (N2 |lym|| + Naaz + aN2A2 + aXz)

+ [N1 (N1a1 + aN1A1 + aA1) + No (Naaz + aNadz + ado)|r
(1 — (51)7‘1 + 017

r

IN

ININ

Case 2: For (z,y) € By, and t € (s;,ti41]; 4 =1,--- ,m, we have

A

t
A, @I < 1@ s (il + g1z, y)) +/‘ 173t = D)l[sller (7, 2(7), y(7)) ldr

Ni(llzill + a1 (1 + llzllpe + lyllpe)) + aNi A (1 + |lzllpe + lyllpc)
N1 (||lzs|| + o1 + aX1) + N1 (o1 +aXy) r

INIA

In the same way, we get
lA2(z, y) (O] < N2 ([lysll + a2 + ad2) + Nz (a2 + ad2) 7.
Therefore,

1Az, )| N1 (|lzsll + 1 + aX1) + Nz ([lyill + a2 + arz) + [N1 (oa + ar1) + N2 (a2 + adr2)]r

(1= [N1 (a1 + aX1) 4+ Na (a2 + aX2)])ra + [N1 (a1 + ad1) + Na (a2 + adro)] 7

7.

ININCIN
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Case 3: For (z,y) € By, and t € (¢;,s;]; 4 =1,--- ,m, we have

1T — ta)llllv1: (t, =(2), y(2))
o1 Mpe®T*(1+ 1)

A1z, y) (@)

IN A

Similarly, we obtain
lA2(z, y) )| < o2 Mge5%(1 + 1)
Then,

< (JlMTe“’T“—i—UngewSa)(l—l—r)
< (1—=462)r3 + dor
<

T

A, y)ll2

which shows that A is defined from B, into itself.

The rest of proof will be done in four steps by discussing all cases in each step.

Step 1: A is continuous:
Let (z, y”)nZO C B. be a sequence, such that lim, oo (Zn, yn) = (z,y) in By.

Clearly, we have |[(@n,yn) — (2,9)|l2 = llzn — x||pc + ||yn — yllpc which implies that

lim (zn,yn) = (z,y) in By if and only if lim @, =z and lim y, =y in {z € PC([0,a], X) : ||z|pc < T}
S n—+oo n—+o0o

n—

Case 1: For ¢ € [0,¢1], we have
A1 (Zn,yn) () = Ar () DI < (1@ sl (@) ||B]l91 (20 yn) — g1(2, )]

+HF1(t)IIB/a 17 (a = 7)lIslle1 (T, 20 (), yn (7)) — 17, 2(7), y(7))lldT

m

t
+/ 171t = 7)lBlle1 (T 20 (), yn (7)) — 1 (7, 2(7), y(7))lld7
0

< Nlgi(enyn) - 91(2,9)]
g [ m o1 (7,0 (), 9 (7)) — 1 (7, (7, (7)) 1dr
v o1 (r, 2 (1), 5 (7)) — o1.(r, 2, y() ldr
And
A2 (@n,yn) @) — A2 (z,m) B < N3llgz(@n, yn) — g2(z, )|
g [ o2 (ry 0 (), g (7)) — 2, (7, y(r)) 1dr
s [ a2 (1), 4 (1) — wa(r,2(r),y(r) dr
Case 2: For t € (s;,t;41]; 1 =1,--- ,m, we have

A1 (@nyyn) @) — A (@) O < IT1O1Bllg1(zn, yn) — g1(z, y)]]

t
+/A 171 = m)lBller (T 20 (7), yn (7)) — 1 (7, 2(7), y(7))lld7

IN

Nillg1(zn,yn) — g1(z,y)||

t
+MN1 / lle1 (7, 2n (1), yn(7)) — @1(7,2(7), y(7))lldT
Similarly, we get

t
A2 (2, yn) (1) = Az (2,y) (]| < N2llg2(zn, yn) — g2(2,y)[| + N2 / P2 (7 20 (1), yn (7)) — w2 (7, 2(7), y(7))ldr



A study on dependent impulsive integro-differential evolution equations of general type in Banach space 823

Case 3: For t € (t;,s;];i=1,---,m, we have

A1 (2r, yn) (1) = At (z,9) ()] 17 = t)lllvh1i (, 2n (), yn (1) — Pri(t, z(2), y (1))l

MpeT®|[¢p1i(t, @ (), yn () — i (t, (), y(£) |

IN N

And

A2 (zn,yn) (1) — A2 (2, y) (D] < Mge®S*|[thoi(t, mn (L), yn () — Y2i (L, z(t), ()]

We know that, ¢;, ¥;; and g;; j = 1,2; 4 = 1,--- ,m are continuous, then according to Lebesgue-dominated
convergence theorem, we get from each previous step

ngToollAl(xnvyn) - Al(x7 y)H2 = 0Oand nl}Too”AQ(‘rn:yn) - AQ(J’J,y)IIQ =0,

and since from (3.1]) we have

lim [[A(zn,yn)  —  A(z,9)|l2=0
n——+oo
(3
(nl{{{_looHAl(xn,yn) —A1(z,y)l =0 and ,LBT%”A?(%W — Ao (z,y)|l = O) :

So, we deduce that EIE 1A (@, yn) — Az, 9)]l2 = 0.

Step 2: A(B,) is bounded. Indeed:
We have A is defined on B, into itself. So, A(B,) C B, which prove that A(B,) is bounded.

Step 3: A is equicontinuous.
Case 1: For (z,y) € B, and 0 < 71 < 79 < t1, we have
[A1(z, ) (2) = Ai(z, ) (r)ll < (@) (Jemll + g1 (@ ») D11 (r2) = Ti (1)l

+||F1(T2)*F1(7'1)||B/a 71 (a = D)lisller (7, 2(7), y(7))lldr

Sm

+/T1 11 (2 =) = ' (71 = 7)lBlle1 (7, 2(7), y(7))l|dr
0

+/T2 171 (2 = 7)|5lle1 (7, 2(7), y (7)) |dr

< Ni[(lemll+ cr(1+7)) 4+ (@ — sm)A (1 + )] 111 (2) — Ti(1) s
211 +7) /07—1 [T (m2 —7) — (11 — 7)|lgdT + NiA1 (1 4+ 7r)(m2 — 71)
In the same manner, we get
[A2(z,y)(2) = Az(z,y)(r)l - < Na[(llymll + a2(l + 7)) + (a = sm)A2(1 + )] [ T2(72) — I2(11) |

T1
+/\2(1 +T‘)/ ||F2(T2 — T) — FQ(Tl — T)||BdT+ NQ)\Q(l +T‘)(7‘2 — 7‘1)
0

Case 2: For (z,y) € B, and s; < 71 < 7o

1AL (2, y)(12) — A (2, y) ()]

tiv1;9=1,--- ,m, we have
111(r2) — T ()|l (sl + [lg2 (2, 9)II)

+ [ = 1) = B = Dllsller(n (), u()ldr

IN A

+ [ 10 = Dllaler(n (), y()ldr
(lzill + 1 (L 4 ) 111 (r2) — T (71)IB

T1
+)\1(1+7")/ ||F1(T27T)7F1(T17T)||BdT
Sq

IN

+N1 A (1 +7)(m2 — 71)
And
1A2(z, y)(m2) — Aa(z, y)(T1)]|

IN

(lyall + a2 (1 + 7)) [ 12(72) — Ie(m1) |5
Fro(l+7) /T1 Do (r2 — 7) — To(r1 — 7)||dr

+NoXo(1+r)(m2 — 71)
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Case 3: For (z,y) € Byand t; <71 <71 < s;;4i=1,---,m, we have

A1 (z ) (m2) = Az, ) () < (T (71 = )T (72 — T1)Y1i (72, 2(72), y(72)) — 1 (71, 2(71), y (1))l
< MpeT T (12 — T)Y1i(T2, 2(72), y(72)) — Y14 (11, 2(T1), y(71)) ||

Similarly, we obtain
1A2(z, y)(72) — Az(z, y)(T1)[| < Mge®S?|[S(m2 — T1)¢2: (72, 2(72), y(72)) — 2i (71, 2(71), y(T1)) |l

In all previous cases, we have
A(z, ) (2) = Az, y) ()]l = A1z, ) (72) — Aa(z, y) ()]l + | A2(z, ) (72) — Az (z, y)(1)[| = 0 as 71 — 7.
This allows us to conclude that A is equicontinuous.
Step 4: Let C C B, be a non empty subset, such that
C C AC)U{(0,0)} = (A1(C) x A2(C) U{(0,0)} = (A1(C) U {0}) x A2(C) U {0}).

Clearly, it is bounded and equicontinuous.
Consider the function [ defined by

I(t)y=m(C()), t€[0,al,

which is continuous.
Case 1: For ¢ € [0,11], We have
1(t) = (C() < m (AC)(1) U{(0,0}) <@ (AO)D) = ™ (AC)(B) = max{m (A1(C)®) ,m (A2(C) (1))}

Since, we have

m(M(C)®) < [[N@)lsll1(a)lsoa S}lp]ﬁl(c(ﬂ)
t€(0,a
HE s [ I = n)lsnm(Cm)dr
t
-l-/ ||T1(t—T)||3)\1ﬁ”L(C(T))dT
0
< Ni(Niag +aNiA + ad) ||l oo
and
m(Ag(C)(t)) S NQ(NQO[Q +CLN2A2 +a)\2)||l||oo
Therefore,
U(t) < 6]l oo
Case 2: For t € (s;,t;41];4=1,---,m, We have
t
m(A(C)(1) < [[I1(t)|sea st]ﬁz((C(t))) +/ |13 (t = 7)lsAm(C(7))dr
te[0,a ER
< Ni(o1 4 arr)[[l]les
and
m(A2(C)(1) < Na(ag + ade)|lllleo
< 0lllee
Then,

1(#) < 0[Uflco-
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Case 3: For t € (t;,s;];i=1,---,m, We have

m(A(C)(1t) < [[T(t—t)|or Sgp]ﬁ%(c(t))
te(0,a
< o1 Mre ™ |l| oo
and
m(A2(C) (1) < o2Mge”™ ||l
< 0l
Then,
1(t) < )|1|oo-

Hence, from above cases we can deduce that
[lloo < 611 o-

Since ¢ < 1, so obviously we have ||I[. = 0 which is equivalent to saying that m(C(t)) = 0. So, according to
the first property of Definition C(t) is relatively compact in X x X. Then, by the Ascoli-Arzela theorem, it
is relatively compact in B,..

Thus, all conditions of Theorem [3.3] are satisfied, and consequently our problem has a solution. [J

4 Examples

In this section we present two examples to illustrate our existence results.

Example 4.1. We consider the following problem:

2 2
%u(t,x) — %u(t,x) 4Lt - T)%u(‘r, 2)dr + ﬁ(cos(u(t,x)) +sin(u(t,2))), t € (0,1]U (2,3, z € [0,1]
P o2 82

—v(t,z) = @fu(t7 z) + fot Lo(t — T)@U(T,m)dT + cos(u(t,z)) + v(t,z)), t € (0,1]U(2,3], = € [0,1]

1
ot 18N2

u(t,z) =T(t — 1)i(sin(u(t7 z)) +sin(v(t, z))), t € (1,2], z € [0,1]

v(t,z) =T(t — 1)1—14(cos(u(t, z)) + sin(u(t, 2))), t € (1,2], = € [0,1]
u(t,0) = v(¢,0) = u(t,1) = v(¢,1) =0, t € (0,1] U (2, 3]

u(0,z) = u(3,z), = € [0,1]

v(0,x) = v(iri7 z), x € [0,1]

u(0,z) + W (14 sin(u) +v) =1+4+€%, z € [0,1]

(4.1)

1
u(2,z) + SNZ (1 +sin(u) +v) =2+¢€%, z €[0,1]
1
1
U(O,I)+W(1+COS(U)+U)=l+ez, x € [0,1]
2
1
U(27I)+@(I+COS(U)+U)=2+617 S [071]

where L1, Ly € C1([0, 3], R).

The previous problem can be abstracted into problem where X = L?([0,1]) endowed with the norm |u| =
1
1 3 2 2
0
</ |u(x)|2dx) which is a Banach space, and Au = Bu = ——u, foru € D(A) = {u €X: ue X, ul0) =u(l) = 0}.
0

dx? 9z 0a?
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A is the generator of a strongly continuous and compact semigroup {7'(t), t > 0} on X and ||T'(¢)|| <1, for all £ > 0.

1
Bi(t) = Li(H)A, Ba(t) = L2(t)A, p1(t,u,v) = W(Cos(u(t,@) +sin(v(t, z))),
1

1 1
wa(t,u,v) = 18N2 (Cos(u(t,x)) + U(t,a:)), P11 (t,u,v) = ﬂ(sin(u(t,x)) + sin(v(t,x))),

1
o1 (t,u,v) = I (cos(u(t,z)) + sin(v(t, z)))
01(00) = gz (U 00) +0), a0) = b (14 cost) +0).

1 1 1 1 1
Clearly, we have L‘Pl = W, L<P2 = W’ L"/"ll = L¢21 = m, Lgl = W, Lg2 = @, MT = MS = 1, a=3

17 1
and wr = wg = 0. Then k11 < 72 Ko < 7 and Kop = Kog =
-, problem (4.1)) has a unique mild solution.

17
T therefore xk < 36 < 1. Hence, according to theorem

Example 4.2. To illustrate our second result of existence, we present the following problem:

0 9? 9?2 1 1 t2(1 + u(t,z) + v(t, x))
&u(t,m) = @u(t, x) + fot Li(t — T)@u(ﬂ-,m)dﬂ- + (6—9 + et+x+9) 36N2(1 + [l + o) € (0,1JU(2,3], =z € 0,1]
1) 0?2 02 1 1 t2(1 4+ u(t, x
av(t,x) = @v(t, z) + fg Lo(t — ‘r)@u(‘r,z)d‘r + (6—9 + ei+1+9) 36N22§1 — HiH +)?|U||)’ € (0,1]U(2,3], z € [0,1]
wtyw) =Tt —1)—— B e 9] 20,1
24(1+ [lull + [lvl)
witg) = Tt —1)——2BT) (19w e0,1]
24(1 + Jlull + [Jol)’ (4.2)
u(t,0) = u(t, 1) = v(t,0) = v(¢,1) =0, t € (0,1] U (2, 3]

(t

(
u(0,z) = u(3,z), = € [0,1]
v(0,x) = (31 ,x), z € [0,1]
u(0, z) + 8]}77 (1 +sin(u) + cos(v)) =1+ €%, z € [0,1]
u(2,z) + 8N2 (1 + sin(u) 4 cos(v)) =2+ €%, z € [0,1]
(0, 2) + ;2 (1 +sin(u) +v) = 1 + %, € [0, 1]

2

0(2,2) + —s (1 +sin(u) +v) =2+ %, z € [0,1]

8N

The previous problem can be written as problem (1.1)), where

1 1 t2(1 +u(t, o) +v(t,z))
t = —
erlty ) (e“emw) 362011 Nl + [o])

pall ) = (1 " et+1r+9> 36158 S PIEATE
t
buatsn) = g Ry
t
batsn) = g e
g1(u,v) = 8]1\72 (1 + sin(u) + cos(v)),
g2(u,v) = 8N2 (1 + sin(u) +v).
It’s easy to verify that A; = 2N112€9, Ao = 2]\712269’ o1 =09 = 2%1, a = 8]1/'2 and ap = 8N2 Thus, §; < % <1

1
and 6y = 2 < 1. Therefore, by using Theorem l) our problem (4.2) has a solution.
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