
Int. J. Nonlinear Anal. Appl. 13 (2022) 2, 2503–2508
ISSN: 2008-6822 (electronic)
http://dx.doi.org/10.22075/ijnaa.2021.22013.2314

Strong convergence for α-nonexpansive mapping using a
partial order induced by a function

Reena Jain

School of Advanced Sciences and Languages, VIT Bhopal University, India

(Communicated by Madjid Eshaghi Gordji)

Abstract

In this work, we introduce a partial ordering on a Banach space induced by a real valued function and prove some
convergence theorems for α-nonexpansive mapping in a ordered Banach space to a fixed point of mapping using this
partial ordering. Moreover we give example to furnish the definition of the partial ordering induced by a real valued
function.
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1 Introduction

A very popular and interesting area of research is to investigate the convergence of the Nonexpansive mappings.
Many authors [4, 7, 10, 5, 6, 9] have given the evidence of the existence of a fixed point for nonexpansive mappings
defined on a uniformly convex Banach space. Later direction [12]- [13] in this research has been given for the Lipschitz
condition to be satisfied for the pair of elements related by the partial ordering which seems to be a week assump-
tion.Recently many authors [1, 2, 11, 15] have worked on the convergence result of monotone α-nonexpansive type
mappings in ordered Banach space where the condition is restricted for the pair of comparable elements of the space.

In this work, we use more generalized approach where the condition to the non-expansive mappings can be used
on any pair of point in the space and we show the convergence of the mapping using such condition over an ordered
Banach space where the partial order is induced by a real-valued function. Moreover we give the example of the
partial order is induced by a real-valued function. Recall that a mapping U : D(U) → R(U) is said to be monotone
if Uv ⪯ Uw whenever v ⪯ w ∀v, w ∈ D(U). Aoyama and Kohsaka [2], introduced the concept of a α-nonexpansive
mapping as:

Let X be a Banach space and U : C → C be mapping. Then U is said to be α-nonexpansive for some α < 1 if

||U(v)− U(w)||2 ≤ α||U(v)− w||2 + α||v − U(w)||2 + (1− 2α)||v − w||2 ∀x, y ∈ C ⊆ X (1.1)

Obviously, nonexpansive mapping is 0-nonexpansive mapping. Recently, Muangchoo-In et. al. [11] extended the
α-nonexpansive to α− β-nonexpansive mappings as follows:

Let X be a Banach space and U : C → C be mapping. Then U is said to be α-nonexpansive for some α, β < 1 if

||U(v)− U(w)||2 ≤ α||U(v)− w||2 + β||v − U(w)||2 + (1− (α+ β))||v − w||2 ∀x, y ∈ C ⊆ X (1.2)

Email address: reena.jain@vitbhopal.ac.in (Reena Jain)

Received: December 2020 Accepted: June 2021

http://dx.doi.org/10.22075/ijnaa.2021.22013.2314


2504 Jain

The Mann iteration scheme [3] uses the concept of nonexpansivity of a mapping from linear space. U : X → X is
a mapping and {βn} being a real non-negative sequence satisfying specified criteria. The generated sequence from an
arbitrary w0 ∈ X is given as

wn = (1− βn)wn−1 + βnUwn (1.3)

Ishikawa [8] introduced the Ishikawa iteration given as follows

wn+1 = (1− βn)wn + βnUyn (1.4)

yn = (1− σn)wn + σnUwn (1.5)

For each n ≥ 1, where βn and σn ∈ [0, 1].
Now we state lemma which is useful in proving our main result.

Lemma 1.1. [14] Suppose that E is a uniformly convex Banach space and 0 < p ≤ q < 1 for all n = 1, 2 . . .. Suppose
further that {xn} and {yn} are sequence of E such that limn→∞||xn|| ≤ r, limn→∞||yn|| ≤ r and limn→∞||tnxn +(1−
tn)yn|| ≤ r hold for some r ≥ 0. Then limn→∞||xn − yn|| = 0.

The order intervals over an ordered Banach Space X with the partial order ”⪯” are assumed to be closed and
convex. Any of the two subsets are known to be an order interval

[c,→) = {w ∈ X : b ⪯ w} or (←, b] = {w ∈ X;w ⪯ b}

for any b ∈ X. And so the the subset

[c, d] = {w ∈ X; c ≤ w ≤ d} = [c,→] ∩ [←, d]

is also closed and convex for any c, d ∈ X.

2 Main Results

First we define the following:

Definition 2.1. Let X be a Banach Space and ψ a function s.t. ψ : X → R. Then a partial ordering on X defined
by:

p ⪯ q ⇐⇒ ψ(p)− ψ(q) ≥ γ||p− q|| ∀p, q ∈ X and γ > 0 (2.1)

is called a partial ordering induced by the function ψ and X is said to be ordered Banch space.

Lemma 2.2. Let X be a Banach Space and a function ψ : X → R. We define a partial ordering on X as follows:

p ⪯ q ⇐⇒ ψ(p)− ψ(q) ≥ γ||p− q|| ∀p, q ∈ X and γ > 0 (2.2)

Then ” ⪯ ” is a partial order on X and is called a partial order induced by ψ.

Proof . For all p ∈ X, ψ(p)− ψ(p) ≥ γ||p− p|| then p ⪯ p that is ” ⪯ ” is reflexive.
Now for p, q ∈ X s.t. p ⪯ q and q ⪯ p then

ψ(p)− ψ(q) ≥ γ||p− q|| for γ > 0

And

ψ(q)− ψ(p) ≥ γ||q − p|| for γ > 0

combining we get ψ(p)− ψ(q) = 0 i.e.||p− q|| = 0 This shows i.e. p = q. Thus ” ⪯ ” is antisymmetric.
Again for s, p, q ∈ X s.t.s ⪯ p and p ⪯ q then

ψ(s)− ψ(p) ≥ γ||s− p|| for γ > 0,
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and

ψ(p)− ψ(q) ≥ γ||p− q|| for γ > 0.

We get

γ||s− q|| ≤ γ||s− p||+ γ||p− q||
≤ ψ(s)− ψ(p) + ψ(p)− ψ(q)

or

ψ(s)− ψ(q) ≥ γ||s− q||.

This shows that s ⪯ q.Thus ” ⪯ ” is transitive. And so the relation ” ⪯ ” is a partial order on X. □

Now we will give an example to furnish definition and lemma.

Example 2.3. Let X = R2 and the norm on X is given by

||s|| =
√
s21 + s22 for s = (s1, s2).

Let us define the function psi : X → R by

ψ(s) = 2
√
s21 + s22 for s = (s1, s2).

It is obvious that s is a Banach space with the norm defined on it. again by using the equation (3), we write

s ⪯ q ⇐⇒ 2
√
s21 + s22 − 2

√
q21 + q22 ≥ γ

√
(s1 − q1)2 + (s2 − q2)2

for s = (s1, s2), q = (q1, q2) ∈ X and γ > 0. For clarity, let us assume γ = 2 so that

s ⪯ q ⇐⇒
√
s21 + s22 −

√
q21 + q22 ≥

√
(q1 − q1)2 + (s2 − q2)2

for s = (s1, s2), q = (q1, q2) ∈ X. It follows that (2, 2) ⪯ (1, 1), (2, 2) ⪯ (1/2, 1/2) but (2, 2) ⪯̸ (−1/4,−1/4), (3, 2) ⪯̸
(1, 1) etc. Therefore X is a partially ordered Banach space and the partial order is induced by the real valued function
ψ.

Now we prove our convergence result over an ordered Banach space.

Theorem 2.4. Let (X, ” ⪯ ”) be an uniformly convex ordered Banach space endowed with the partial order ” ⪯ ”
induced by the real valued bounded below function ψ : X → R. Let U : X → X be a monotone and α-nonexpansive
mapping. Let {vn} be a Mann iterative sequence defined by (2) with v1 ⪯ Uv1 then the sequence {vn} is strongly
converges to a unique fixed point of U .

Proof . Given v1 ⪯ U(v1). Since the order relation is closed and convex, we can write

v1 ⪯ (1− β1)v1 + β1U(v1) ⪯ U(v1)

so by Mann iteration (2) we will have v1 ⪯ v2 ⪯ U(v1). Since U is monotone, continuing in this way we get

v1 ⪯ v2 ⪯ v3 . . . vn ⪯ vn+1.

Therefore by the condition of partial order induced by ψ on X, we get

ψ(v1) ≥ ψ(v2) ≥ ψ(v3) . . . ≥ ψ(vn) ≥ ψ(vn+1).

In other words, the sequence {ψ(vn)} is decreasing sequence of real numbers. And since ϕ is bounded from below,
{ψ(vn)} is convergent sequence od real numbers and hence is Cauchy. So, for ϵ > 0 there exist n0 ∈ N such that for
all m > n > n0, we have
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|ψ(vm)− ψ(vn)| < ϵ.

Since xn ⪯ xm, by the definition of ⪯, we have

||vm − vn|| < ϵ
λ = ϵ1(say).

This shows that the sequence {vn} is Cauchy in X and so converges to a point v ∈ X i.e.

lim
n→∞

||vn − v|| = 0. (2.3)

Therefore the subsequence {vnk
} of {vn} also converges to the point v ∈ X. i.e.

lim
n→∞

||vnk
− v|| = 0. (2.4)

Since the mapping U : X → X is α-nonexpansive, for all v, w ∈ X and α < 1, we have

||U(v)− U(w)||2 ≤ α||U(v)− w||2 + α||v − U(w)||2 + (1− 2α)||v − w||2. (2.5)

For r ∈ F (U) and un ∈ X, using (4), we have

||U(vn)− r||2 = ||U(vn)− U(r)||2

≤ α||U(vn)− r||2 + α||vn − U(r)||2 + (1− 2α)||vn − r||2

≤ α||U(vn)− r||2 + α||vn − r||2 + (1− 2α)||vn − r||2

≤ α||U(vn)− r||2 + (1− α)||vn − r||2

i.e
||U(vn)− r|| ≤ ||vn − r||. (2.6)

Again by using the iteration in (2), we have

||vn+1 − r||2 = ||(1− βn)vn + βnU(vn)− r||2

≤ (1− βn)||vn − r||2 + βn||U(vn)− r||2

≤ (1− βn)||vn − r||2 + βn||vn − r||2

≤ ||vn − r||2

i.e
||vn+1 − r|| ≤ ||vn − r|| (2.7)

for any n ≥ 1. This means that ||vn − r|| is a decreasing and bounded sequence, which implies that limn→∞||vn − r||
exists. Let limn→∞||vn − r|| = l.

Now limn→∞||vn+1 − r|| = l means

lim
n→∞

||(1− βn)vn + βnU(vn)− r|| = l

lim
n→∞

||(1− βn)(vn − r) + βn(U(vn)− r)|| = l

and we have ||U(vn) − r|| ≤ ||vn − r|| which will imply limn→∞||U(vn) − r|| ≤ l. Therefore by using Lemma 1.1, we
get

lim
n→∞

||U(vn)− vn|| = 0

and we have limn→∞ vn = v, therefore
lim
n→∞

U(vn) = v. (2.8)

Using (4) we can write
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||U(vn)− U(r)||2 ≤ α||U(vn)− r||2 + α||vn − U(r)||2 + (1− 2α)||vn − r||2.

Letting n→∞ and using (7) we get

lim
n→∞

||U(vn)− U(r)||2 ≤ α lim
n→∞

||U(vn)− r||2 + α lim
n→∞

||vn − U(r)||2 + (1− 2α) lim
n→∞

||vn − r||2

||v − r||2 ≤ α||v − r||2 + α||v − r||2 + (1− 2α)||v − r||2

or

||v − r||2 ≤ ||v − r||2

which leads to v = r. This completes the proof. □

Similar results can be proved for α− β-nonexpansive mappings as follows:

Theorem 2.5. Let (X, ” ⪯ ”) be an uniformly convex ordered Banach space endowed with the partial order ” ⪯ ”
induced by the real valued bounded below function ψ : X → R . Let U : X → X be a monotone and α − β-
nonexpansive mapping. Let {vn} be a Mann iterative sequence defined by (2) with v1 ⪯ Uv1 then the sequence {vn}
is strongly converges to a unique fixed point of U .

Proof . Given v1 ⪯ U(v1). Since the order relation is closed and convex, we can write

v1 ⪯ (1− β1)v1 + β1U(v1) ⪯ U(v1)

so by Mann iteration (2) we will have v1 ⪯ v2 ⪯ U(v1).Since U is monotone, continuing in this way we get

v1 ⪯ v2 ⪯ v3 . . . vn ⪯ vn+1.

Therefore by the condition of partial order induced by ψ on X, we get

ψ(v1) ≥ ψ(v2) ≥ ψ(v3) . . . ≥ ψ(vn) ≥ ψ(vn+1).

In other words, the sequence {ψ(vn)} is decreasing sequence of real numbers. And since ϕ is bounded from below,
{ψ(vn)} is convergent sequence od real numbers and hence is Cauchy. So, for ϵ > 0 there exist n0 ∈ N such that for
all m > n > n0, we have

|ψ(vm)− ψ(vn)| < ϵ.

Since xn ⪯ xm, by the definition of ⪯, we have

||vm − vn|| < ϵ
λ = ϵ1(say).

This shows that the sequence {vn} is Cauchy in X and so converges to a point v ∈ X i.e.

lim
n→∞

||vn − v|| = 0. (2.9)

Therefore the subsequence {vnk
} of {vn} also converges to the point v ∈ X. i.e.

lim
n→∞

||vnk
− v|| = 0. (2.10)

Since the mapping U : X → X is α− β-nonexpansive, for all v, w ∈ X and α < 1, we have

||U(v)− U(w)||2 ≤ α||U(v)− w||2 + β||v − U(w)||2 + (1− (α+ β))||v − w||2 (2.11)

For r ∈ F (U) and vn ∈ X, using (4), we have

||U(vn)− r||2 = ||U(vn)− U(r)||2

≤ α||U(vn)− r||2 + β||vn − U(r)||2 + (1− (α+ β))||vn − r||2

≤ α||U(vn)− r||2 + β||vn − r||2 + (1− (α+ β))||vn − r||2

≤ α||U(vn)− r||2 + (1− (α+ β))||vn − r||2
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i.e
||U(vn)− r|| ≤ ||vn − r||. (2.12)

Rest of the proof is directly followed from Theorem 2.3. □

3 conclusion

In the presented work, using a partial order which is induced by a real function on a uniformly convex Banach
space we investigate the convergence results of a mapping to a fixed point in the space. Our approach of investigation
is different from the previous approach of investigation which is offered by many authors i.e. to prove the convergence
by a partial order defined using a Cone over the underlying space.

Remark 3.1. Similar kind of results to be proved using the scheme by Ishikawa [8]. Moreover if the condition of
monotonicity can be removed for the investigation of convergence, would also be of interest.
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