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Abstract

In this paper, we adopt the AU-iteration scheme introduced by Udofia et. al. [25] (U. E. Udofia, A. E. Ofem, and
D. I. Igbokwe, Convergence Analysis for a New Faster Four Steps Iterative Algorithm with an Application, Open
J. Math. Anal. 5 (2021), no. 2, 95–112) to approximate the fixed point of monotone α-nonexpansive mappings in
ordered Banach space. Analytically and with a numerical example we show that this iteration process converges faster
than some well known existing iteration processes in literature. Further, we apply the AU-iteration process to find
the unique solutions of a delayed differential equation.
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1 Introduction

Throughout this paper, let ϖ be an ordered Banach space with the norm ∥· ∥ and the partial order ≤. Let
F (Γ) = {u ∈ ϖ : Γu = u} denote the set of all fixed points of a mapping Γ : ϖ −→ ϖ.

Let Γ be a mapping with domain D(Γ) and range R(Γ) in an ordered Banach space ϖ endowed with the partial
order ≤, and ζ a nonempty closed convex subset of ϖ. Then, Γ : D(Γ) −→ R(Γ) is said to be:

(1) monotone [6] if

Γu ≤ Γv ∀ u, v ∈ D(Γ) with u ≤ v, (1.1)

(2) monotone nonexpansive [6], if Γ is monotone and

∥Γu− Γv∥ ≤ ∥u− v∥ ∀ u, v ∈ D(Γ) with u ≤ v. (1.2)

Remark 1.1. If Γ is does not satisfy the monotone condition, then Γ is said to be nonexpansive [14].
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(3) monotone quasi-nonexpansive [23] if Γ is monotone and there exists F (Γ) ̸= ∅ such that

∥Γu− q∥ ≤ ∥u− q∥, (1.3)

∀q ∈ F (Γ) and u ∈ ζ, with u ≤ q or u ≥ q .

(4) α-nonexpansive [5] if for some α < 1

∥Γu− Γv∥2 ≤ α∥Γu− v∥2 + α∥Γv − u∥2 + (1− 2α)∥u− v∥,∀u, v ∈ ζ. (1.4)

Remark 1.2. If Γ is monotone in (1.4), then Γ is said to be monotone α-nonexpansive [23].

In 2011, Aoyama and Kohsaka [5] introduced the class of α-nonexpansive mappings in Banach spaces (see definition
4) and obtained fixed point theorems for such mappings with a non constructive argument. However, Ariza-Riuz et
al. [4] showed that the concept of α-nonexpansive is trivial for α < 0.

In 2015, Bachar and Khamsi [6] introduced monotone nonexpansive mapping and studied common approximate
fixed points of a monotone nonexpansive semigroup.

In 2016, Song et al. [23] introduced the concept of monotone α-nonexpansive mappings in ordered Banach space
and extended the notion of α-nonexpansive mapping to monotone α-nonexpansive mapping in ordered Banach spaces,
obtained some existence and convergence theorems for the Mann iteration under some suitable conditions.

The Mann iteration is a fundamental iteration method used in approximating fixed points of nonexpansive mappings
introduced by Mann [14] in 1953 and is defined by:

sn+1 = (1− an)sn + anΓsn, n ≥ 1 (1.5)

where {an} ⊂ (0, 1) and Γ a nonexpansive mapping.

Another widely used iteration method in approximating fixed point of nonexpansive mapping is the Ishikawa
iteration scheme introduced by Ishikawa [13] in 1976 and defined by:

sn+1 = (1− an)sn + anΓun

un = (1− bn)sn + bnΓsn, (1.6)

where {an}, {bn} ⊂ (0, 1), n ∈ N . In 2000, Noor [16] modified (1.6) and further introduced a three-step iteration
process to solve the general variational inequalities problem and is defined by:
For an arbitrary s1 ∈ ζ, define a sequence {sn} by

sn+1 = (1− an)sn + anΓun,

un = (1− bn)sn + bnΓvn,

vn = (1− cn)sn + cnΓsn (1.7)

where {an}, {bn}, {cn} ⊂ (0, 1), n ∈ N . In 2007, Agarwal et al. [2] modified (1.6) to introduce the following two-step
iteration process called the S-iteration:
For an arbitrary s1 ∈ K, define a sequence {sn} by

sn+1 = (1− an)Γsn + anΓun,

un = (1− bn)sn + bnΓsn, (1.8)

where {an}, {bn} ⊂ (0, 1), n ∈ N . They claimed that the iteration (1.8) converges faster than the Mann iteration for
some contractions.

In 2014, Abbas and Nazir [1] introduced the following three-step iteration process:
For an arbitrary s1 ∈ ζ, define a sequence {sn} by

sn+1 = (1− an)Γvn + anΓun,

un = (1− bn)Γsn + bnΓvn

vn = (1− cn)sn + cnΓsn (1.9)
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where {an}, {bn}, {cn}subset(0, 1), n ∈ N . Shahin et al. [22] in 2015 showed that the coefficients {an}, {bn}, {cn} in
iteration process (1.9) plays an essential role in the convergence rate. Infact, if 1− an < an, 1− bn < bn, 1− cn < cn,
for all n ∈ N , then iteration process (1.9) converges faster than (1.5), (1.6), (1.7), (1.8), for contractive mappings.

Sequel to this, Thakur et al. [24] in 2016 introduced the following three step iteration process:
For an arbitrary s1 ∈ ζ, define a sequence {sn} by

sn+1 = Γun,

un = Γ((1− an)sn + anvn),

vn = (1− bn)sn + bnΓsn (1.10)

where {an}, {bn} ⊂ (0, 1), n ∈ N . It was asserted that the iteration process (1.10) converges faster than (1.5), (1.6),
(1.7), (1.8) and (1.9), for contractive mappings.

In 2018, Piri et al. [19] posed the following question:
Is it possible to develop an iteration process which rate of convergence for contractive maps is faster than the iteration
process (1.10) and the other iteration processes?

In the affirmative, Piri et al. [19] introduced the following three-step iteration process:
For an arbitrary s1 ∈ ζ, define a sequence {sn} by

sn+1 = (1− an)Γvn + anΓun,

un = Γvn,

vn = Γ((1− bn)sn + bnΓsn) (1.11)

where {an}, {bn} ⊂ (0, 1), n ∈ N . They proved that the iteration process (1.11) converges faster than iteration
processes (1.9) and (1.10) for contractive mappings when 1 − an < an, 1 − bn < bn, and 1 − cn < cn, for all n ∈ N ,
with numerical example to support the proof.

Recently, Udofia et. al. [25] introduced a four-step iteration algorithm called the AU-iteration process. They
showed that the AU-iteration process converges faster than a number of well known iteration schemes in literature for
contraction mappings. The AU-itration is defined for an arbitrary s0 ∈ ζ, define a sequence {sn} by

sn+1 = Γun,

un = Γvn,

vn = Γwn,

wn = Γ((1− an)sn + anΓsn) (1.12)

where {an} ⊂ [0, 1], n ≥ 1.

Motivated and inspired by the work of [25, 23], we show that the four-step AU iteration process (1.12) converges
faster than iteration process (1.11) for contraction mappings. Also, using AU-iteration scheme (1.12), we approximate
the fixed point of monotone α-nonexpansive mappings and prove some weak and strong convergence results. Further,
we provide numerical examples to show that the iteration process (1.12) converges faster than iteration process (1.11)
and some existing well known iteration processes in literature. Finally, we apply our iteration process (1.12) to find
the unique solution of a delayed differential equation in Banach spaces.

2 Preliminaries

Definition 2.1. A Banach space ϖ is said to be:

(i) Strictly convex if 1
2∥u+ v∥ < 1, for all u, v ∈ ϖ with ∥u∥ = ∥v∥ = 1 and u ̸= v.

(ii) Uniformly convex if, for all ϵ ∈ (0, 2], there exists δ > 0 such that 1
2∥u+v∥ ≤ 1−δ, for all u, v ∈ ϖ with ∥u∥ ≤ 1,

∥v∥ ≤ 1 and ∥u− v∥ ≥ ϵ.

Definition 2.2. (See [18]) A Banach space ϖ is said to satisfy the Opial’s condition if for each weakly convergent
sequence {sn} in ϖ, {sn} converges weakly to a point u ∈ ϖ, implies lim sup

n→∞
∥sn−u∥ < lim sup

n→∞
∥sn− v∥, for all v ∈ ϖ

with u ̸= v.
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Definition 2.3. Let ζ be a nonempty subset of a Banach space ϖ and {sn} be a bounded sequence in ϖ. For each
s ∈ ϖ, we define the following:

(i) Asymptotic radius of {sn} at s by

r(s, {sn}) := lim sup
n→∞

∥sn − s∥

(ii) Asymptotic radius of {sn} relative to ζ by

r(ζ, {sn}) := inf{r(s, sn) : s ∈ ζ}

(iii) Asymptotic center of {sn} relative to ζ by

A(ζ, {sn}) := {s ∈ ζ : r(s, {sn}) = r(ζ, {sn})}

It is known that in a uniformly convex Banach space, A(ζ, {sn}) consists of exactly one point. Also, A(ζ, {sn}) is
nonempty and convex when ζ is weakly compact and convex.

Definition 2.4. (See [7]) Let {an}, {bn} be two sequences of real numbers that converge to a and b respectively.
Then, {an} converges faster to a than {bn} does to b if

lim
n→∞

∥an − a∥
∥bn − b∥

= 0. (2.1)

Lemma 2.5. (See [23, Lemma 2.2]) Let ζ be a nonempty closed convex subset of an ordered Banach space (ϖ,≤)
and Γ : ζ −→ ζ be a monotone α-nonexpansive mapping. Then we have

(1) Γ is monotone quasi-nonexpansive;

(2) for all u, v ∈ ζ, with u ≤ v

∥Γu− Γv∥2 ≤ ∥u− v∥2 + 2α

1− α
∥Γu− u∥2 + 2|α|

1− α
∥Γu− u∥(∥u− v∥+ ∥Γu− Γv∥).

Lemma 2.6. (see [26, Theorem 2]) For any real numbers q > 1 and r > 0, a Banach space ϖ is uniformly convex if
and only if there exists a continuous strictly increasing convex function f : [0,+∞) −→ [0,+∞) with f(0) = 0 such
that

∥tu+ (1− t)v∥q ≤ t∥u∥q + (1− t)∥v∥q − ω(q, t)f(∥u− v∥), (2.2)

for all u, v ∈ Br(0) = {u ∈ ϖ : ∥u∥ ≤ r} and t ∈ [0, 1], where, ω(q, t) = tq(1− t)+ t(1− t)q. In particular, taking q = 2
and t = 1

2

∥u+ v

2
∥2 ≤ 1

2
∥u∥2 + 1

2
∥v∥2 − 1

4
f(∥u− v∥). (2.3)

3 Main Result

3.1 Convergence Result

. In this section, we show that the AU iteration process (1.12) converges faster than iteration process (1.11) for
contraction mappings.

Theorem 3.1. Let Γ be a contraction mapping defined on a nonempty closed convex subset ζ of a Banach space ϖ
with a contraction factor δ ∈ (0, 1) and F (Γ) ̸= ϕ. If {sn} is a sequence defined by (1.12), then {sn} converges faster
than iteration process (1.11).
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Proof . Let q ∈ F (T ). From (1.12) and Lemma 2.5(1), we have

∥wn − q∥ = ∥Γ((1− an)sn + anΓsn)− q∥
≤ δ((1− an)∥sn − q∥+ an∥Γsn − q∥)
≤ δ((1− an) + anδ)∥sn − q∥
= δ(1− (1− δ)an)∥sn − q∥
≤ δ∥sn − q∥ (3.1)

From (1.12) and (3.1), we have

∥vn − q∥ = ∥Γwn − q∥
≤ δ∥wn − q∥
≤ δ2∥sn − q∥ (3.2)

From (1.12) and (3.2), we have

∥un − q∥ = ∥Γvn − q∥
≤ δ∥vn − q∥
≤ δ3∥sn − q∥ (3.3)

From (1.12) and (3.3), we have

∥sn+1 − q∥ = ∥Γun − q∥
≤ δ∥un − q∥
≤ δ(δ3∥sn − q∥)
= δ4∥sn − q∥
·
·
·
≤ δ4n∥s1 − q∥ (3.4)

Let pn = δ4n∥s1 − q∥ (3.5)

Also, from (1.11), we have

∥vn − q∥ = ∥Γ((1− bn)sn + bnΓsn)− q∥
≤ δ((1− bn)∥sn − q∥+ bn∥Γsn − q∥)
≤ δ(1− (1− δ)bn)∥sn − q∥
≤ δ∥sn − q∥ (3.6)

Using (1.11) and (3.6), we have

∥un − q∥ = ∥Γvn − q∥
≤ δ∥vn − q∥
≤ δ2∥sn − q∥ (3.7)
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Using (1.11) and (3.7), we have

∥sn+1 − q∥ = ∥((1− an)Γvn + anΓun)− q∥
≤ (1− an)∥Γvn − q∥+ an∥Γun − q∥
≤ δ(1− an)∥vn − q∥+ anδ∥un − q∥
≤ δ2(1− (1− δ)an)∥sn − q∥
≤ δ2∥sn − q∥
·
·
·
≤ δ2n∥s1 − q∥. (3.8)

Let

rn = δ2n∥s1 − q∥. (3.9)

So from (3.5) and (3.9), we have that

pn
rn

=
δ4n∥s1 − q∥
δ2n∥s1 − q∥

= δ2n −→ 0, as n→ ∞

Hence (1.12) converges faster than (1.11). □

3.2 Numerical Example

We now show the comparison between the rate of convergence of AU iteration process (1.12) and other well known
iteration algorithms in literature.

Example 3.2. Let ζ = [1, 50] and Γ : [1, 50] −→ [1, 50] defined by Γ(s) = (2s + 4)1/3. For Table 1 and Figure 1, we
use the following parameters:

Choose αn = n
n+1 , βn = 1√

n+7
, γn = 2n

5n+2 , and the initial value s1 = 10.

Obviously, the fixed point of Γ is p = 2.0, with a contraction constant δ = 1

4
1
3
. Table 1 and Figure 1 show the

behavior of AU iteration process (1.12) in comparison with the iteration processes of Noor [16], Agarwal et al. [2]
(S-iteration), Abbas and Nazir [1], Thakur et al. [24], Piri et al. [19] to the fixed point of Γ in 30-iterations with
∥sn − p∥ < 10−15 as the stop criterion.

For Table 2 and Figure 2, we use the following parameters:

Choose αn = 2n
3n+2 , βn = n√

49n2+1
, γn = 2n

(3n+5) , and the initial value s1 = 5. Table 2 and Figure 2 show the

behavior of AU iteration process (1.12) in comparison with the iteration processes of Noor [16], Agarwal et al. [2]
(S-iteration), Abbas and Nazir [1], Thakur et al. [24], M-iterations [? ] and Piri et al. [19] to the fixed point of Γ in
30-iterations with ∥sn − p∥ < 10−15 as the stop criterion.

3.3 Convergence of The Iteration Process

In this section, we consider the convergence of the four-step AU iteration process defined in (1.12) for a monotone
α-nonexpansive mapping Γ in an ordered Banach space (ϖ,≤).

In the sequel, we denote F≤(Γ) = {q ∈ F (Γ) : q ≤ x1}, F≥ = {q ∈ F (T ) : x1 ≤ q} and x1 ∈ ζ ⊂ ϖ.

Theorem 3.3. Let ζ be a nonempty closed convex subset of uniformly convex ordered Banach space (ϖ,≤) and
Γ : ζ → ζ be a monotone α-nonexpansive mapping. Assume that the sequence {sn} defined by the iteration process
(1.12) is bounded and s1 ≤ Γs1 and F≥(Γ) ̸= 0. Then we have

(1) ∥sn+1 − q∥ ≤ ∥sn − q∥ and the limit lim sup
n→∞

∥sn − q∥ exists for all q ∈ F≥(Γ);
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Table 1: AU iteration process in comparison with the iteration processes of Noor , Agarwal et al. (S-iteration), Abbas and Nazir, Thakur
et al., M-iteration and Piri et al.

n NOOR AGARWAL ABBAS-NAZIR NEW AU

1 10.000000000 10.000000000 10.000000000 10.000000000
2 6.3305751135 2.7756990223 2.4200895561 2.0024816608
3 4.3677362428 2.1043176345 2.0310872863 2.0000011168
4 3.3040966659 2.0147086469 2.0023638901 2.0000000005
5 2.7218144144 2.0020879283 2.0001801251 2.0000000000
6 2.4007571207 2.0002966707 2.0000137274 2.0000000000
7 2.2229144415 2.0000421593 2.0000010462 2.0000000000
8 2.1241253717 2.0000059913 2.0000000797 2.0000000000
9 2.0691589780 2.0000008514 2.0000000061 2.0000000000
10 2.0385466528 2.0000001210 2.0000000005 2.0000000000
11 2.0214886484 2.0000000172 2.0000000000 2.0000000000
12 2.0119806048 2.0000000024 2.0000000000 2.0000000000
13 2.0066799741 2.0000000003 2.0000000000 2.0000000000
14 2.0037246507 2.0000000000 2.0000000000 2.0000000000
15 2.0020768471 2.0000000000 2.0000000000 2.0000000000
16 2.0011580521 2.0000000000 2.0000000000 2.0000000000
17 2.0006457349 2.0000000000 2.0000000000 2.0000000000
18 2.0003600657 2.0000000000 2.0000000000 2.0000000000
19 2.0002007752 2.0000000000 2.0000000000 2.0000000000
20 2.0001119538 2.0000000000 2.0000000000 2.0000000000
21 2.0000624264 2.0000000000 2.0000000000 2.0000000000
22 2.0000348095 2.0000000000 2.0000000000 2.0000000000
23 2.0000194100 2.0000000000 2.0000000000 2.0000000000
24 2.0000108232 2.0000000000 2.0000000000 2.0000000000
25 2.0000060351 2.0000000000 2.0000000000 2.0000000000
26 2.0000033652 2.0000000000 2.0000000000 2.0000000000
27 2.0000018765 2.0000000000 2.0000000000 2.0000000000
28 2.0000010463 2.0000000000 2.0000000000 2.0000000000
29 2.0000005834 2.0000000000 2.0000000000 2.0000000000
30 2.0000003253 2.0000000000 2.0000000000 2.0000000000

(2) lim inf
n→∞

∥sn − Γsn∥ = 0, provided lim sup
n→∞

an(1− an) > 0.

(3) lim
n→∞

∥sn − Γsn∥ = 0, provided lim inf
n→∞

an(1− an) > 0.

Proof .

(1) By Lemma (2.5)(i), Γ is quasi nonexpansive and from (1.12), we have

∥wn − q∥ = ∥Γ((1− an)sn + anΓsn)− q∥
≤ (1− an)∥sn − q∥+ an∥Γsn − q∥
≤ ∥sn − q∥. (3.10)

Also from Lemma (2.5)(i), (1.12) and (3.10) we have

∥vn − q∥ = ∥Γwn − q∥
≤ ∥wn − q∥
≤ ∥sn − q∥. (3.11)

Again from Lemma (2.5)(i) , (1.12) and (3.11) we have

∥un − q∥ = ∥Γvn − q∥
≤ ∥vn − q∥
≤ ∥sn − q∥. (3.12)
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CONTINUATION OF TABLE 1

n THAKUR M-ITERATION PIRI NEW AU

1 10.000000000 10.000000000 10.000000000 10.000000000
2 2.1223548601 2.0901191316 2.0614585761 2.0024816608
3 2.0028680593 2.0014513256 2.0006991636 2.0000011168
4 2.0000679138 2.0000235145 2.0000079903 2.0000000005
5 2.0000016085 2.0000003810 2.0000000913 2.0000000000
6 2.0000000381 2.0000000062 2.0000000010 2.0000000000
7 2.0000000009 2.0000000001 2.0000000000 2.0000000000
8 2.0000000000 2.0000000000 2.0000000000 2.0000000000
9 2.0000000000 2.0000000000 2.0000000000 2.0000000000
10 2.0000000000 2.0000000000 2.0000000000 2.0000000000
11 2.0000000000 2.0000000000 2.0000000000 2.0000000000
12 2.0000000000 2.0000000000 2.0000000000 2.0000000000
13 2.0000000000 2.0000000000 2.0000000000 2.0000000000
14 2.0000000000 2.0000000000 2.0000000000 2.0000000000
15 2.0000000000 2.0000000000 2.0000000000 2.0000000000
16 2.0000000000 2.0000000000 2.0000000000 2.0000000000
17 2.0000000000 2.0000000000 2.0000000000 2.0000000000
18 2.0000000000 2.0000000000 2.0000000000 2.0000000000
19 2.0000000000 2.0000000000 2.0000000000 2.0000000000
20 2.0000000000 2.0000000000 2.0000000000 2.0000000000
21 2.0000000000 2.0000000000 2.0000000000 2.0000000000
22 2.0000000000 2.0000000000 2.0000000000 2.0000000000
23 2.0000000000 2.0000000000 2.0000000000 2.0000000000
24 2.0000000000 2.0000000000 2.0000000000 2.0000000000
25 2.0000000000 2.0000000000 2.0000000000 2.0000000000
26 2.0000000000 2.0000000000 2.0000000000 2.0000000000
27 2.0000000000 2.0000000000 2.0000000000 2.0000000000
28 2.0000000000 2.0000000000 2.0000000000 2.0000000000
29 2.0000000000 2.0000000000 2.0000000000 2.0000000000
30 2.0000000000 2.0000000000 2.0000000000 2.0000000000

Furthermore, from Lemma (2.5)(i), (1.12), (3.11) and (3.12) we have

∥sn+1 − q∥ = ∥Γun − q∥
≤ ∥wn − q∥ (3.13)

≤ ∥sn − q∥. (3.14)

Thus the sequence {∥sn − q∥} is bounded and nonincreasing which implies that lim
n→∞

∥sn − q∥ exists, hence

condition (1) holds.

By (3.13) and Lemma (2.6), we have

∥sn+1 − q∥2 = ∥Γun − q∥2

≤ ∥wn − q∥2

= ∥Γ((1− an)sn + anΓsn)− q∥2

≤ ∥(1− an)(sn − q) + an(Γsn − q)∥2

≤ (1− an)∥sn − q∥2 + an∥Γsn − q∥2

−an(1− an)f(∥sn − Γsn∥)
≤ ∥sn − q∥2 − an(1− an)f(∥sn − Γsn∥) (3.15)

which implies that

an(1− an)f(∥sn − Γsn∥) ≤ ∥sn − q∥2 − ∥sn+1 − q∥2. (3.16)
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Table 2: AU iteration process in comparison with the iteration processes of Noor , Agarwal et al. (S-iteration), Abbas and Nazir, Thakur
et al., M-iteration and Piri et al.

n NOOR AGARWAL et al. ABBAS-NAZIR NEW AU

1 5.0000000000 5.0000000000 5.0000000000 5.0000000000
2 3.9458733081 2.3930286815 2.1758231998 2.0012828458
3 3.2675004502 2.0605404435 2.0119580368 2.0000006598
4 2.8282378761 2.0095680053 2.0008219461 2.0000000003
5 2.5424388125 2.0015183364 2.0000565385 2.0000000000
6 2.3558271801 2.0002410992 2.0000038893 2.0000000000
7 2.2336701993 2.0000382885 2.0000002675 2.0000000000
8 2.1535641809 2.0000060806 2.0000000184 2.0000000000
9 2.1009701195 2.0000009657 2.0000000013 2.0000000000
10 2.0664110057 2.0000001534 2.0000000001 2.0000000000
11 2.0436900959 2.0000000244 2.0000000000 2.0000000000
12 2.0287467876 2.0000000039 2.0000000000 2.0000000000
13 2.0189163575 2.0000000006 2.0000000000 2.0000000000
14 2.0124483942 2.0000000001 2.0000000000 2.0000000000
15 2.0081923286 2.0000000000 2.0000000000 2.0000000000
16 2.0053915470 2.0000000000 2.0000000000 2.0000000000
17 2.0035483572 2.0000000000 2.0000000000 2.0000000000
18 2.0023353204 2.0000000000 2.0000000000 2.0000000000
19 2.0015369829 2.0000000000 2.0000000000 2.0000000000
20 2.0010115651 2.0000000000 2.0000000000 2.0000000000
21 2.0006657638 2.0000000000 2.0000000000 2.0000000000
22 2.0004381748 2.0000000000 2.0000000000 2.0000000000
23 2.0002883868 2.0000000000 2.0000000000 2.0000000000
24 2.0001898033 2.0000000000 2.0000000000 2.0000000000
25 2.0001249201 2.0000000000 2.0000000000 2.0000000000
26 2.0000822169 2.0000000000 2.0000000000 2.0000000000
27 2.0000541116 2.0000000000 2.0000000000 2.0000000000
28 2.0000356139 2.0000000000 2.0000000000 2.0000000000
29 2.0000234395 2.0000000000 2.0000000000 2.0000000000
30 2.0000154268 2.0000000000 2.0000000000 2.0000000000

Letting n→ ∞, it follows from condition (1) that

an(1− an)f(∥sn − Γsn∥) = 0 (3.17)

(2) By condition (2) lim sup
n→∞

an(1− an) > 0 , and since

(lim sup
n→∞

an(1− an))(lim inf
n→∞

f(∥sn − Γsn∥)) ≤ lim sup
n→∞

an(1− an)f(∥sn − Γsn∥),

by (3.17), we have lim inf
n→∞

f(∥sn − Γsn∥) = 0 , and by the property of f , lim inf
n→∞

∥sn − Γsn∥ = 0.

(3) Again by the assumption of condition (3), lim inf
n→∞

an(1− an) > 0, and since

(lim inf
n→∞

an(1− an))(lim sup
n→∞

f(∥sn − Γsn∥)) ≤ lim sup
n→∞

an(1− an)f(∥sn − Γsn∥),

by (3.17), we have
lim
n→∞

f(∥sn − Γsn∥) = lim sup
n→∞

f(∥sn − Γsn∥) = 0

and by property of f ,
lim

n→∞
∥sn − Γsn∥ = 0.
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CONTINUATION OF TABLE 3

n THAKUR M-ITERATION PIRI NEW AU

1 5.0000000000 5.0000000000 5.0000000000 5.0000000000
2 2.0634980045 2.0463902697 2.0396086604 2.0012828458
3 2.0016708118 2.0008561796 2.0006448152 2.0000006598
4 2.0000442170 2.0000158542 2.0000105334 2.0000000003
5 2.0000011704 2.0000002936 2.0000001721 2.0000000000
6 2.0000000310 2.0000000054 2.0000000028 2.0000000000
7 2.0000000008 2.0000000001 2.0000000000 2.0000000000
8 2.0000000000 2.0000000000 2.0000000000 2.0000000000
9 2.0000000000 2.0000000000 2.0000000000 2.0000000000
10 2.0000000000 2.0000000000 2.0000000000 2.0000000000
11 2.0000000000 2.0000000000 2.0000000000 2.0000000000
12 2.0000000000 2.0000000000 2.0000000000 2.0000000000
13 2.0000000000 2.0000000000 2.0000000000 2.0000000000
14 2.0000000000 2.0000000000 2.0000000000 2.0000000000
15 2.0000000000 2.0000000000 2.0000000000 2.0000000000
16 2.0000000000 2.0000000000 2.0000000000 2.0000000000
17 2.0000000000 2.0000000000 2.0000000000 2.0000000000
18 2.0000000000 2.0000000000 2.0000000000 2.0000000000
19 2.0000000000 2.0000000000 2.0000000000 2.0000000000
20 2.0000000000 2.0000000000 2.0000000000 2.0000000000
21 2.0000000000 2.0000000000 2.0000000000 2.0000000000
22 2.0000000000 2.0000000000 2.0000000000 2.0000000000
23 2.0000000000 2.0000000000 2.0000000000 2.0000000000
24 2.0000000000 2.0000000000 2.0000000000 2.0000000000
25 2.0000000000 2.0000000000 2.0000000000 2.0000000000
26 2.0000000000 2.0000000000 2.0000000000 2.0000000000
27 2.0000000000 2.0000000000 2.0000000000 2.0000000000
28 2.0000000000 2.0000000000 2.0000000000 2.0000000000
29 2.0000000000 2.0000000000 2.0000000000 2.0000000000
30 2.0000000000 2.0000000000 2.0000000000 2.0000000000

This completes the proof. □

Theorem 3.4. Let ζ be a nonempty closed convex subset of a uniformly convex ordered Banach space (ϖ,≤) and
Γ : ζ → ζ be a monotone α-nonexpansive mapping. Assume that E satisfies Opial’s condition and the sequence
{sn} is defined by the iteration process (1.12) with s1 ≤ Γs1 (or Γs1 ≤ s1). If F≥(Γ) ̸= 0 (or F≤(Γ) ̸= 0 and
lim sup
n→∞

an(1− an) > 0, then the sequence {sn} converges weakly to a fixed point w of Γ.

Proof . It follows from Theorem (3.3) that {sn} is bounded and lim
n→∞

∥sn−Γsn∥ = 0. Then there exists a subsequence

{snk
} ⊂ {sn} such that {snk

} converges weakly to a point w ∈ ζ. Thus, it follows that s1 ≤ snk
≤ w (or w ≤ snk

≤ s1)
for all k ≥ 1 . On the other hand, Lemma (2.5)(2) means that

∥Γsnk
− Γw∥2 ≤ ∥snk

− w∥2 + 2α

1− α
∥Γsnk

− snk
∥2

+
2|α|
1− α

∥Γsnk
− snk

∥(∥snk
− w∥+ ∥Γsnk

− Γw∥). (3.18)

By the boundedness of the sequence {sn} and lim
n→∞

∥snk
−Γsnk

∥ = 0, we have, lim sup
n→∞

∥Γsnk
−Γw∥2 ≤ lim sup

n→∞
∥snk

−

w∥2, and hence

lim sup
n→∞

∥Γsnk
− Γw∥ ≤ lim sup

n→∞
∥snk

− w∥. (3.19)
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Now, we prove w = Γw. In fact, suppose that w ̸= Γw . Then, by (3.19) and Opial’s condition, we have

lim sup
n→∞

∥snk
− w∥ ≤ lim sup

n→∞
∥snk

− Γw∥

= lim sup
n→∞

∥(snk
− Γsnk

) + (Γsnk
− Γw)∥

≤ lim sup
n→∞

(∥snk
− Γsnk

∥+ ∥Γsnk
− Γw∥)

≤ lim sup
n→∞

∥Γsnk
− Γw∥

≤ lim sup
n→∞

∥snk
− w∥ (3.20)

which is a contradiction. This implies that w ∈ F≥(Γ) (or w ∈ F≤(Γ)) . Using Theorem (3.3)(2), the limit lim
n→∞

∥sn−w∥
exists. Now, we show that the sequence {sn} converges weakly to the point w. Suppose that this does not hold. Then
there exists a subsequence {snj

} which converges weakly to a point c ∈ ζ and w = c. Similarly, we must have c = Γc
and lim

n→∞
∥sn − c∥ exists. It follows from Opial’s condition that

lim
n→∞

∥sn − w∥ < lim
n→∞

∥sn − c∥ = lim sup
n→∞

∥snj
− c∥ < lim

n→∞
∥sn − w∥.

This is a contradiction and hence c = w . This completes the proof. □

Theorem 3.5. Let ζ be a nonempty compact and closed convex subset of a uniformly convex ordered Banach space
(ϖ,≤) and Γ : ζ → ζ be a monotone α-nonexpansive mapping. Assume that the sequence {sn} is defined by the
iteration process (1.12) with s1 ≤ Γs1. If lim sup

n→∞
an(1−an) > 0 , then the sequence {sn} converges strongly to a fixed

point p ∈ F≥(Γ).

Proof . Following the compactness of ζ , there exists a subsequence {snk
} ⊂ {sn} such that {snk

} converges strongly
to a point p ∈ ζ . Then it follows that s1 ≤ snk

≤ p for all k ≥ 1. It follows from Theorem (3.3) that {sn} is bounded
and lim

n→∞
∥sn − Γsn∥ = 0. Without loss of generality, we can assume that lim

k→∞
∥snk

− Γsnk
∥ = 0 . On the other

hand, the Lemma (2.5)(2) guarantees that

∥Γsnk
− Γp∥2 ≤ ∥snk

− p∥2 +
2α

1− α
∥Γsnk

− snk
∥2

+
2|α|
1− α

∥Γsnk
− snk

∥(∥snk
− p∥+ ∥Γsnk

− Γp∥)

By the boundedness of the sequence {snk
} , lim inf

n→∞
∥snk

−p∥ = 0 and lim
k→∞

∥snk
−Γsnk

∥ = 0, we have lim sup
k→∞

∥Γsnk
−

Γp∥2 ≤ 0 and hence

lim
k→∞

∥Γsnk
− Γp∥ = 0 (3.21)

Therefore, we have

lim sup
k→∞

∥snk
− Γp∥ ≤ lim sup

k→∞
∥(snk

− Γsnk
) + (Γsnk

− Γp)∥

≤ lim sup
k→∞

(∥snk
− Γsnk

∥+ ∥Γsnk
− Γp∥)

= 0 (3.22)

and so lim
k→∞

∥snk
− Γp∥ = 0 , which implies that p ∈ F≥(Γ) . Using Theorem (3.3)(1), the limit lim

n→∞
∥sn − p∥ exists

and so lim
n→∞

∥sn − p∥ = 0 .

This completes the proof. □

Theorem 3.6. Let ζ be a nonempty compact and closed convex subset of a uniformly convex ordered Banach space
(ϖ,≤) and Γ : ζ → ζ be a monotone α-nonexpansive mapping. Assume that the sequence {sn} is defined by the
iteration process (1.12) with s1 ≤ Γs1. If lim inf

n→∞
an(1− an) > 0 , then the sequence {sn} converges strongly to a fixed

point p ∈ F≥(Γ) .
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Theorem 3.7. Let ζ be a nonempty compact and closed convex subset of a uniformly convex ordered Banach space
(ϖ,≤) and Γ : ζ → ζ be a monotone α-nonexpansive mapping. Assume that the sequence {sn} is defined by the
iteration process (1.12) with Γs1 ≤ s1. If either lim inf

n→∞
an(1 − an) > 0 or lim sup

n→∞
an(1 − an) > 0, then the sequence

{sn} converges strongly to a fixed point p ∈ F≤(Γ).

4 Application to a Delay Differential Equation

Mathematical modeling with delay differential equations (DDEs) is widely used for analysis and predictions in
various areas of life sciences, for example, population dynamics, epidemiology, immunology, physiology, and neural
networks (see [8, 21, 20] and the references therein). Several iterative methods have been construct recently for
approximating the unique solution of a delay differential equation (see for example [3, 9, 10, 11, 17] and the references
therein).

To demonstrate the validity and more applicability of AU iterative scheme (1.12), we will prove its strong conver-
gence to the following delay differential equation:

s′(ν) = f(ν, s(ν), s(ν − τ), ν ∈ [ν0, e] (4.1)

with initial condition

s(ν) = ζ(ν), ν ∈ [ν0 − τ, ν0] (4.2)

The space C([d, e]) endowed with Chebyshev norm

∥s− u∥∞ = max
ν∈[d,e]

∥s(ν)− u(ν)∥∞,∀s, u ∈ C([d, e]), (4.3)

is known to be a Banach space (see [12]). We opine that the following conditions hold:

(M1) ν0, e ∈ ℜ, τ > 0;

(M2) f ∈ C([ν0, e]× R2,ℜ);
(M3) Ψ ∈ C([ν0 − τ, e],ℜ);
(M4) there exists Lf > 0 such that

|f(ν, a1, a2)− f(ν, b1, b2)| ≤ Lf (|a1 − b1|+ |a2 − b2|), (4.4)

for all a1, a2, b1, b2ℜ and ν ∈ [ν0, e];

(M5) 2Lf (e− ν0) < 1.

A function s ∈ C([ν0 − τ, e],ℜ) ∩ C1([ν0, e],ℜ) satisfying (4.1)-(4.2) is known as a solution of (4.1)-(4.2). The
problem (4.1)– (4.2) can be reformulated in the following integral equation:

s(ν) =

{
Ψ(ν), ν ∈ [ν0 − τ, ν0],
Ψ(νo) +

∫ ν

ν0
f(ρ, s(ρ), s(ρ− τ))dρ, ν ∈ [ν0, e].

(4.5)

In 1976, Coman et al. [9] established the following result which will be useful in proving our main result.

Theorem 4.1. Assume that the conditions (M1) − (M5) are fulfilled. Then the problem (4.1)–(4.2) has a unique
solution, say z ∈ C([ν0 − τ, e],ℜ) ∩ C1([ν0, e],R) and

z = lim
n→∞

Γn(ψ)for anys ∈ ([ν0 − τ, e],ℜ). (4.6)

We now ready to give our main result.

Theorem 4.2. Assume that the conditions (M1) − (M5) are fulfilled. Then the problem (4.1)–(4.2) has a unique
solution, say z ∈ C([ν0 − τ, e],ℜ) ∩ C1([ν0, e],R) and the AU iterative scheme (1.12) converges strongly to z.
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Proof . Let {sn} be a sequence iteratively defined by AU iterative scheme (1.12) for the operator

Γs(ν) =

{
Ψ(ν), ν ∈ [ν0 − τ, ν0],
Ψ(ν0) +

∫ ν

ν0
f(ρ, s(ρ), s(ρ− τ))dρ, ν ∈ [ν0, e].

(4.7)

Let z stand for the fixed point of Γ. We will prove that lim
n→∞

sn = z. For ν ∈ [ν0 − τ, ν0], clearly, lim
n→∞

sn = z.

For ν ∈ [ν0, e], we have

∥sn+1 − z∥∞ = ∥Γun − z∥∞
= ∥Γun − Γz∥∞
= max

ν∈[ν0−τ,e]
|Γun(ν)− Γz(ν)|

= max
ν∈[ν0−τ,e]

|Ψ(ν0) +
∫ ν

ν0

f(ρ, un(ρ), un(ρ− τ))dρ− Ψ(ν0)

−
∫ ν

ν0

f(ρ, z(ρ), z(ρ− τ))dρ|

= max
ν∈[ν0−τ,e]

∣∣∣∣∫ ν

ν0

f(ρ, un(ρ), un(ρ− τ))dρ−
∫ ν

ν0

f(ρ, z(ρ), z(ρ− τ))dρ

∣∣∣∣
≤ max

ν∈[ν0−τ,e]

∫ ν

ν0

|f(ρ, un(ρ), un(ρ− τ))− f(ρ, z(ρ), z(ρ− τ))|dρ

≤ max
ν∈[ν0−τ,e]

∫ ν

ν0

Lf (|un(ρ)− z(ρ)|+ |un(ρ− τ)− z(ρ− τ)|)dρ

≤
∫ ν

ν0

Lf ( max
ν∈[ν0−τ,e]

|un(ρ)− z(ρ)|+ max
ν∈[ν0−τ,e]

|un(ρ− τ)− z(ρ− τ)|)dρ

≤
∫ ν

ν0

Lf (∥un − z∥∞ + ∥un − z∥∞)dρ

≤ 2Lf (ν − ν0)∥un − z∥∞
≤ 2Lf (e− ν0)∥un − z∥∞ (4.8)

and

∥un − z∥∞ = ∥Γvn − z∥∞
= ∥Γvn − Γz∥∞
= max

ν∈[ν0−τ,e]
|Γvn(ν)− Γz(ν)|

= max
ν∈[ν0−τ,e]

|Ψ(ν0)

+

∫ ν

ν0

f(ρ, vn(ρ), vn(ρ− τ))dρ− Ψ(ν0)−
∫ ν

ν0

f(ρ, z(ρ), z(ρ− τ))dρ

∣∣∣∣
= max

ν∈[ν0−τ,e]

∣∣∣∣∫ ν

ν0

f(ρ, vn(ρ), vn(ρ− τ))dρ−
∫ ν

ν0

f(ρ, z(ρ), z(ρ− τ))dρ

∣∣∣∣
≤ max

ν∈[ν0−τ,e]

∫ ν

ν0

|f(ρ, vn(ρ), vn(ρ− τ))− f(ρ, z(ρ), z(ρ− τ))|dρ

≤ max
ν∈[ν0−τ,e]

∫ ν

ν0

Lf (|vn(ρ)− z(ρ)|+ |vn(ρ− τ)− z(ρ− τ)|)dρ

≤
∫ ν

ν0

Lf ( max
ν∈[ν0−τ,e]

|vn(ρ)− z(ρ)|+ max
ν∈[ν0−τ,e]

|vn(ρ− τ)− z(ρ− τ)|)dρ

≤
∫ ν

ν0

Lf (∥vn − z∥∞ + ∥vn − z∥∞)dρ

≤ 2Lf (ν − ν0)∥vn − z∥∞
≤ 2Lf (e− ν0)∥vn − z∥∞. (4.9)
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Putting (4.9) into (4.8), we obtain

∥sn+1 − z∥∞ ≤ (2Lf (e− ν0))
2∥vn − z∥∞ (4.10)

and

∥vn − z∥∞ = ∥Γwn − z∥∞
= ∥Γwn − Γz∥∞
= max

ν∈[ν0−τ,e]
|Γwn(ν)− Γz(ν)|

= max
ν∈[ν0−τ,e]

|Ψ(ν0)

+

∫ ν

ν0

f(ρ, wn(ρ), wn(ρ− τ))dρ− Ψ(ν0)−
∫ ν

ν0

f(ρ, z(ρ), z(ρ− τ))dρ

∣∣∣∣
= max

ν∈[ν0−τ,e]

∣∣∣∣∫ ν

ν0

f(ρ, wn(ρ), wn(ρ− τ))dρ−
∫ ν

ν0

f(ρ, z(ρ), z(ρ− τ))dρ

∣∣∣∣
≤ max

ν∈[ν0−τ,e]

∫ ν

ν0

|f(ρ, wn(ρ), wn(ρ− τ))− f(ρ, z(ρ), z(ρ− τ))|dρ

≤ max
ν∈[ν0−τ,e]

∫ ν

ν0

Lf (|wn(ρ)− z(ρ)|+ |wn(ρ− τ)− z(ρ− τ)|)dρ (4.11)

≤
∫ ν

ν0

Lf ( max
ν∈[ν0−τ,e]

|wn(ρ)− z(ρ)|+ max
ν∈[ν0−τ,e]

|wn(ρ− τ)− z(ρ− τ)|)dρ

≤
∫ ν

ν0

Lf (∥wn − z∥∞ + ∥wn − z∥∞)dρ

≤ 2Lf (ν − ν0)∥wn − z∥∞
≤ 2Lf (e− ν0)∥wn − z∥∞. (4.12)

Substituting (4.12) into (4.10), we have

∥sn+1 − z∥∞ ≤ (2Lf (e− ν0))
3∥wn − z∥∞ (4.13)

and

∥wn − z∥∞ = ∥Γ((1− an)sn + anΓsn)− z∥∞
= ∥Γ((1− an)sn + anΓsn)− Γz∥∞
= max

ν∈[ν0−τ,e]
|Γ((1− an)sn + anΓsn)(ν)− Tz(ν)|

= max
ν∈[ν0−τ,e]

∣∣∣∣Ψ(ν0) + ∫ ν

ν0

f(ρ, ((1− an)sn + anΓsn)(ρ), ((1− an)sn + anΓsn)(ρ− τ))dρ

−Ψ(ν0)−
∫ ν

ν0

f(ρ, z(ρ), z(ρ− τ))dρ

∣∣∣∣
= max

ν∈[ν0−τ,e]

∣∣∣∣∫ ν

ν0

f(ρ, ((1− an)sn + anΓsn)(ρ), ((1− an)sn + anΓsn)(ρ− τ))dρ

−
∫ ν

ν0

f(ρ, z(ρ), z(ρ− τ))dρ

∣∣∣∣
≤ max

ν∈[ν0−τ,e]

∫ ν

ν0

|f(ρ,Γ((1− an)sn + anΓsn)(ρ), ((1− an)sn + anΓsn)(ρ− τ))

−f(ρ, z(ρ), z(ρ− τ))|dρ
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≤ max
ν∈[ν0−τ,e]

∫ ν

ν0

Lf (|((1− an)sn + anΓsn)(ρ)− z(ρ)|

+|((1− an)sn + anΓsn)(ρ− τ)− z(ρ− τ)|)dρ

≤
∫ ν

ν0

Lf ( max
ν∈[ν0−τ,e]

|((1− an)sn + anΓsn)(ρ)− z(ρ)|

+ max
ν∈[ν0−τ,e]

|((1− an)sn + anΓsn)(ρ− τ)− z(ρ− τ)|)dρ

≤
∫ ν

ν0

Lf (∥wn − z∥∞ + ∥((1− an)sn + anΓsn)− z∥∞)dρ

≤ 2Lf (ν − ν0)∥((1− an)sn + anΓsn)− z∥∞
≤ 2Lf (e− ν0)∥((1− an)sn + anΓsn)− z∥∞. (4.14)

Putting (4.14) into (4.13), we obtain

∥sn+1 − z∥∞ ≤ (2Lf (e− ν0))
4∥((1− an)sn + anΓsn)− z∥∞. (4.15)

and

∥(1− an)sn + anΓsn − z∥∞
= ∥(1− an)(sn − z) + an(anΓsn − z)∥∞
≤ (1− an)∥sn − z∥∞ + an∥Γsn − Γz∥∞
= (1− an)∥sn − z∥∞ + an max

ν∈[ν0−τ,v]
|Γsn(ν)− Γz(ν)|

= (1− an)∥sn − z∥∞ + an max
ν∈[ν0−τ,e]

|Ψ(ν0)

+

∫ ν

ν0

f(s, sn(ρ), sn(ρ− τ))dρ−Ψ(ν0)−
∫ ν

ν0

f(ρ, z(ρ), z(ρ− τ))dρ

∣∣∣∣
= (1− an)∥sn − z∥∞ + an max

ν∈[ν0−τ,e]

∣∣∣∣∫ ν

ν0

f(ρ, sn(ρ), sn(ρ− τ))dρ

−
∫ ν

ν0

f(ρ, z(ρ), z(ρ− τ))dρ

∣∣∣∣
≤ (1− an)∥sn − z∥∞ + an max

ν∈[nu0−τ,e]

∫ ν

ν0

|f(s, sn(ρ), sn(ρ− τ))

−f(ρ, z(ρ), z(ρ− τ))|dρ

≤ (1− an)∥sn − z∥∞ + an max
ℓ∈[ν0−τ,e]

∫ ν

ν0

Lf (|sn(ρ)− z(ρ)|

+|sn(ρ− τ)− z(ρ− τ)|)dρ

≤ (1− an)∥sn − z∥∞ + an

∫ ν

ν0

Lf ( max
ν∈[ν0−τ,e]

|sn(ρ)− z(ρ)|

+ max
ν∈[ν0−τ,e]

|sn(ρ− τ)− z(ρ− τ)|)dρ

≤ (1− an)∥sn − z∥∞ + an

∫ ν

ν0

Lf (∥sn − z∥∞ + ∥sn − z∥∞)dρ

≤ (1− an)∥sn − z∥∞ + 2anLf (ν − ν0)∥sn − z∥∞
≤ [1− an(1− 2Lf (e− ν0))]∥sn − z∥∞. (4.16)

Substituting (4.16) into (4.15), we have

∥sn+1 − z∥ ≤ (2Lf (e− ν0))
4[1− an(1− 2Lf (e− ν0))]∥sn − z∥∞. (4.17)

Recalling from assumption (M5) that 2Lf (e− ν0) < 1, it follows that (2Lf (e− ν0))
4 < 1. Thus from (4.17), we

have

∥sn+1 − z∥ ≤ [1− an(1− 2Lf (e− ν0))]∥sn − z∥∞. (4.18)
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Inductively, from (4.18) we have

∥sn+1 − z∥∞ ≤
n∏

k=0

[1− ak(1− 2Lf (e− ν0))]∥s0 − z∥∞. (4.19)

Since ak ∈ [0, 1], for all k ∈ N, from assumption (M5), we get

1− ak(1− 2Lf (e− ν0)) < 1. (4.20)

From classical analysis, it is well known that exp−s ≥ 1− s, for all s ∈ [0, 1], thus from (4.19) we get

∥sn+1 − z∥∞ ≤ ∥s0 − z∥∞ exp−(1−ak(1−2Lf (e−ν0)))
∑n

s=0 ak , (4.21)

which yields lim
n→∞

∥sn − z∥∞ = 0. □
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