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Abstract

In this paper, we are interested in obtaining fixed point theorem for mappings in S-metric space by weakening the
completeness of S-metric space using relations. As a consequence, an application to existence and uniqueness of
solution of integral equation is given.
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1 Introduction

The concept of standard metric spaces is a fundamental tool in topology, functional analysis and nonlinear analysis.
This structure has attracted a considerable attention from mathematicians because of the development of the fixed
point theory in standard metric spaces.

In recent years, several generalizations of standard metric spaces have appeared [6, 7, 8, 9, 11]. Sedghi et al. [10]
have introduced the concept of S-metric spaces and gave some of their properties. Then a common fixed point theorem
for a self-mapping on complete S-metric spaces have given.

Sedghi et al. [10] considered the concept of S-metric spaces as follows:

Definition 1.1. [10] Let X be a nonempty set. A S-metric on X is a function S : X3 → [0,∞) that satisfies the
following condition, for each x, y, z, a ∈ X,

1. S(x, y, z) ≥ 0,

2. S(x, y, z) = 0 if and only if x = y = z,

3. S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S(z, z, a).

The pair (X,S) is called an S-metric space.
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Definition 1.2. [10] A sequence {xn} in X converges to x ∈ X if and only if S(xn, xn, x) → 0 as n → ∞.

Definition 1.3. [10] A sequence {xn} in X is called Cauchy sequence if for each ε > 0 there exists n0 ∈ N such that
S(xn, xn, xm) < ε for each n,m ≥ n0.

Definition 1.4. [10] The S-metric space (X,S) is said to be complete if every Cauchy sequence is convergent.

Lemma 1.5. [10] In an S-metric space, we have S(x, x, y) = S(y, y, x).

They also proved the following fixed point theorem in S-metric spaces [10].

Theorem 1.6. [10] Let (X, d) be a complete S-metric space and f : X → X be a contraction. Then f has a unique
fixed point x∗ ∈ X. Furthermore, for any x ∈ X we have limn→∞ fn(x) = x∗ with

S(fn(x0), f
n(x0), x

∗) ≤ 2Ln

1− L
S(x, x, f(x)).

Eshaghi and et. al [2] introduced the notion of orthogonal sets as follows (also see [1, 3, 4, 5, 12, 13, 14, 15]):

Definition 1.7. [2] Let X ̸= ϕ and ⊥ ⊆ X ×X be a binary relation. If ⊥ satisfies the following condition

∃x0; ((∀y; y⊥x0) or (∀y;x0⊥y)),

it is called an orthogonal set (briefly O-set). We denote this O-set by (X,⊥).

Definition 1.8. [2] Let (X,⊥) be an O-set. A sequence {xn}n∈N is called orthogonal sequence (briefly O-sequence)
if

((∀n;xn⊥xn+1) or (∀n;xn+1⊥xn)).

Definition 1.9. [2] Let (X, d,⊥) be an orthogonal metric space ((X,⊥) is an O-set and (X, d) is a metric space).
The space X is orthogonally complete (briefly O-complete) if every Cauchy O-sequence is convergent.

It is easy to see that every complete metric space is O-complete and the converse is not true (see [2]). For instance,
let X = [0, 1) and d(x, y) = |x − y| for all x, y ∈ X. It is easy to see that (x, d) is incomplete metric space. If we
consider ⊥ =≤, then one can show that X is O-complete metric space.

Definition 1.10. [2] Let (X, d,⊥) be an orthogonal metric space and 0 < k < 1.

1. A mapping f : X → X is said to be orthogonal contractive (⊥−contractive) mapping with Lipchitz constant k
if

d(fx, fy) ≤ kd(x, y) ifx⊥y.

2. A mapping f : X → X is called orthogonal preserving (⊥−preserving) mapping if x⊥y then f(x)⊥f(y).

3. A mapping f : X → X is orthogonal continuous (⊥−continuous) mapping in a ∈ X if for each O-sequence
{an}n∈N in X if an → a then f(an) → f(a). Also f is ⊥−continuous on X if f is ⊥−continuous in each a ∈ X.

They also proved the following theorem which can be considered as a real extension of Banach fixed point theorem
[1, 2, 3, 4, 5, 12, 13, 14, 15].

Theorem 1.11. [2] Let (X, d,⊥) be an O-complete metric space (not necessarily complete metric space). Let f :
X → X be ⊥−continuous, ⊥−contraction (with Lipschitz constant k) and ⊥−preserving, then f has a unique fixed
point x∗ in X. Also, f is a Picard operator, that is, lim fn(x) = x∗ for all x ∈ X.

One of the most important conditions in Banach contraction principle is the completeness of the space. Also,
in many generalizations of this theorem in different spaces such as S-metric spaces and fuzzy metric spaces the
completeness of spaces is one of the most important condition and here, there is a question that how we can weaken
the completeness condition of the space.
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Let us consider the following integral equation

x(t) =

∫ T

0

K(t, s, x(s))ds+ g(t), t ∈ I = [0, T ], (1.1)

where T > 0. Inspired and motivated by the above results, in this paper, we are interested in weakening the com-
pleteness condition of S-metric space by considering a relation on S-metric space and by using this relation. As an
application, we find the existence and uniqueness of solution of integral equation 1.1.

2 Main Result

In this section, we introduce some new definitions to prove the main results. We begin with the following definitions.
Let (X,S) be a S-metric space. Let ⊥ be an arbitrary relation on X.

Definition 2.1. The S-metric space (X,S) is ⊥-complete if every Cauchy ⊥-sequence is convergent.

Let (X,S) be a S-metric space. Let ⊥ be an arbitrary relation on X. In the following, we denote this by (X,S,⊥).

Definition 2.2. � A mapping f : (X,S,⊥) → (X,S,⊥) is ⊥-preserving if for a⊥b we have f(a)⊥f(b) for all
a, b ∈ X.

� A mapf : (X,S,⊥) → (X,S,⊥) is is said to be (S,⊥)-contraction if there exists a constant 0 ≤ L < 1 such that

S(f(x), f(x), f(y)) ≤ LS(x, x, y),

for all x, y ∈ X, x⊥y.

� A map f : (X,S,⊥) → (X,S,⊥) is (S,⊥)-continuous if for ⊥-sequence {xn} in X such that xn → x, we have
f(xn) → f(x).

Now, we are ready to prove the main theorem of this paper which can be consider as a real extension of Theorem
1.11 (Theorem 3.11 of [2]).

Theorem 2.3. Let (X,S,⊥) be a ⊥-complete S-metric space such that there exists x0 ∈ X such that x0⊥f(x) for all
x ∈ X. Let f : X → X be ⊥-preserving, (S,⊥)-continuous and (S,⊥)-contraction. Then f has a unique fixed point
x∗ ∈ X. Furthermore, for any x ∈ X we have limn→∞ fn(x) = x∗ i.e. f is a Picard operator (P.O.).

Proof . By hypothesis, there exists x0 ∈ X such that x0⊥f(x) for all x ∈ X. It follows that x0⊥f(x0). Let

x1 := f(x0), x2 := f(x1) = f2(x0), · · · , xn+1 := f(xn) = fn(x0).

Since f is ⊥-preserving, {fn(x0)}∞n=0 is an ⊥-sequence. For n = 0, 1, · · · , we get by induction

S(fn(x0), f
n(x0), f

n+1(x0)) ≤ LS(fn−1(x0), f
n−1(x0), f

n(x0))

≤ · · ·
≤ LnS(x0, x0, f(x0)).

In order to show that the R-sequence {fn(x0)} is Cauchy, consider m,n ∈ N such that m > n. From the definition
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of the (S,⊥)-metric space and by Lemma 1.5 we have

S(fn(x0), f
n(x0), f

m(x0)) ≤S(fn(x0), f
n(x0), f

n+1(x0)) + S(fn(x0), f
n(x0), f

n+1(x0))

+ S(fm(x0), f
m(x0), f

n+1(x0))

=2S(fn(x0), f
n(x0), f

n+1(x0)) + S(fn+1(x0), f
n+1(x0), f

m(x0))

≤2S(fn(x0), f
n(x0), f

n+1(x0)) + S(fn+1(x0), f
n+1(x0), f

n+2(x0))

+ S(fn+1(x0), f
n+1(x0), f

n+2(x0)) + S(fm(x0), f
m(x0), f

n+2(x0))

=2S(fn(x0), f
n(x0), f

n+1(x0)) + 2S(fn+1(x0), f
n+1(x0), f

n+2(x0))

+ S(fn+2(x0), f
n+2(x0), f

m(x0))

≤ · · ·
≤2Σm−2

i=n S(f i(x0), f
i(x0), f

i+1(x0)) + S(fm−1(x0), f
m−1(x0), f

m(x0))

≤2LnS(x0, x0, f(x0))[1 + L+ L2 + · · · ]

≤ 2Ln

1− L
S(x0, x0, f(x0)).

Thus, for m > n we have

S(fn(x0), f
n(x0), f

m(x0)) ≤
2Ln

1− L
S(x0, x0, f(x0)). (2.1)

From the above we find that {fn(x0)}∞n=0 is Cauchy ⊥-sequence. By ⊥-completeness of X, there exists x∗ ∈ X
such that fn(x0) → x∗. On the other hand, f is (S,⊥)-continuous and hence f(fn(x0)) → f(x∗). As n tends to ∞
we have

f(x∗) = lim
n→∞

f(fn(x0)) = lim
n→∞

fn+1(x0) = x∗.

Therefore, x∗ is a fixed point of f . To prove the uniqueness of the fixed point, let y∗ ∈ X be a fixed point of f . Then
we have fn(y∗) = y∗ for all n ∈ N. By our choice of x0 in the hypothesis we have x0⊥y∗ (because y∗ = f(y∗) ∈ f(X)).
Since f is ⊥-preserving, we have

fn(x0)⊥fn(y∗),

for all n ∈ N. On the other hand, f is a (S,⊥)-contraction, then we have

S(x∗, x∗, y∗) = S(fn(x∗), fn(x∗), fn(y∗)) ≤ S(fn(x∗), fn(x∗), fn(x0)) + S(fn(x∗), fn(x∗), fn(x0))

+ S(fn(y∗), fn(y∗), fn(x0))

≤ LnS(x∗, x∗, x0) + Ln(x∗, x∗, x0) + Ln(y∗, y∗, x0) → 0 as n → ∞.

Then S(x∗, x∗, y∗) = 0, hence x∗ = y∗. Let x ∈ X be arbitrary. By hypothesis we have x0⊥f(x). Since f is
⊥-preserving, then

fn(x0)⊥fn(f(x)),

for all n ∈ N. On the other hand, f is a (S,⊥)-contraction, then we get

S(fn(f(x)), fn(f(x)), x∗) = S(fn(f(x)), fn(f(x)), fn(x∗))

≤ S(fn(f(x)), fn(f(x)), fn(x0)) + S(fn(f(x)), fn(f(x)), fn(x0))

+ S(fn(x∗), fn(x∗), fn(x0))

≤ 2LnS(f(x), f(x), x0) + Ln(x∗, x∗, x0) → 0 as n → ∞.

So, limn→∞ fn(f(x)) = x∗. Hence, limn→∞ fn(x) = x∗. Therefore, f is a P.O. □

One can easily prove the following result.

Corollary 2.4. Let (X,S,⊥) be an O-complete S-metric space. Let f : X → X be ⊥-preserving, (S,⊥)-continuous
and (S,⊥)-contraction. Then f has a unique fixed point x∗ ∈ X. Furthermore, for any x ∈ X we have limn→∞ fn(x) =
x∗ i.e. f is a Picard operator (P.O.).
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3 Application in integral equation

Consider the integral equation

x(t) =

∫ T

0

K(t, s, x(s))ds+ g(t), t ∈ I = [0, T ],

where T > 0. The aim of this section is to give an existence and uniqueness theorem for a solution of the above
integral equation using results in the previous section. Let

X = {u ∈ C(I,R);u(t) > 1 for almost every t ∈ I}.

Suppose the mapping
S : X ×X ×X → R+

defined by
S(x, y, z) = sup

t∈I
|x(t)− y(t)|+ sup

t∈I
|x(t)− z(t)|+ sup

t∈I
|y(t)− z(t)|,

for x, y, z ∈ X. Define the following relation ⊥ in X:

x⊥y if x(t)y(t) ≥ y(t),

for almost every t ∈ I. Its easy to see that (X,S) is ⊥-complete S-metric space.

Theorem 3.1. Suppose the following hypotheses hold:

1. K : I × I × R → R and g : I → [1,∞) are continuous.

2. There exists a continuous function G : I × I → [0,∞) such that

|K(t, s, u)−K(t, s, v)| ≤ G(t, s)|u− v|,

for each u, v ∈ R, u⊥v and each t, s ∈ I.

3. supt∈I

∫ T

0
G(t, s)ds < r for each r < 1.

Then the integral equation 1.1 has a solution u ∈ C(I,R).

Proof . In (S,⊥)-metric space (X,S,⊥)a mapping

A : (X,S,⊥) → (X,S,⊥),

can be defined by

Ax(t) =

∫ T

0

K(t, s, x(s))ds+ g(t),

for almost every t ∈ I. Note that if x ∈ X is a fixed point of A, then x is a solution to the 1.1. First, we claim that
for every x ∈ X, Ax ∈ X. To see this, for every t ∈ I, x ∈ X, we have

Ax(t) =

∫ T

0

K(t, s, x(s))ds+ g(t) ≥ 1.

One can conclude that Ax(t) > 1 and we have Ax ∈ X. Now, we check that the hypotheses in Theorem 2.3 is
satisfied. to do this, we show that

1. There exists x0 ∈ x such that x0⊥A(x) for all x ∈ X.

2. A is ⊥-preserving.

3. A is (S,⊥)-contraction.

4. A is (S,⊥)-continuous.

Proof .

1. Put x0 = 2 (the constant function x0 = 2), we have 2⊥A(x) for all x ∈ X.
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2. We recall that A is ⊥-preserving if for every x, y ∈ X, x⊥y, we have Ax⊥Ay. We have shown above that
Ax(t) > 1 for every t ∈ I, which implies that Ax(t)Ay(t) ≥ Ay(t) for all t ∈ I. So Ax⊥Ay.

3. Let x, y ∈ X, x⊥y and t ∈ I, we have

|Ax(t)−Ay(t)| = |
∫ T

0

K(t, s, x(s))ds+ g(t)−
∫ T

0

K(t, s, y(s))ds− g(t)|

= |
∫ T

0

[K(t, s, x(s))−K(t, s, y(s))]ds|

≤
∫ T

0

|K(t, s, x(s))−K(t, s, y(s))|ds

≤
∫ T

0

G(t, s)|x(s)− y(s)|ds

≤ sup
t∈I

|x(t)− y(t)| sup
t∈I

∫ T

0

G(t, s)ds

≤ r sup
t∈I

|x(t)− y(t)|.

So,
sup
t∈I

|Ax(t)−Ay(t)| ≤ r sup
t∈I

|x(t)− y(t)|.

Therefore, we have

S(Ax,Ax,Ay) = 2 sup
t∈I

|Ax(t)−Ay(t)| ≤ 2r sup
t∈I

|x(t)− y(t)| = rS(x, x, y).

This proves that A is (S,⊥)-contraction with Lipchitz constant λ = r < 1.

4. Let {xn} be an (S,⊥)-sequence in X such that {xn} converges to some x ∈ X. Since A is ⊥-preserving, {Axn}
is an (S,⊥)-sequence, too. For each n ∈ N, by (2) we have

|Axn −Ax| ≤ λ|xn − x|.

As n goes to infinity, it follows that A is ⊥-continuous.

□

The mapping A satisfies the hypotheses of the Theorem 2.3. Thus, existence and uniqueness of its fixed point
x∗ ∈ X has been guaranteed by Theorem 2.3 . As noted above x∗ is a unique solution to integral equation 1.1. □

References

[1] H. Baghani, M. Eshaghi Gordji and M. Ramezani, Orthogonal sets: their relation to the axiom of choice and a
generalized fixed point theorem, J. Fixed Point Theory Appl. 18 (2016), no. 3, 465–477.

[2] M. Eshaghi Gordji, M. Ramezani, M. De La Sen and Y. J. Cho, On orthogonal sets and Banach fixed point
theorem, Fixed Point Theory 18 (2017), no. 2, 569–578.

[3] M. Eshaghi and H. Habibi, Fixed point theory in generalized orthogonal metric space, J. Linear Topol. Algebr. 6
(2017), no. 3, 251–260.

[4] M. Eshaghi, H. Habibi and M. B. Sahabi, Orthogonal sets; orthogonal contractions, Asian-European J. Math. 12
(2019), no. 3, 1950034.

[5] M. Eshaghi and H. Habibi, Existence and uniqueness of solutions to a first-order differential equation via fixed
point theorem in orthogonal metric space,Facta Univ. Ser. Math. Inf. 34 (2019), 123–135.

[6] Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal. 7 (2006),
289–297.

[7] Z. Mustafa, H. Obiedat and F. Awawdeh, Some common fixed point theorems for mapping on complete G-metric
spaces, Fixed Point Theory Appl. 2008 (2008), Article ID 189870.



Banach fixed point theorem on incomplete orthogonal S-metric spaces 157

[8] Z. Mustafa and B. Sims, Some results concerning D-metric spaces, Proc. Int. Conf. Fixed Point Theory Appl.
Valencia, Spain, 2003, pp. 189–198.

[9] N.Y. Ozgur and N.Tas, Some fixed theorems on s-metric spaces, Mat. Vesnik. 69 (2017), no. 1, 39–52.

[10] S. Sedghi, N. Shobe and A. Aliouche, A generalization of fixed point theorems in s-metric spaces, Mat. Vesnik.
64 (2012), no. 3, 258–266.

[11] S. Sedghi, N. Shobe and H. Zhou, A common fixed point theorem in D∗-metric spaces, Fixed Point Theory Appl.
2007 (2007), Article ID 27906, 13 pages.

[12] M. Ramezani and H. Baghani, The Meir–Keeler fixed point theorem in incomplete modular spaces with application,
J. Fixed Point Theory Appl. 19 (2017), no. 4, 2369–2382.

[13] A. Bahraini, G. Askari, M. Eshaghi Gordji and R. Gholami, Stability and hyperstability of orthogonally ∗-m-
homomorphisms in orthogonally Lie C∗-algebras: a fixed point approach, J. Fixed Point Theory Appl. 20 (2018),
no. 2, 1–12.

[14] M. Ramezani and H. Baghani, Contractive gauge functions in strongly orthogonal metric spaces, Int. J. Nonlinear
Anal. Appl. 8 (2017), no. 2, 23–28.

[15] M. Ramezani, Orthogonal metric space and convex contractions, Int. J. Nonlinear Anal. Appl. 6 (2015), no. 2,
127–132.


	Introduction
	Main Result
	Application in integral equation

