N
A

Lero-free regions for bicomplex polynomials and related
bicomplex entire functions

Bashir Ahmad Zargar, Ashish Kumar*, M. H. Gulzar

Department of Mathematics, University of Kashmir, Srinagar - 190006, J&K, India

(Communicated by Ali Jabbari)

Abstract

In this paper, we find the zero free regions of bicomplex polynomial and related bicomplex entire functions with certain
restrictions on the coefficients. Our results generalize many results already known in the literature.
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1 Introduction

A bicomplex number is a number of the form z = z1 + jzo, where z1, 25 are complex numbers. The set of bicomplex
numbers is denoted by
Co={2 =21 +j22,21,22 € C1},
i and j are commuting imaginary units, that is, ij = ji,i2 = j2 = —1, and C; is the set of complex numbers with
imaginary unit <. Thus bicomplex numbers are ”complex numbers with complex coefficients” (see [5],[6]).

It is easy to see that (Cq,+,.) is a commutative ring with zero as additive identity and unity as multiplicative
identity but Cs is not a field due to presence of zero divisors, namely the set

O={z1+j2€Cy:22+22=0}={a(1+ij):acC}.

If 21 = @1 +ixg, 20 = x3 + 124, T1,22, 23,24 € R, then z = 21 + jzo = 21 + i3 + jx3 + jizy. So, Cy can be viewed as
a real vector space which is isomorphic to R* via the map xy + izy + jas + ijzy — (v1, 22,73, 14).

There are four idempotent elements in Co namely 0,1, 1';” , 1_2” . Two of these idempotent elements namely
e1 = H'T” and ey = 1_7”, play an important role since every element in Cs has a unique representation as a linear

combination of them and e; + ey = 1, e1 — ea = ij, ejea = 0, €7 = e, €3 = €. Any number z = 21 + jz € Cy can
be written uniquely as z = (21 —iz2)e; + (21 + i22)ea. This representation is known as idempotent representation of
S (CQ.

The norm function ||.|| : C; — R* (R* denotes the set of all non negative real numbers) is defined as follows:
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If z =2 + jzo = (]5161 + (]5262 € C,, then

2 2y %
1 —+ 2
2] = {|z1]? + |22} 2 = {W} .

The complex spaces A;, A defined as:
Ai1={z1 —iz9: 21 and z9 in C1}, As={z1 +iz2: 21 and 22 in C;}, are known as auxiliary complex spaces.
Since each element in C; can be expressed in the form z; — iz9 and 21 + iz (in many ways), the elements in 4; and
As are the same as the elements in C;. A set X in Cs is called a cartesian set if and only if there exist sets X7 in Ay
and Xy in As such that

X ={z1+j2 € Cy: 2+ jzo = ¢pre1 + daea, (1, ¢2) € X1 x Xo}.

If X satisfies the above condition, then X is called cartesian set determined by X; and Xs. An open discus D(a;r,72)
with centre a = ajeq + ases with radii vy > 0,79 > 0 is defined as

D(a;ry,72) =Bi(ai,r1) X Ba(az, )

={¢1e1 + paez € Ca : [p1 — a1| <71, |d2 — az| < T2}

where By (aq,r1) is an open ball with centre a; € C; and r; > 0.
A closed discus D(a;r1,7r2) with centre a = aje; + ages with radii 71 > 0,79 > 0 is defined as

D(a;r1,r9) =Bi(a1,m1) X Ba(az, r2)

={p1e1 + paez € Co : |p1 — a1]| <71, |2 — az| < ra}
where B; (a1,71) is a closed ball with centre a; € C; and r1 > 0.

n
Let f(z) = Zakzk be a bicomplex polynomial (see [6]) of degree n of bicomplex variable z. Let us write 2 = 21+ 529
k=0
in its Cy-idempotent representation z = $1e1 + fPaes with 81 = 21 —izo and B = 21 + jzo. We write also the complex
coefficients as ap = yre; + 6pea, k=0,1,...,n. Then z*¥ = BFe; + B5ey and we rewrite our polynomial as
n n
F(2) = (wBr)er + > (0kB5)ea = (B1)er + ¢(B2)ea.
k=0 k=0

Recently, Sandip et al [4] proved the following results on the zeros of bicomplex entire functions.

o)

Theorem 1.1. Let f(z) = Zajzj be a bicomplex entire function with real positive coefficients and for some &k <
3=0

1,t>0,and A >1

kag < ta; < t?ay < ... <tray > M lay, > ..

then f(z) does not vanish in the discs D(0;rg,79) where 1o = (1_%)2‘1%

Remark. If k = 1, then Theorem 1.1 can be regarded as a bicomplex version of Theorem 1 of [I].

o0
Theorem 1.2. Let f(z) = Zajzj be a bicomplex entire function with complex coefficients such that ag # 0 and for
j=0
some t > 0
lag| > tlai| > t*|as| > ...

Then no zero of f(z) lies in the discus D(0;rg,7), where
tlao

— .
(lao| + [|ao| — aol) + QZHQH — a;|t?
j=1

To =

Remark. Theorem 1.2 can be regarded as bicomplex version of Theorem B of [2].

In this paper we first find zero free regions for bicomplex polynomials and then extend them to bicomplex entire
functions. Our results generalize the few results proved by Sandip et al.[4]. In fact, we prove the following results:
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2 Main Results

n

Theorem 2.1. Let f(z) = Zajzj be a bicomplex polynomial with real positive coefficients and for some k < 1,
j=0

t>0,p>1land A > 1,

kag < ta; < t?as < ... < trpay > t*lay, > .. > tay,.

Then f(z) does not vanish in the discus D(0;rg,79) where

ta()
(1 —2k)ag + (2ptray + 2(p — Daxt*) + (Jan| — a,)tr+1’

ro =

Example 1.Let f(2) = 52* +42% + 22 + 22 + 1.

Here ag = 1,a1 = 1,a2 = 1,a3 = 4,a4 = 5. So, it follows that all the coefficients of f(z) are positive real numbers
and for k = %, t =1, A =2 and p = 5. Here 1y = 0.056. Hence by Theorem 2.1, we obtain f(z) does not vanish in
D(0.056,0.056).

n
Theorem 2.2. Let f(z) = Zajzj be a bicomplex polynomial with complex coefficients such that ag # 0 and for
§=0
some t > 0,
Elao| > tlay| > t|az| > ... > t"|ay).

Then f(z) does not vanish in the discus D(0; g, r9) where

tlaol

ro = - .
(lan|t™+1 + (2k — 1)|ao| + ||ao| — aol) + 2Z|\aj| — a;|t/

Jj=1

Example 2.Let f(z) = (1 +i)z* 4+ (2 +4)2% + (1 +14)2% + 1.

Here |ag| = 1, |a1| = 0,]az| = V2, |as| = V5, |as] = V2. So, it follows that all the coefficients of f(z) are complex
numbers and for k = 3, t = 1, the condition of Theorem 2.2 are satisfied. Here ¢y == 0.0742. Hence by Theorem 2.2,
we find that f(z) does not vanish in D(0.0742,0.0742).

The following Theorem 2.3 and Theorem 2.4 generalize the results proved by Sandip et al.[4] for bicomplex entire
functions, which are the bicomplex versions of the results already proved by Aziz and Mohammad.

o0

Theorem 2.3. . Let f(z) = Zaj 27 be a bicomplex entire function with real positive coefficients and for some k < 1,
§=0

t>0,p>land A >1

kag < ta; < t?as < ... < trpay >t lay, > .

Then f(z) does not vanish in the discus D(0; g, ro) where

tao
(1 —2k)ap + (2ptrax + 2(p — D)axt?)

To =

Example 3.Let us consider f(z) =¢e*+2+ 3 + é Then f(z) =3+ % + % + g—? + ‘Z—? +...
Here ap = 3,a; = %,ag = %,aj = %, 71=3.4,....

So, it follows that all the coefficients are positive real numbers, Theorem 1.1 is not applicable there but for k = %, t=1
and A =2,p = %,

kag < tay < t?ay < ... <t pay > t"ay, > ..

Here 7o =~ 0.391. Hence by Theorem 2.3, we obtain f(z) =e* +2+ 5 + %2 does not vanish in D(0;0.391,0.391).
Remark If p = 1, then theorem 2.3 reduces to theorem 1.1.
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o0
Theorem 2.4. Let f(z) = Zaj 27 be a bicomplex entire function with complex coefficients such that ag # 0 and for
§=0
some t > 0,
k|a0\ 2 t|a1| 2 t2|a2| 2

Then no zero of f(z) lie in the discus D(0; 79, 7o) where

tlaol

To = 0 :
((2k — 1)lao| + |lao| — ao|) +2_|la;| — a;|t?

j=1

Example 4 .Let f(z) = (144)+(2+3i)z+(3—i)22+23. Here, ag = 1+i,a1 = 2+3i,as = 3—i,a3 = 1,a; = 0,j = 4,5, ....
So it follows that all the coefficients are complex numbers, Theorem 1.2 is not applicable there but for k = 4,¢t = 1,
the condition of Theorem 2.4 are satisfied. Now, rg ~ 0.0713. Hence by Theorem 2.4, the polynomial P(z) has no
zero in D(0;0.0713,0.0713).

Remark If £ = 1, then Theorem 2.4 reduces to Theorem 1.2.

3 Lemmas

In this section, we present the following Lemmas [7] which will be needed in the forefront.

Lemma 3.1. [7] Let X = X; + Xo := {¢1e1 + ¢2 : ¢1 € X1,¢2 € X5} be a domain in Co. A bicomplex function
F = Gie1 + Gaey : X — Cs is holomorphic if and only if both the component function G; and G5 are holomorphic in
X, and X5 respectively.

Lemma 3.2. [7] Let F' be a bicomplex holomorphic function defined in a domain X = Xje; + Xaes := {p1e1 + ¢2 :
1 € X1,¢2 € Xa} such that F(z) = G1(¢1)er + Ga(d2)eq, for all z = ¢re1 + ¢oes € X. Then F(z) has zero on X if
and only if G1(¢1) and Ga(¢2) both have zero at ¢1 in X; and at ¢ in Xa respectively.

Lemma 3.3. [3]If F(z) is holomorphic in |z| < R in Cy, F(0) =0 and |F(2)| < M for |z| = R, then

M|z|
< .
l9(2)l < =7

The above Lemma is termed as Schwarz’s Lemma [3] in C;.

4 Proof of the Theorems

Proof of Theorem 2.1. Since a; = aje1 + ajez and z = ¢1e1 + ¢Poea,then f(z) can be expressed as

n

f(z) =) (aje1 + ajes)(drer + paea)!

=0

= (ajer +ajes)(dler + dhes)

=0
= a;dler+ > a;dhes
=0 =0
= fi(¢1)er + fa(p2)ez
where

fild) =) a;¢] and  fo(da) = > a;¢5.
j=0 j=0

Since f(z) is holomorphic in any closed discus D(0;t,t) C Cq,0 < t < oo, by Lemma 3.1, fi(¢1) and fa(¢2) both
are holomorhic respectively in X; = {¢1 € Ay : |¢1] <t} CCy and Xo = {¢2 € Ay : |da| <t} C Cy.
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Now, let us consider

F(¢1) :(¢1 - t)f1(¢1)
=(¢1 — t)(ap + a191 + ad? + ... + axd} + farp 160 4 .+ an ")
= —tag + (ap — ta1) g1 + (a1 — tag)d? + ... + (ax_1 — tay)dy + (ax — tary1)dr ™ + ...
+ (an—1 —tay)e" — anqﬁf“
= —tag + (ap — kag + kag — ta1)oy + (a1 — tag)d? + ... + (ax_1 — paxt + paxt + tay) ¢y
+ (ax — pax + pax — tax;1) ¢ 4 o+ (a1 — tan) T — ang) !
= —tag+ (1 — k)agps + R(¢1)

where

R(¢1) =(kao — tay)d1 + (a1 — taz)@] + ... + (ax_1 — paxt + paxt — tay)¢y
+ (ax = pax + pax — tayy ) + o+ (anor — tan)of — angi T

Also, for |¢1] =1,

|R(¢1)| <|kao —tar[|¢1] + |ar — tas||¢1]* + ... + (p — Daxt|é1 [ + lar—1 — paxt||¢:|*
T (o= Darléi + [pas — taxallb1 P+ o+ lan — tanllénl” + lanllgn™
=(tay — kao)t + (taz — a1)t*> + ... + (p — Daxt*! + (paxt — ax_1)t* + (p — Daxt !
+ (pax — tax )T + oo+ (an—q — tap)t" — ant"™ !
=(|an| — an)t" T + 2ptM L ay 4 2(p — 1) axt™! — kagt.
Now, R(¢1) is holomorphic in |¢1] < t.

Also, R(0) = 0 and R(¢1) < ((|an| — an)t™ + 2pt*ar + 2(p — 1)axt* — kag)t for |¢1]| = t. Therefore, by Lemma 3.3, we
get

vh= t

=((lan] — an)t™ + 2ot ay + 2(p — 1)a>\t)‘ — kao)|¢1|.

For |¢1]| < t, we see that
[F(¢1)| =] = tao + (1 = k)aods| — |R(¢1)]
>tag — (1 — k)ao|d1| — ((Jan| — an)t™ + 2ot ay + 2(p — 1)a,\t)‘ — k‘ao)|¢1|
=tag — {(1 — 2k)ao + ((|an| — an)t™ + 2ptrax + 2(p — 1)axt™}|é1|

) tag
>01 < .
1] (1 —2k)ap + ((Jan| — an)t™ + 2ptrax + 2(p — 1)axt?

Therefore, for |¢1] <t
. ta
|f1(¢1)| >0if ‘Qsl‘ < 19, where rg = (172k)a0+((|an|7an)t"gr2pt>‘a,\+2(p71)a>\t)‘)'

Similarly for |pa| < t, |fa(P2)| > 0 if |p2| < 7.
Thus both f1(¢1) and f2(¢2) have no zeros in X| = {¢1 € X7 : |¢1| < ro} and

X5 ={¢2 € X2t |pa] <o}
Consequently, by Lemma 3.2 f(2) = f1(¢1)e1 + fo(@2)es has no zero in Xiey + Xea = D(0, 79, r0).

Proof of Theorem 2.2 : Since f(z) can be expressed as

f(z) = Z%‘d){@l + ) a;dhes
i=o0 =0
= fi(¢1)e1r + fa(g2)es.
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Since f(z) is holomorphic in any closed discus D(0;t,t) C C3,0 < t < oo, by Lemma 2.1, f;(¢1) and fo(¢2) both are
holomorhic respectively in X1 = {¢1 € A; : |¢1]| <t} CCy and Xy = {¢o € Ay : |do| <t} C Cy.
Now, let us consider

F(¢1) =(p1 — 1) f1(¢1),
=(¢1 — t)(ao + a1¢1 + a2t + ... + and})
= —tag + (ap — tay) 1 + (a1 — taz)d? + ... + (an_1 — tay) o} + anqS”H

n

= —tag + an¢”+1 + R(¢1), where R(¢1) Z (aj—1 —ta;)@
j=1

For |¢1| = ¢,
R(¢1)| =I> (aj-1 — taj)e?]
j=1

n
=I> {(laj 1| = tlas]) + (a1 — laj1]) + t(la;| — a;)} 1]
=1
< Naj-al = tlag [t + > [laja] — aj-a[t7 + Y |las| — a; [t
j=1 j=1 j=1

=|lao| = klao| + Klao| — tlar[|t + > (laj 1| = tlas )t + > |laj 1| — a; 1|’
j=2 j=1

n .
+ 3 [lag| = a[t*!
j=1
n

(= Dlaolt + (klaol — tlasl)t+ 3 (lay-1] — tasl)? + 3 lag 1] — a1}

j=2 j=1
+3 [laj| - a;]t7 !
j=1
:t((?kﬁ — 1)‘@0‘ + ||a0| — Clo’) +22‘|aj| — aj’tj‘H.

j=1

Since R(¢1) is holomorphic in |¢1| < ¢. Also, R(0) = 0 and

R(¢1) < t((2k — Dlao| + |lao| — aol) + 2Z||aj| —a;|/Tt for || =t,
j=1
by Lemma 3.3

t((2]€ — 1)|CLO| + ||a0\ — CLOD +2Z|‘CL]‘ — (lj|tj+1
j=1

R(¢1) < 7

:((2]{ — 1)|a0| + “CL(]‘ — G,()D —|—2Z|\aj\ — a,j|tj
j=1
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Therefore, for |¢1] < ¢,
[E(61)] >tlaol — (lan|t"* + R(41))

>tlao| — (lan[t" ™" + (2k — Dao| + [lao| — ao|) + 2 _|la;| — a;|t?
j=1
t|a0|

>0, if |¢1] < n :
|an|t™1 + ((2k — 1)]ao| + ||ao] — ao|) + QZHGH — a;|t’
j=1

Hence for |¢1| < t,

. tla
[f1(01)] > 0if |p1] < 1o where rg = |l

(lan|t™* + (2k — D]aol + [laol — ao|) + 2> _[la;| — a; [t
j=1

Similarly for |pa] < t,|f2(p2)| > 0 if |d2| < rg. Thus both f1(é1) and f2(¢=2) have no zeros in X; = {¢1 € X7 :
|¢1| < 7’0} and Xé = {¢2 € Xy |¢2| < ’/‘0}

Consequently, by Lemma 3.2 f(2) = f1(¢1)e1 + f2(¢2)es has no zero in X{ey + Xbea = D(0;r9,70).

Proof of Theorem 2.3. Since a; = aje; + ajes and z = ¢r1e1 + ¢oea, f(2) can be expressed as

je1 +ajex)(prer + ¢262)j

(a
(aje1 + ajes) qblel + ¢262)

oo

ajler + Y a;dhes

7=0

1(¢1)er + fa(p2)ez

-3
>
>,

(

where

a]¢>1 and  fo(p2) = Zaj(b%.

7=0
Since f(z) is holomorphic in any closed discus D(0;¢,t) C C2,0 < t < 00, by Lemma 3.1, fi(¢1) and fa(¢2) both
are holomorphic respectively in X7 = {¢1 € A1 : |¢1]| <t} C Cq and Xo = {¢1 € Ay : 92| <t} C Cy.

Clearly lim ajtj = 0. Now, let us consider
a—r 00

F(¢1) =(¢1 —t) fr(¢1),
=(¢1 — t)(ag + ar1p1 + azd? + ... + axd? + +ar1 T+ )
= —tag + (ap — ta1)d1 + (a1 — taz)¢? + ... + (ax_1 — tax)dy + (ax — ta,\+1)¢>1\+
A

— tag + (ag — kag + kag — ta1)é1 + (a1 — taz)d? + ... + (ax_1 — paxt + paxt + tay) o)
A+1
+ ...

+ (ax — pax + pax — tax+1)d)
= —tag + (1 — k)aop1 + R(¢1)

where

R(¢1) =(kag — ta)é1 + (a1 — taz)d? + ... + (ax_1 — paxt + paxt — ta,\)¢i\+
+ (ax — pax + pay — ta>\+1)¢i‘+1 + e
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Also, for |¢1] =t,

|R(¢1)| <|kao — tar[|¢1] + [ar — tas||¢1]* + ... + (p — Daxt[é1 | + ar—1 — paxt||¢:|*
+(p = Daxlor M + lpax — tarallgn M+ .
=(tay — kag)t + (taz — a)t®> + ... + (p — Darxt ! + (paxt — ax_1)t* + (p — Daxt™?
+ (pay — taxp )+
=2ptM 1 ay 4 2(p — Daxt™ — kaot.

Now, R(¢1) is holomorphic in |¢1] < t. Also, R(0) = 0 and R(¢1) < (2ptrax + 2(p — 1)axt* — kag)t for |¢1] = t.
Therefore, by Lemma 3.3, we get

2pt 2(p — Daxt* — k
R(o)| S( ptrax +2(p t)axt ao)t|o1|

=(2ptray + 2(p — Dart* — kao)|¢1].
For |¢1| < t, we see that
[F(¢1)] =| = tao + (1 = k)aod1| — [R(¢1)]

>tag — (1 — k)ao|p1| — (2pt*ax + 2(p — Daxt™ — kao)|¢1|
=tag — {(1 — 2k)ag + (2ptax + 2(p — 1)axt*}

. ta
>0if |¢1] < :

(1 —2k)ap + (2ptrax + 2(p — D)axt?)’

Therefore, for |¢1| < t, |fi(¢1)] > 0if |$1]| < 7o, where ry = (1_2k>a0+(2pf;13k+2(p_1)wx. Similarly, |fa(¢2)| > 0 if
|(,252| < Tp.

Thus both fi(¢1) and fo(¢2) have no zeros in X{ = {¢1 € X1 : [¢p1| < 1o} and Xy = {¢2 € Xo : |p2] < ro}.
Consequently, by Lemma 3.2 f(z) = f1(¢1)e1 + fa(¢p2)e2 has no zero in Xje; + Xhea = D(0;r0,70).

Proof of Theorem 2.4: f(z) can be expressed as

f(z) = Zaj¢{€1 + Zaﬂ%@
=0 =0
= fi(d1)er + fa(d2)ea.

Since f(z) is holomorphic in any closed discus D(0;t,t) C Co,0 < t < 0o, by Lemma 3.1, fi(¢1) and fo(¢2) both
are holomorphic respectively in X7 = {¢1 € A1 : |¢1]| <t} C Cq and Xo = {2 € Ay : |po] <t} C Cy.

Also, lim ajtj = 0. Now, let us consider
oa—r00

F(¢1) =(¢1 — 1) f1(¢1),
=(¢1 — t)(ao + a1¢1 + a2t + ...)
= — tao + (CLO — ta1)¢1 + (a1 — tag)(b% + ...
= —tag + R(¢1), where R(¢1) = Z(aj_l - taj)qSJi.

j=1
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For ‘¢)1| = t,,

|R(¢1)| =1 (aj-1 — ta;)d]]
J=1

{(Jaj—1] = tla;]) + (aj—1 — laj_1]) + t(|a;| — a;)}]]

WK

1

. e . e .
laj—1| = tla |t + > |laja| = aja [t + D |la;| — aj [+
1 j=1 j=1

<.
I

<

s

J

o0 oo o0
=|lao| = klao| + Klao| = tlar|[t + > (laj1| — tla; )t/ + > |laj 1] = aja|t! + > |las| — a; [t

j=2 j=1 j=1
=(k — Dlaolt + (Klao| — tlas|)t + > (laj1] — tla; )t + > [laj_1| — aj 1|7 + > [aj| — a;]t*?
=2 j=1 j=1

:t((?k‘ — 1)|a0| + ‘|a0| - a0|) + 22“&j| - aj’tj"’l.

Jj=1

Since R(¢1) is holomorphic in |¢1]| < ¢. Also, R(0) = 0 and

R(¢1) < t((2k — Dlao| + |lao| — aol) + 2Z:||aj| —a; [Tt for [¢1] =t,

j=1
by Lemma 3.3, we have
t((2k — 1ao| + ||ao| — aol) + QZH%‘\ —a; |t/

Jj=1

R(¢1) <

t

:((Qk — 1)|a0| + “ao‘ — CL()D +22|\aj\ - a]-‘tj

j=1
Therefore, for |¢1| < t,
[F(¢1)] =tlao| — R(¢1)

>tlao| — ((2k — Dlao| + [lao| — ao]) + 2 _|la;| — a;|t?

j=1
t
>0, if |¢n] < 2ol - .
((2k — 1)]ao| + ||a0| — ao|) + 22||aj| — aj|t3
j=1
Hence for |¢1] < ¢,
taol

|f1(P1)| > 0 if |p1] < 1o where ro =

((2k — 1)|ao| + |lao| — aol) +2>_|laj| — a;|t’
j=1

Similarly for |¢2| < t, |fa(p2)| > 0 if |p2] < ro. Thus both f1(¢p1) and fa(¢p2) have no zeros in Xj = {¢; € X :
|p1] < ro} and X} = {¢o € X5 : |pa] < ro}. Consequently, by Lemma 3.2 f(z) = f1(é1)e1 + fo(¢2)es has no zero in
Xie1 + Xsea = D(0;570,70).
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