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Abstract

In this article, we consider a logarithmic viscoelastic plate equation with distributed delay. Firstly, we study the
local and global existence of solutions by using the energy method combined with Faedo-Galerkin method. Then, by
introducing a suitable Lyapunov functional, we prove the asymptotic behavior of the solution. Our results are more
general than the earlier results.
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1 Introduction

In this paper, we study the logarithmic viscoelastic plate equation with distributed delay

[ug|” gy + A% — Augy — fg h(t— o) A?u(x,0)do
+pug (2, t) + f: p2 (8)ug (z,t — s)ds

=bulnu in  x (0,400),
_ du(t) _ (1.1)
u(z,t) = =5~ =0 on I x (0,4+00),
w(z,0) =ug (), u(x,0) =up (x) in Q,
ug (x, —t) = fo (z,1) in Q x (0,72),

where €2 is a bounded domain in R™, n € N, with a smooth boundary 9Q =T, p > 0, p; is a positive constant, b
is a positive real number and h is a positive nonincreasing function defined on R*. (ug,u1, fo) are the initial data
belonging to a suitable function space. Moreover, ps : [11,72] — R is a bounded function, where 7 and 75 are two
real numbers satisfy 0 < 71 < 79. v is the unit outward normal vector.
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We consider the vibration of a viscoelastic beam, in one-dimensional space. The constitutive relationship between
the stress IV and strain u satisfies

¢
N (z,t) = Quggy — / g (t — 8) Uges (z,5)ds,
0

where the constant « represents the tension stiffness, and g is so-called relaxation function. We can get, if there exists
the load F' (z,t,u,u;) on the beam, the following model:

« a [* F
U + piAuxzzx - pj 0 g (t - 5) umzzxds = pj’

where p and A represent the density and the cross-sectional area of the beam, respectively.

We have the Euler-Bernoulli viscoelastic model ( when p% =1, F =0), in high-dimensional space, as follows:

t
’U,tt“l‘AQU—/ g(t—s)A%u(s)ds =0,
0

where A represents the Laplacian operator with respect to the spatial variables in R" (n > 2) and

[35].
e Problems with logarithmic nonlinearity:

Logarithmic nonlinearity generally appears in super symmetric field theories and in cosmological inflation. From
Quantum Field Theory, logaritmic source term seems in nuclear physics, inflation cosmology, geophysics and optics
(see [, II).

For the literature review, firstly, we begin with the studies of Birula and Mycielski [5l [6]. The authors investigated
the equation with logarithmic term as follows

Uty — Upe +u — euln |u* = 0. (1.2)
This equation is a relativistic version of logarithmic quantum mechanics. They are the pioneer of these kind of
problems.

In 1980, Cazenave and Haraux [7] introduced the following equation
Uy — Au=uln |u|”, (1.3)

and the authors proved the existence and uniqueness of the solution for the Cauchy problem. Gorka [I1] obtained the
global existence results of solutions for one-dimensional of the equation (1.3)). Bartkowski and Gorka [4], considered
the weak solutions and obtained the existence results.

In [14], Hiramatsu et al. studied the equation as follows
utt—Au+u+ut+}u2’u:ulnu. (1.4)
In [I3], Han established the global existence of solutions for the equation .
In [3], Al-Gharabli and Messaoudi concerned with the plate equation with logarithmic term as follows
wge + A%u+u+ h(ug) = kuln|ul. (1.5)

They established the existence results by the Galerkin method and obtained the explicit and decay of solutions utilizing
the multiplier method for the equation ([1.5)).

In [20], Liu introduced the plate equation with logarithmic term as follows

m—2

wge 4+ A2+ Jug|™ 2wy = |ulP % ulog |ul” . (1.6)

The author proved the local existence by the contraction mapping principle. Also, he studied the global existence and
decay results. Moreover, under suitable conditions, the author proved the blow up results with F (0) < 0.
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¢ Problems with time delay:

Time delays often appear in many practical problems such as thermal, economic phenomena, biological, chemical
and physical [I5].

In 1986, Datko et al. [I0] indicated that delay is a source of instability. In [23], Nicaise and Pignotti studied the
equation as follows
uge — Au+ agug (x,t) + aug (x,t —7) =0, (1.7)

where ag, a > 0. They proved that, under the condition 0 < a < ag, the system is exponentially stable. The authors
obtained a sequence of delays that shows the solution is instable in the case a > ag. In the absence of delay, some
other authors [19] [37] looked into exponentially stability for the equation . In [36], Xu et al., by using the spectral
analysis approach, established the same result similar to the [22] for the one space dimension.

In [24], Nicaise et al. studied the wave equation in one space dimension in the presence of time-varying delay. In
this article, the authors showed that the exponential stability results with the condition

a <+V1—dag,

here d is a constant and
7 (t) <d<1,Vt>0.

In [16], Kafini and Messaoudi studied wave equation with delay and logarithmic terms as follows
Ut — A+ pyug (2, 8) + poug (2,6 — 7) = |[ul’ "> ulog |ul” . (1.8)

The authors proved the local existence and blow up results for the equation (|1.8)).

In [25], Park considered the equation with delay and logarithmic terms as follows
g — Au+ auy (t) + Bug (z,t —7) = uln |u]” . (1.9)
The author showed the local and global existence results for the equation (|1.9). Also, the author investigated the
decay and nonexistence results for the equation (1.9)).
In the absence of the logarithmic source term (bulnw), the problem (1.1)) can be reduced as follows
g | wge + A2u — Aug, — fg h(t—o)A%u(x,0)do

g (,8) + [7 p2 (5) wg (2,8 — ) ds (1.10)
= 0.

Zineb et al. [32], considered the existence and proved stability of the solutions for the equation (1.10]). Recently, some
other authors studied related problems (see [2] 9, [16], 17, 211 26| 27, 28] 29, 30, BT, B3], 34, [35]).

There is no research, to our best knowledge, about the logarithmic (bulnw) viscoelastic plate equation with a
varying material density (|us|”) and distributed delay term ( f;f 1o (8) ug (x,t — s) ds), hence, our paper is generalization
of the previous ones. Our aim is to establish the local existence, global existence and asymptotic behavior of the
solutions.

The outline of this paper is as follows: Firstly, in sect. 2, we give some assumptions and lemmas needed in our
proof. Then, in sect. 3, we get the existence result. Moreover, in sect. 4, the asymptotic behavior result is established.

2 Preliminaries

In this part, to prove our main result, we give needed materials. We will use the Sobolev space HZ (€2) and the
Lebesgue space L? () with their usual scalar products and norms. We denote by (-,-) the inner product in L? (Q).
The constant C' is a generic positive constant, throughout this paper.

We have the following assumptions:

(A1) The relaxation function h : RT™ — R™ is a bounded function of C! so that

/ooh(a)da:ﬁ<1andl—/mh(a)do:l,h(0)>0, (2.1)
0 0
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and we suppose that there exists a positive constant { satisfy

R (t) < —Ch(t). (2.2)
(A2) We suppose that
T2
[z s)lds < . (2.3)
T1
Let £ be a positive constant satisfies
2 Ty — T
[ las + S22 (2.0
(A3) b is the constant in such that
1 <b<27le’. (2.5)

We assume X is the first eigenvalue of the spectral Dirichlet problem

Azu:Au,inQ,u:%:OinF,

I
1
Vull, < 7 [[Aull, - (2.6)
Lemma 2.1. [I] Assume that ¢ be a number with
2<g<+4oo,(n=1,2)or2<¢g<2n/(n—-2), (n>3),
then, there exists a constant Cs = Cs (€, ¢) satisfying
[ull, < Cs [[Vully for u e H (). (2.7)
Lemma 2.2. [32] For h, ¥ € C* (|0, +o00[, R) we have
1 s 1,
hxWWdzr = —gh (@)Y @)ll; + 5 (R o V) (1)
Q
1d ¢ 5
—5 7 [(ho W) (1) — h(s)ds ) ¥ (D)) - (2.8)
2dt 0

Lemma 2.3. [8, [12] (Logarithmic Sobolev inequality) Suppose that u is a function in H} () and a > 0 is a number.
Then,

1 2 o a? 2 2
[t mulde < 3 ol n ol + & 19l - 1+ )l 29)

Corollary 2.4. [2] Assume that u is a function in H2 (2) and a > 0 is a number. Then,

1 2 o a? 2 2
/Qu2 Infuldz < 3 flully In flully + o [Aull; = (1 +1na) [luf;. (2.10)

Lemma 2.5. [7] (Logarithmic Gronwall inequality) Suppose that C' > 0, v € L' (0,T; R*) and suppose that the
function w : [0,T] — [1, 00) satisfies

w(t) <C (1 +/O v (s)w (s)In(w(s)) ds) , VYt e [0,T]. (2.11)

Then .
w(t) < Cexp (C’/O v (s) ds) , Vvt €10,T]. (2.12)
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Lemma 2.6. [2] Let ¢y € (0,1). Then, there exists d., > 0 satisfying

sllns| < s? +dg,s' 7, Vs > 0. (2.13)

Lemma 2.7. [2] Suppose that h satisfies (A1). Then, for u € H3 (Q2), we obtain

2

/Q (/Ot h(t—s)(u(t) —u(s)) ds) dz < ¢ (ho Au) (t) (2.14)

and
2

/Q (/Ot W (t =) (u(t) —u(s)) ds> do < —c (B o Au) (t). (2.15)

Formulation of the results:
Firstly, we introduce, similar to [22], the new variable

z(z, K, 8,t) = ug (x,t — KkS), (x,K,s,t) €Qx(0,1)x (11, 72) X (0,00),

which implies that
sz (z, K, 8, t) + 25 (T, K, 8,8) =0 in Q x (0,1) X (71,72) x (0,00).

Hence, problem (1.1]) can be transformed as follows:

[ug|” wee + A u—Autt—fo (t— o) A%u(z,0)do

g (2,8) + [T po (s) 2 (2, 1,8, 1) ds

=bulnu in Q x (0,400),
u(z,t) = augi’t) =0 on I' x (0, —|—oo)7 '
2 (x,0,8,t) = us (1) in Q x (0,00),
u(x,0) =ug (x), us (x,0) =uy (x) in Q,
z (z,k,8,0) = fo (x,Ks) in x(0,1) x (11, 72) .

We define the energy functional of (2.16]) by
p+2 ‘ 2 1 2
E(t) = p+2 e | +2+ L=/ h(o)do | [|Aul]” + 5 [|Vue]

2 b 2
+§ (hoAu)(t) §/Q|u\ 1n|u\dm+i||u||
1 1 T2
+§// / s (|2 (8)] + &) 22 (z, K, 5, t) dsdrdz, (2.17)
Q 0 T1

(hoAv)(t) = /0 h(t = o) | A (£) — Av (o) do-

where

Lemma 2.8. Assume that (u, z) is a solution of problem (2.16)) and suppose that (A1)-(A3) satisfy. Then, E (¢)
defined by (2.17) satisfies

2w < —(m —/”|u2<>|ds—’f())|| wl?

// x,l,stdsdxffh()HA I? + = (’OAu)(t)
0, Vt > 0. (2.18)

IN
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Proof . We multiply the first equation in (2.16)) by u; and integrate over {2 and use integration by parts, we obtain

d +2 2 1 2
G Lo I3+ 5 19l + 5 )
b b
/|u| Inful de + 2 |u||]
+u1|\ut\|2+/ 2 (s)/z(:z:,l,s,t)utda:ds
T1 Q

t
// h(t—o)Au(o)Auy (o) dodx. (2.19)
QJ0

For the term on the right-hand side of (2.19)), from Lemma 2.2, we have

//t (t — o) Au (o) Auy (o) dodx

_ ;;[/h )do || Aull? — (ho Au) ()

Lo awy @) - fh( )1 Aulf?. (2.20)

V] \

Utilizing Young’s inequality, we obtain

2
/ 142 (5)/ (z,1,s,t) udsde
T1 Q

1 ([ 1
< 5 (/ |12 (8)|d«9) / ujds + 5// k2 (s)] |22 (2,1, 5,1)| dsda. (2.21)
1 Q QJrm

We multiply the second equation in (2.16]) by (Jus (s)| + £) z and integrate over  x (0,1) X (71, 72) with respect to &,
z and s, we get

th// / (luz ()| + &) 2° (z, K, 5,t) dsdrdz
75/9/0 /T (2 ()] +€) 8722 (2,5, 5,t) dsdrdz

::%/Qmﬂn+o/wwm

_//T (2 (5)] + €) 22 (2,1, 5, £) dsd

::2km—m+[ymmm{4 2d

_;/Q/TQ (2 (s)] +€) 2* (2,1, 5,t) dsda. (2.22)

Consequently, by combining (2.19)-(2.22) and using (2.1)-(2.5) give (2.18), hence, we conclude the proof. O
Theorem 2.9. (Existence) Let up € H3, uy € H§ () and fo € HZ (2, H?(0,1)) satisfies the compatibility condition
fo (', 0) = Uz.

Suppose that (A1)-(A3) hold. Hence, problem (1.1)) has a weak solution:

u € L= ([O,oo) ;Hg) ,up € L™ ([0,00) s HE (Q))
uy € L ([0,00); Hy (Q)). (2.23)
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Theorem 2.10. (Asymptotic behavior) Suppose that (A1)-(A3) hold. Then, F (t) energy functional (2.17)) satisfies,
E(t) < koe ™t vt >0, (2.24)

where kg and k; are positive constants.

3 Existence
3.1 Local existence

Proof of Theorem 2.9:

In this part, we get the local existence result of (2.16]) by using the Faedo-Galerkin method. We suppose ug €

HZ (), uy € HZ (Q) and fo € HF ()N H?(0,1). Assume that 7' > 0 is fixed and suppose {w*}, k € N be a basis of

HZ (Q) the space generated by w!, w?,--- w¥. Next, we define, for 1 < j < k, the sequence ¢’ (z, p) as follows:

¢ (x,0) = wl. (3.1)
Next, we extend ¢’ (z,0) by ¢ (z, p) over L? (Q x (0,1)) such that ((ﬁj)j forms a basis of L? () x H? (0,1) and show
Z, the space generated by {gbk}. We construct approximate solutions (u*,z¥), k=1, 2,---, in the form
=Y W (@), () =D d* (1) (), (3.2)
j=1 j=1

where ¢/* and d7* are determined by ordinary differential equations as follows
(|ut | umwj> + (Auk,ij) + (Vuft,ij) + (uf,wj)

—/0 h(t—o) (Auk(a),ij)da—l—/O po (s) (2% (2,1, 8,t) ,w’) ds

= b/ uk 1n|u\kwjdx, (3.3)
Q
2P (2,0, 8,t) = ulF (x,1), (3.4)
uf (0) = ub = Z (uo, w’) w?! = g, in H (Q) as k — +oo, (3.5)
j=1
k .
uy (O):u’f:Z(ul w ) w? = uy, in Hy (Q) as k — 400 (3.6)
j=1
and A
(szf +2F,¢7) =0,1<j <k, (3.7)
k
28(0,k,5,0) = 28 = Z fo. &) ¢ — fo in Hf (Q, H§ (0,1)) as k — 4oo. (3.8)
Jj=1

AsO0<p< % if n > 3, by using the Sobolev embedding, we get
Hi (2) = L*¢*) (Q),

and the same occurs for n = 1, 2 where p > 0. By the generalized Holder inequality, we note that ﬁiu) +2(p71+1)—|—% =1,
the nonlinear term ( ‘ut ‘p ul, w’) in makes sense.
The standard theory of ODE guarantees that the sybtem 3)-(3.8) has an unique solution in [0, %), with 0 <ty <

T, utilizing Zorn lemma since the nonlinear terms in are locally Lipschitz continuous. Noting that u” (¢) is of
class C?.
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Now, we get a priori estimate for the solution of (3.3)-(3.8]), thus, it can be extended to [0,7) and that the local
solution is uniformly bounded independently of k£ and t.

First estimate:

By Lemma 2.8, since the sequences uf, u¥ converge, we find a positive constant C; independent of k satisfying

E¥ (t) = E*(0)

e e N T
// /|z (#,1,5,0)| dsdzdo
-3 [r@ st @ do 3 [ 0o 808) ()0
< (= [Cmenas- 22 [ ) i
// / | (2,1, 5,0) | dsdado. (3.9)

Since h is a positive nonincreasing function, we obtain

0+ (- [ las - £222) [ an
5// /|z (2.1, 5,0)[ dsdado

: Ek = (3.10)
where
t
k G 12
ER(t) = p+2H Hp+2 ( /Oh(U)d0> HAu H
LI+ L o a0 2 [ it

+- ||uk||2 + f/ / / s(|p2 (s)]+€) ’Zk (x, /9,5,15)’2 dsdrdz.
4 2 Q 0 T1

By applying the Logarithmic Sobolev inequality, (3.10)) yields

b b
a2+ (1= e ) I+ [+ b0+ ) o

+ | Vb || + (ho At (1)

1 T2
+// / s(\u2(8)|+§)|zk(x,/<;,s,t)|2dsdndm
Q 0 T1
T2 1 2
+// / ‘zk(x,l,s,a)‘ dsdzrdo
QJr 0

< Cot ] mn ¥,

where Cs is a positive constant.

Choosing

orl
32 < g </ g (3.11)

b 2
l—%>0 (3.12)

will make



On a logarithmic viscoelastic plate equation with distributed delay 771

and b
5 Hb(1+ma)>0. (3.13)

Thanks to (A3), this selection is possible. Hence, we obtain

b 1755 + A [+ 9 |4 [l |+ (0 Au) 1)

1 T2
+// / s(\ug(s)|+£)|zk(m,m,s,t)|2dsdndx
Q 0 T1
T2 t 9
—|—// / |zk(x,1,s,a)| dsdxdo
Q T1 0

< e et et (3.14)

Let us note that .
uf (t) = u* (0) + / uk (s) ds.
0

Then, utilizing Cauchy-Schwarz’s inequality, we obtain

l[u® (0] + 2 H/Ot ¥ (s) ds 2

uk ? t Uk S ? S. .
o @) +27 [ s (3.15)

2
I

IN

e

IN

Therefore, (3.14) gives
t
l*|* < ¢ (1 + [ ||uk||21n|¢uk||2ds> , (3.16)
0

where C = max {2Tc, 2 ||uk (0)||2} Applying the Logarithmic Gronwall inequality to (3.16), we get

[uf||* < CeCT. (3.17)

Therefore, from (3.14), we obtain the first estimate:

b 17705 + [+ 9 |4 [l | 4 (0 A) 1)

1 T2
/ / / s (|2 ()] + &) |2F (a, K,S,t)|2 dsdrdx
// /|z 1’,1,SJ| dsdxdo

< c(1+ Ce®T In (C’eCT)) As. (3.18)

The estimate implies that the solution (u*,z*) exists in [0,7) and it yields
u" is bounded in Lf3, (0, 00, Hj (Q)), (3.19)
uy is bounded in L3, (0,00, Hj (Q)), (3.20)

s (lua (s)| + €) 2% (2,5, 5,) is bounded in Lf3, (0,00, L (2 x (0,1) x (11,72))), (3.21)
2% (2,1, s,t) is bounded in L? (Q x (11, 7) x (0,T)). (3.22)

Second estimate:
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We replace w? by —Aw? in (3.3), multiply by ¢/* and sum up over j from 1 to k, such that

1d
5 IVt + aut] _/ b | b, Ak da
t
—/ h(t—o) | VAUF (t) VAUF (0) dedo
Q
+/ o ( /Vz (x,1,s, t)Vufdsda:—&—ulHVutH

= —b/ Aufuf In [u¥| dz. (3.23)
Utilizing Green’s formula, we get

/|ut| ul, Auldx

i /Q [uf [V d — (o -+ 1) / CARATHES (3.24)

Replacing ¢7 by —A¢? in (3.7), we multiply by (|p2 ()| + &) d7F and sum up over j from 1 to k, we obtain

s (Juz (s)] + f)/ VzEVerda + (s (s)| + 5)/ V2V Fde = 0. (3.25)
Q Q
Then, we get
s (Jp2 (s (2)|+€ 2 kH i |M2(2)|+f d 2 kH (3.26)

integrating over (0,1) x (71, 72) to find that

1d [t [m
5%/ / s (|p2 (S)|+§)/ ’VZk (x,m,s,t)fdsdﬁdg;
0 Q
1
2

T1

/T (|12 (s)] +£)/Q |V 2* (ac,l,s,t)’zdsdm

(3.27)

|
e

Combining (3.23) and (3.27)), taking into consideration Lemma 2.2, we have

2dt

/ / (lpe (s H—f/’Vz (2, K, 5,1)| dsdﬁdx—l—Q/’ut ‘V k’ dx

+§/ (2 (s) |+£/|Vz (,1,5,1)|" dsdz

1d {(1 - /th(a) da) VA + || Auk|’ + (ho VAUF)

2
= (p+1) / |ut | Vub, Vufdx — / 75 (5)/ V2P (2,1, 8,t) Vuldsdx
Q Q

T1

1 /™
~m I\VufHQ%/ (In2 (8)|+§)/Q|Vuf]2dsdx

—fh () |[VAuk|* + 5 (h’ovmﬁ)—b/Aufuk1n|u’f|dx. (3.28)
Q
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By the first estimate (3.18) and utilizing Young’s inequality, we obtain for > 0

(p—l—l)/]uﬂquftVufdx < (p+ 1) Oy I |1k
Q

p—|—1) C2p/(p+2)+1

A

n||Vuk|® + (3.29)

dn

Utilizing Young’s inequality, we have
/ o ( /Vz x,1,s,t) Vuldsdz

< f/ 2 (5) [ 1V dc

-H]// 2 (s)| | V2" (x71,s,t)|2dsdx
Q T1

T2 2
IVl 1 / / 2 ()] [V2* (2, 1, 5,0) [ dsde
Q T1

IA

< &C’Q—H?// \,ug(s)||Vzk(x,1,s,t)|2dsda:
477 Q T1
< C(U)-H?// \,uz(s)||Vzk(x,1,s,t)‘2dsd$. (3.30)
Q T1

From Lemma 2.6, to estimate the last term on the right-hand side of (3.28), with ¢y = (1/2) and utilizing Young’s,
Cauchy-Schwartz’s and the embedding inequalities, we get:

b/Q|Auf| (|uk|2+d€0\/uk|> dx
1 2
b(n/ﬂ|Auf|2dm+477/Q(|uk|2+d€0\/|uk|> dm)
bn/‘Auﬂde—i—c(/ |uk’4dx+/’uk’dx>
Q 4n \Ja Q

by || A |* + i (17 + [lw*]) . n > 0. (3.31)

IN

‘b/ AufuP In |uk| dz
Q

IN

IN

IN

Taking into account (3.29)-(3.31)) into (3.28]), we have

1d K kN2 B2 k
5T 17/ h(o)do | ||VAu||" + [[Auf||” + (ko VAUY)
0

T2 1
/ / s(yg(s)+§)||Vzk(x,/i,s,t)||2dsdn+2/|uf(t)|p}Vuf|2d:c}
T1 0 Q

1

—|—§/ (Ju2 (8)| + & —2n) HVzk (z, 1,s,t)H2ds

< 0 Vuel? —fh t)[|[VAu ’fH + = (’ovAuk)+C(n)

N *@(”V“k” —i—HukH). (3.32)
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We multiply || by (:Zf and sum up over j from 1 to k, we obtain
P 2 2
[k 9] o+ |

/ A2k uttder/ (t—o / AuF (o) Auk, (t) dedo

ful/ututtd:r // pa (8) 2% (2,1, 5, t) ul,dsdx
™

+b/ upyu® In |u¥| da. (3.33)

Differentiating (3.7]) with respect to ¢, we obtain
(szt + 26, ¢7) = 0. (3.34)

We multiply by (|2 (s)| + €)di* and sum up over j from 1 to k, to have

s(|p +¢&)d I +¢& d
(Ip2 (s)] 4 5P 4 |12 (s)] 2 ||v- FIIP =0, (3.35)
2 2
we integrate over (0,1) x (71, 72) with respect to x and s, to get
1d ™ (! & 2
1d sz (5) +€) [ |V2k (@ n,5,1)[ dsduds
2dt T1 0 Q
1 (™ 2
45 [ eI+ [ |ViE (1,50 dsdo
T1 Q
1 (™ 12
5 [ U149 [ (9 dsaa
_— (3.36)
Summing (3.33]) and (| -7 we have
/’ut’ V[ de + || Vi |
+§%/ / (|2 ()| +€) /|Vzt T, kK, 8 t| dsdkdx
1
+§/ (lp2 (8)| +€) /|Vzt z,l,st| dsdz
= /Azu uttdx—i—/ (t—o) /Au ) Auk (t) dedo
fUl/ututtdzf// pa (8) 2% (2,1, 5, t) ul,dsdx
1
—|—§/ (| e (s)|—|—§)/ ‘Vuft’ dsdx—l—b/uftukln‘uk‘dm. (3.37)
T1 Q Q

Utilizing Young’s inequality, the right hand side of (3.37)) can be written

/ A*uFul.dr <n HVuttH —|— HVAU’“H n >0, (3.38)
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and

/ (t—o /Au ) Auk, (t) dado

_ / t—a/VAu ) Vb, (1) dedo
B2

< n[Vul + @) [V A
b (1 + 1) (hoVAuF). (3.39)
4n U

By using Young’s inequality, we get

2
o [ wbudde <l 5
Q n
2,,2
< 002 [l + S wu?
< nC2||Vub|® +C (), (3.40)

and

T2
// o (s) 2% (2,1, 5,t) uk.dsdx
Q T1
2 [T k|2
< € [l o)l [ |Vl dsdo
T1 Q
1 (™ & 2
= [T @) [ | @150 dsda
477 T1 Q

2 1 (™ 2
< 7703/11/ ’Vuft‘ +4—/ |2 (3)|/ ‘zk (2,1,s,t)|" dsda. (3.41)
Q nJn Q

For the last term in the right-hand side of | , by applying 1] with gg = % and utilizing Young’s, Cauchy-
Schwarz’s and the embedding inequalities, we have

b/uttu ln’uk’dx < c/utt(’ukf—&—d\/i)dx

< < /}utt| dzr + (| k| er\/TC) dz)
< |V + & (/ k| do + Qfdx)
< o | Vb |+ = (||AukH + [lut])) (3.42)
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Taking into account (3.38)-(3.42)) into (3.37)), satisfies
k|P E |2
[ (9t o

-l-th/T1 / (|2 () +€) /|Vzt x/ist| dsdrkdx
1
w5 [ Qe+ 0 [ [V @ s0f dsie
T1 Q

+(1-7(2+C2+C2u) — od) || Vuy |

< %(1+62(1+n )) ||V Ak +ﬁ<1+n> (ho VAuU)
+i/ |M2(3)|/ ‘z (m,l,s,t)| dsdx + C (n)
477 T1 Q
c 4 2
+4—6(||Auk|| + [lut]). (3.43)

Therefore, by (3.32) and (3.43)), we get

t
1d {(1—/ h(a)) VA + || Auk|* + (h o VAUF)

T2 1
[ s Uz @)+ 995 (o) dsd
T1 0
T2 1
+/ / s (|ua2 (5)|+§)||sz (z,n,s,t)||2dsd/<;+2/ |uf‘p}Vuf|2d:c}
T1 0 Q
1 [m & 2
—|—§/ (|2 (s)|—|—€)/ ‘Vzt (a:,l,s,t)’ dsdz
T1 Q

1 (™
43 [ i@+ ¢ 20) V4 (01,50 ds

T1

( n(3+C2+ 02,“) — ) ||vu,|?

< ﬂh () |[vaur|® + 5 (h’oVAu)
1
%(1+B2 1+n)||VAukH
% < ) hoVAu )
%/T |2 (s |/|z x,1,5t| dsdx + C (n)
C
E(HMH + [lut]*) (3.44)



On a logarithmic viscoelastic plate equation with distributed delay T

Choosing § > 0 and 7 small enough such that (1 —7(3+ C2 + C21) — ¢6) > 0 and integrating over (0,1), we get

t
! [(1 -/ h(a)> VAP + [|Adt|? + (ho VAub)
0
T2 1
+/ / s(|u2(s)|+£)HVzk(:c,n,s,t)szsdn
T1 0
T2 1
+/ / 3(|N2(3)|+§)Hvzf(%’@&t)szSdli—i-Q/‘uﬂp‘Vuf‘de}
T1 0 Q
t T2
w5 [ [ @l e [ (v 15,00 dsdodo
2 0 T1 (9]
t
+(1_n(3+c§+c§u1)—65)/ Va2 do
0
1 T2 t
3 [ U@+ e-20) [V 05,0)| dsio
T1 0
1 ! k2 1 ¢ / k
**/ h (o) ||VAu"|| da+7/ (b o VAU®) do
2 Jo 2 Jo

+4— (1+8%(1+n) /HVAukH do
f<1—|— >/ (hoVAu)( ) do

—/ |[1,28|//‘Z x,l,st| dsdxdo + C (n) T

i (||AU’“|| o+ [Je|[°) (3.45)

IN

*475

Using Gronwall’s Lemma and taking h; = min {h (¢) | for all ¢ > t¢}, we have
VA + [[auf]* + (b o VAL) / |Vl ()] do

T2 1
k
+/ﬂ / s (l2 ()] +8) | V2" (@, 5, 1)||” dsdr

t T
+/ / s (|2 (s)|+§)/ |Vzy (x,n,s,a)]zdsdxdo
// (lp2 (s)| +€) / |Vzf x,l,so| dsdzdo

+7/ (Juz (s)| + & — 277/||Vz xlst” dsdo

2
< Cs. (3.46)
The estimate (3.46]) yields
(u") is uniformly bounded in L (0,T; H (%)), (3.47)
(uf) is uniformly bounded in L*° (0,7; L2 (Q)) N L™ (0,T; H§ () , (3.48)
(u¥) is uniformly bounded in L2 (0, T; H? (Q)) . (3.49)

We see that by the estimates (3.18) and (3.46) that there exists a subsequence {u™} of {u*} and a function u such
that
u™ — u weakly star in L (0,T; H? (Q)), (3.50)

uy” — uy weakly star in L™ (0,7 L2 (Q)) N L™ (0,T; H§ (), (3.51)
u™ — u weakly in L? (0,T; Hf (), (3.52)
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u® — uy weakly in L* (0,7 LP7 (Q)) N L* (0, T; Hf (), (3.53)
ugy — uy weakly in L? (0,T; Hg () . (3.54)

Analysis of the nonlinear terms:

First term (u*In |uk|) By using l} we have (u™) is bounded in L*® (O,T; H? (Q)) which implies, utilizing
the embedding of HZ (Q) in L™ () (2 C R?), the boundness of (u™) in L? (Q x (0,T)). In a similar way, (u}") is
bounded in L% (Q x (0,T)). Next, by using Aubin-Lions theorem, we have a subsequence such that

u™ — u strongly in L? (Q x (0,7)) (3.55)

which implies
u™ — wae in Qx(0,7T). (3.56)
Because of the maps s — bsln |s| is continuous, we find the following convergence:

bu™ In [u™| — buln |u| a.e. in Q x (0,7T). (3.57)

From the embedding of Hj (Q2) in L™ (Q) (2 C R?), we see that b(u™ In |[u™|) is bounded in L> (2 x (0,7)). Now,
taking into consideration the Lebesgue bounded convergence theorem (€2 is bounded), we have

bu™ In [u™| — buln|u| strongly in L? (0,T; L? (Q)). (3.58)

Second term (|uf |p |uf|): From , we see that (uf) is uniformly bounded in L> (0,7 H? (Q)) which implies
the boundedness of (u}*) in L™ (Q x (0,T)), and so in L% (2 x (0,T)). Also, we know that (u}}) is bounded in
L? ((0,T); H3 (Q)) which implies that (u}}) is bounded in L* (Q x (0,T)).

From the first estimate in (3.18) and Lemma 2.1, we conclude

T
k1P K _ k12(p+1)
1t gy = T
C, 2(p+1) 2(pt1)
A
2(p+1)
< (%) c2etr, (3.59)

Now, using Aubin-Lions theorem, (see Lions [I8]), there exists a subsequence {u™} of {u*} such that

uy® — uy strongly in L* (0,7 L () (3.60)
which implies
uy" — u; almost everywhere in 2 x (0,7). (3.61)
Therefore,
[uy™|? uf® — |ug]” uy almost everywhere in Q x (0,7 . (3.62)
Hence, by using (3.60)-(3.62)) and utilizing Lions Lemma, we get
luy™ P up™ = |ue” up weakly in L? (0,T; L* (Q)). (3.63)

We multiply (3.3) by © (¢) € D (0,T) and integrate over (0,T"), we have

—ﬁ 0 (yuf(t)|”uf(t),wj)e'(t)dt+/0 (Auk (£), Aw) 0 (t) dt
T T t
Uk wj — — 0 Uk ag wj a
+/0 (Vugy, Vw?) 6 (t) dt / /h(t ) (AuF (o), Aw?) 0 (t) dodt
+u1/ (uy,w?) @ dt+/ / e ( (2,1,s,t) ,w’) 0 (t) dsdt

- b/ (5)In |u* ()] ,w) 8 (£) dedt, (3.64)
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we multiply (3.7) by 0 (t) € D (0,T) and integrate over (0,T) x (0, 1), to obtain

T 1
/ / (szf + 2F,¢7) 0 (t) dedr = 0. (3.65)
0
The convergence of (3.50)-(3.54]) and (3.63]), are sufficient to pass to the limit in and ( - ) to get

1 T T
- (|ug]? ug, w) 0 (t) dt + / (Au, Aw) 0 (t) dt
p+1 0

—l—/T(Vutt,Vw)H dt—/ h(t— o) (Au(o), Aw) 0 (1) dodt
+u1/ (ug, w dt+/ / o ( (x,1,s,t),w)0(t)dsdt

- b/ s)Infu (s)], w) 0 (t) dwdt,

T 1
/ / (szt + 2., ¢) 0 (t) dtdk = 0.
o Jo

T ¢
/ (|ut|p wge + A% — Auy — / h(t—o)A%u(s)do
0 0

+pgug + /72 pa (8) (z (z,1,8,t) ds,w)) 0 (t) dt

1

and

Integrating over (0,7"), we have

T
= b/ (u(t)In|u(t)|,w) 0 (t) dedt.
0
Consequently, we get the local existence of the problem ([2.16)).

3.2 Global existence

In this part, we obtain the global existence result. Firstly, we give the following functionals for this aim:

= — t S S U2 Ut2 o u — 'LL2HU i .
I<t>(1 /Oh<>d)|A 2+ IVl 4+ (0 ) () = 30 [ ot ul (3.66)

1 b 2 b 2
+§(hoAu)(t)—§/Qu tn ul dz 4 5 ]
1 t

= 3| (1= [ reas) jaar® + 19
b, 1
+ (ho Au) (t)] + 1 [lu||” + 6[ (t). (3.67)
We note that
p+2 1 1 T2 9
E(t) = —— ||ul o+ J(t)+ 5 s (|2 ()] +€) 2% (z, K, 8, t) dsdrdx. (3.68)
p+2 P 2 QJo T1

Lemma 3.1. [2] The following inequalities hold:

—bdo/1Q] 3 || Au|3? < b/ w?In u| dz < bed | Aull, Vu € H2 (), (3.69)
Q
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where do = supg.,., v/5 |Ins| = 2, |Q] is the Lebesgue measure of 2 and ¢, is the smallest embedding constant
1/3
(/ |u|3dx> < e ||Aull, , Yu € H2(Q), (3.70)
Q

(¢, exists thanks to the embedding of H3 () in L> () and Q C R?).

Lemma 3.2. Suppose that (A1)-(A3). Assume that (ug,u1) € H3 () x HZ () such that

1/2
1(0) > 0 and v/54bc? (El(o)) <l (3.71)
Then
I(t)>0,vtel0,T). (3.72)

Proof . We have the energy functional as follow

1 1 T2
E(t) ||ut|\§i§ +J(t) + 3 / / / s (|2 (8)] + €) 22 (2, K, 5, t) dsdrdz.
Q 0 T1

Hence, by (3.66)), we get

b/ u?In |u| dz =
Q
Substituting (3.73) in (3.67)), we have

! 2 1 2 1 1
<1 - /0 h(s) ds> [Aul|” + 3 IVu||” + 3 (hoAu) (t) — gf(t). (3.73)

Wl =

s =5 | (1= [ neas) 1aul ¢ ITul® + o) ()] 4§ jul? + 51 o). (374)

Since I is continuous on [0,7] and I (0) > 0, there exists ¢ty € (0, 7] such that I (¢) > 0, for all ¢ € [0,¢p). We show by
to the largest real number in (0,7 such that I > 0 on [0,tg). If to = T, then (3.72) is satisfied.

From contradiction, we suppose that ¢y € (0,7). Therefore, I (tp) = 0 and

6

8w < 370 < SB (1) < TE(©), Ve ). (3.75)

If |Au (to)||2 = 0, then and give

~| >

0 = I(ty)= (1— / "h(s) ds) A (to)|2 + Ve (t0) 2 + (o Aus) (o)

—3b/ﬂu2 (to) Inu (to)| dx

IN

el Au ()% + (h o Au) (t) = /0 " h(s)ds | Au (s)| ds. (3.76)

As a result, if g > 0 on [0,t(), we obtain
|Au (s)]l, =0, Vs € [0,t).

Hence,
I(t)=0, Vte[0,to),

which is not hold since I > 0 on [0,%g). If A # 0 on [0,tp), then assume that ¢, € [0,%p) the smallest real number such
that & (¢t1) = 0. Since h (0) > 0 and h is continuous, nonincreasing and positive on R™, hence, t; > 0 and h = 0 on
[t1,00). Hence, by (3.76), we conclude that

0= / h(s) | Au (s)]2 ds = / h(s) | Au (s)| ds,
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then ||Au(s)|l, = 0, for any s € [0,¢;), which specified that I (t) = 0, for any ¢ € [0,¢;). Similar to above, this is a

contradiction with the fact that I > 0 on [0,%). Therefore, we infer that |Au (t)||> > 0. Moreover, we get

I(tg) > 1]|Au (to)||2 — ?)b/Qu2 (to) In|u (t)| dz.

From (3.75) and by using Lemma 3.1, we obtain

1/2
I(to) > [leci <6El(0)) ] 1A (to) ||

Recalling (3.71)), we conclude that I (tg) > 0, which contradicts the assumption I (¢9) = 0. Thus, to = T and then

I(t)>0, Vte[0,T).

Consequently, we completed the proof of Theorem 2.9. O

4 Asymptotic behavior
Proof of Theorem 2.10:

In this part, by constructing a suitable Lyapunov functional, we get asymptotic behavior result for our problem.

Firstly, we define the functional as follows
L(t)=NE({t)+ NiFy () + F> (t) + NaF5(t),

where N, Ny and Ny are positive real numbers.

Next, we define the following functionals:

F(t)= p+1/|ut|putudx+/VutVudx

Fg(t):/ (Aut i1|ut9ut> /Oth(t—a) (u(t) - u (o)) doda,

/// “(lp2 ()| +€) 2% (, 5, 5,t) dsdrda.

To get our main result, we need the following lemmas:

Lemma 4.1. Suppose that (A1)-(A3) and (3.71)) hold and let g € (0,1). Let

elm

E —
0< E(0) < )
Then, the functional L (¢), for N sufficiently large, satisfies
ME@) < L(t)<ME(t),Vt>0,

(4.1)

(4.5)

(4.6)

where A\g and A\ are positive constants depending on Ny, Ny and N. Hence, L ~ E and for any tg > 0, there exists a

positive constant m, such that

L' (t) < —=mE (t) + ¢* (h o Au) (£) + ceg (ho Au)Y T (1) | vt > ¢,.

Proof . The proof is similar to [2, B2], hence, we omit it. [

Lemma 4.2. Assume that (u, z) be a solution of problem (2.16). Then, the functional F (¢) satisfies

1 2nC2 C?pu
RO < oplulil- (1-5-0- 2% m) 8wl + (14 52 ) o

+
?(hoAu _|_7// |pa (s x,l,st)dsdx+b/uln|u|dx

(4.7)

(4.8)
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for n > 0.
Proof . Taking the derivative of F; (t), from (2.16)) and integrating by parts, we get

1 / 1 2 2
F'(t) = — w|? u udx+7/up+ daer/Vu Vudx + ||Vu
0 P Q(| ¢ ) P Q\ | Ve [Vl

1
= g Nl IVl [l = )

1 t
= ot P (A%~ [ h(t-o0)A%u(0)do ) ud
g2 vl - [ (8% [Che-0) Au()do ) uda

T2
_/ <,u1ut —|—/ w2 (8) z(x,1,8,t)ds — buln |u|> udx
Q T1

t
— g g 9wl = JAul® + [ Au [t o) u(o)doda
P+1 Q 0

—ul/ uutdx—// wa (s)z(z,1,s t)udsd:t—i—b/ u? In |ul d. (4.9)
T1 Q

Next, utilizing Sobolev embedding and Young’s inequality, estimating the terms in the right hand side of (4.9), we
have

t h(t—o0)Au(o)dodz

Au
< (B+n) ||Au|\2+%(hoAu). (4.10)
Since
\ [ e <2 +—S||Vut|\ (4.11)
Q
and
[1,2 (z,1,s,t) udsdx
< n/\/ |p2 (s I/IAUI dsdx
_‘_7// 2 (s)] |2° (2,1, ,t) dsda|
477 Q T1
02 1 T2
< n’“is\muuh—// k2 (s)] |22 (2,1, 5,1)| dsda. (4.12)
>\ 477 Q T1

The estimate (4.8)) followed by substituting (4.10])-(4.12)) into (4.9)). Hence, we completed the proof. [J

Lemma 4.3. Suppose that (u, z) be the solution of problem (2.16)). Then, F» (t) satisfies

5
Fp(t) < 5(2B2+1+ >||A & +(6+pa° —h0> Vg
2
p+2 9 e ulC c A
p+1h0 luellprz + (5+45+ 20\ +55)(h0 u) (t)
h (0) C?
VTN (1 l+1)( o Au) -l-,u1(5//7-1 o (8) 22 (2,1, 5,t) dsdx

016 uel? + e (ho Au)/0T0) (1) (4.13)

for any § > 0, where fo o)do > f o)do = hg, VYt > to.
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Proof . Utilizing the Leibnitz formula, and the first equation of (2.16)), we get

) - /Q(/Oth(ta)Au(a)da) </Oth(ta)(Au(t)Au(a))do)daz
+/9Au()</th(t—a)(Au() Au(cr))dcr)dx
—|—,ul/ (t) (/ h(t—o) u(a))da)daj
+/Q/T ug(s)z(x,l,s,t)/o h(t— o) (u(t) — u (o)) dode
/ Vu (¢ )/t W (t - o) (Vu (t) — Vu (o)) doda

p—|—1/ ‘“t|p“t/ (t—0) (u(t) —u(o))dodx

—b/Quln\u|/0 h(t— o) (u(t) — u (o)) dodz

1 t
- [ s ivul® = s [ sy as

t 1 t
2 +2
= nret o= [ (@) do |Vul® - = [ hie)do g

Now, we will estimate I, --- , I7. Hence, for § > 0, we obtain

2

L] < 6/ (/th(ta)Au( )dg> d
46/(/ (t=o)|Au(?) - U(U)Ido>2dx

2 (/0 h(a)da) 1Al

+<25+415> /th(a)da(hoAu)(t)

2682 | Aul)* + 8 (26+ 46) (hoAu) (t).

IN

IN

In a similar attitude,

1] < 5|l + 2 (ho Ay (1)
2
Is] < 6C2un IVurll® + PS4 (o Ay ()
o
2
|14 <5// |2 (s)| 2% (z,1, 5, t) dsdx + ﬂzgfg (h o Au) (1),
< SNVl + o / W (s ds/ Wt — 8) [Vu () — Vu (s)|? dsda
h
< 6\\Vut||27ﬂ(h o Au) (1),

46

783
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ol < [l P

+W/ (/0 h'(t—ff)(U(t)—u(o)))de

< o [l - P e aw )

dag ( )052

< — 7 78
s Vel - 53D

(1" o Au) (t),

where ag = C2PTY (2F (0))”.

To estimate I, we apply (2.13) for s = |u|, use the embedding of HZ (Q) in L> (Q), for any §, > 0 and any
g0 € (0,1), we obtain

|I;] < —b/Quln|u|/Oth(t—a) (u(t) —u(o))dodz
b/ﬂ <u2+d€0 |u|1_€°> ‘/Oth(to—) (u(t) — u(0)) dodz

e [ 1]
Q

+Ce,6.

Q
d, || Aul® + 6%/9 ’/Olh(t —0)(u(t) —u(o))do
t 2/(1+e0)
oo, /2 / Wt - o) (u(t) - u (o)) do

dx,
then, putting §/4 = ¢d, and utilizing Holder’s inequality and from Lemma 2.7, we have

—b/ﬂuln|u|/0 h(t—o0)(u(t)—u(o))dodx

< % |Aul® + 5 (ho Au) (t) + ca5 (h o Aw)/F (1),

IN

dz + 6, | u’dx
Q

2/(14-€0)
dzx

IN

/O h(t— o) (u(t) — u (o)) do

h(t—o)(u(t) —u(o))do

2
dxr

IN

O

Lemma 4.4. [32] The functional F3 (t) defined by (4.4)), satisfies

F3(t) < _m/g/m(|u2(8)|+€)22($>1787t)d8d$

T2 1
_ 2
m/Q/T1 /0 s(lu2 (8)|+ &) 27 (z, K, s,t) drdsdx

11 / ulde, (4.14)
Q

where m = e~ "2.

Now, we give the proof of the Theorem 2.10:
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Proof . Hence, from (2.18)), (4.1), (4.8)), (4.13) and (4.14), we arrive at
T2 Ty — T
v < -8 (- [l - S e

T1
1
— o= N g3 - ¢ (5 +mN2>// (5,1, 5,1) dsdz
T1

<mN2——u15)// |2 (s m,l,s t) dsdx

2
- (5ne +N1(1—6—77— ”fu) (20714 7))
S ’

d N
@ Ny — 1H
p+1 4n

M2y ((25+415+ G, +;ﬂ))) (ho Au) (1
; (2 —% (1+ /fil)) (W o &) (1)

+bN1 / 'LL2 In |U| dx —+ Ceq,8 (h o Au)l/(1+60) (t)
Q

T2 1
—mNg/ / / s (g (s)| + &) 22 (x, K, 5, t) drdsdz.
Q T1 0

By taking Ny < hg, 6 > 0 sufficiently small and N, large enough so that mNs — % — 10 >0

2 +6>) Vel

1

Nlul ag 2
= ——(hg—N =ho— Ny — —§(1 - 1+6
Yo p+1(0 1) >0, 71 0 1 1n (+ u103(+)>0

p+1

N 2nC? 1
72:5h(t)+N1 (1—ﬁ—77— 77)\ ,u)—&(252+1+4) > 0,

_ h(O) Cs? Nlﬁ 1 ,U1C'2 c
Y3 g{z—m<1+p+1)] [+5<25+45+ 5 +55>]>0’

T2 _ N
N{m—/ M2(5)|d8—£(7-227—2):| >O,mN2—4—7;—u16>0.

1

Therefore, by letting 74 = mN>, we obtain

') < = lulpis =7 Vudl® =2 |Aul® =95 (h o Aw) (1)

T2 1
- 2
'74/9/7_1 /0 s(|p2 (8)| + &) 2° (z, K,y 8, t) drdsdx

+bNy / u?In |u|dz + cey 5 (h o Au)l/(HeO) (t).
Q
Thus, we have
L'(t) < —mE(#)+ (Nl - @)b/ w? In |u| da
2 Q
b e
(e 1) (ho Ay (1) + L2 Jull® + s (R0 )/ OF 1)

Utilizing the Logarithmic Sobolev inequality ([2.10]), we obtain

U < —mlE(t)—<N1—%)g(2(1+lna)—1n||u|\2) Jul + (e+ 5 ) (ho Au) (1

mq ba? 2 mlb 1/(1+4¢€0)
(M= ) o Il 4+l 4 e s (o Au) 0 (1)

785
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Choosing m; and b small enough and from (3.11)), for
mp < Ny < %(b+1)7
we get
mb (v - ) b
4 272
Thanks to (A3), this selection is possible. Hence, we obtain

b
') < —mE(@)— (N1 - %) = (1 +2lna—1In Hu||2> ok
+c* (ho Au) () + cq (ho Au)/ 3T (1) (4.15)

Recalling that E’ (¢) <0 and I (¢) > 0 and by (2.17), (3.67)) and , we get
4 4
Inful®* < In <J(t)) <In (bE(t))

In <E(O)> <In (i”) .

By taking a satisfying
/1 21
max{e?’/Q, ;T} <a< —bﬂ.

(So (3.11)) is satisfied), and we guarantee

(=)

IN
S o

1+2lna— ln||u||2 > 0.

From (2.17)), (4.7) and (4.15]), we get

L' (t) < —aE(t), Vt >0, (4.16)
for some a > 0. By combining (4.6)) and (4.16)) satisfies
L' (t) < —=k(L(t), Vt >0, (4.17)

where k1 = a/a;. Thus, a simple integration of (4.17)) over (0,t) yields
L' (t) < L(0)e ™ vt >o0. (4.18)

As a result, a combination of 1) and 1) we get 1D with ky = %{)(0)7 hence, the proof is completed. [

5 Conclusions and open problems

In recent years, there has been published much work concerning the wave equation with constant delay or time-
varying delay. However, to the best of our knowledge, there were no local existence, global existence and asymptotic
behavior results for the logarithmic viscoelastic plate equation with distributed delay. In this work, we used the energy
method combined with Faedo-Galerkin method to establish the local and global existence, moreover, by introducing
a suitable Lyapunov functional we proved the asymptotic behavior of the solution with the logarithmic source term
f(u) = buln|u| type. We like to point out that the local existence, global existence and asymptotic behavior of
solutions to problem (1.1) with the logarithmic source term f (u) = u |u[’~?In |u|* type is still open problem.
The problem (1.1) may be studied with variable exponents and logarithmic source term as follows:

[ug|” gy + A%u — Augy — fot h(t— o) A%u(z,0)do + prug (x,t) |ut|m(m’)_2 (z,t)
oy (2, — 7) g™ 72 (2,8 — 7) = buln |ul.
Also, this equation could be studied with m = m (z,t) instead of m = m (z) under different initial and boundary

conditions. Furthermore, different mathematical behavior such as blow up, attractor... etc. may be established for
the equation (1.1).
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