
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,027 |
تعداد مشاهده مقاله | 67,082,798 |
تعداد دریافت فایل اصل مقاله | 7,656,309 |
Optimization of the nonlinear model of neural network training in predicting thermal efficiency of solar concentrator with simulated annealing algorithm | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 236، دوره 13، شماره 2، مهر 2022، صفحه 2947-2960 اصل مقاله (1.28 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2021.22254.2341 | ||
نویسندگان | ||
Omid Khaledi1؛ Seyfolah Sadodin* 2؛ Seyed Hadi Rostamian* 2 | ||
1Faculty of Mechanical Engineering, Semnan University, Semnan, Iran | ||
2School of Engineering, Damghan University, Damghan, Iran | ||
تاریخ دریافت: 09 دی 1399، تاریخ بازنگری: 12 اسفند 1399، تاریخ پذیرش: 14 اسفند 1399 | ||
چکیده | ||
Nowadays, artificial neural networks are widely used to solve large-scale and complex problems. The purpose of this study is to use artificial intelligence techniques such as artificial neural networks and simulated annealing algorithm, to optimize the solar energy system in order to maximize its economic benefits. Here, a new nonlinear computational model has been presented to predict the thermal performance of compound parabolic concentrator (CPC). In this regard, three models of artificial neural network (ANN) including radial-basis function (RBFANN), multi-layer perception (MLPANN) as well as adaptive neuro fuzzy inference system (ANFIS) are used to identify the nonlinear relationship between input and output parameters of the system. The optimal nonlinear structure of the model is determined through the simulated annealing (SA) method. Validation of the proposed models is performed on a CPC. The results show that all the three models are efficient. In particular, statistical analyses show that the ANFIS model is more accurate in the process of predicting thermal efficiency. So, the given models can be effectively applied in practical fields. | ||
کلیدواژهها | ||
neural network؛ nonlinear optimization؛ simulated annealing algorithm؛ compound parabolic concentrator؛ thermal efficiency | ||
مراجع | ||
[1] E.H.L. Aarts and P.J.M. van Laarhoven, Simulated annealing, Simulated Annealing: Theory and applications, Springer, 1987. [2] M.H. Ahmadi, M.A. Ahmadi, R. Bayat, M. Ashouri and M. Feidt, Thermo-economic optimization of Stirling heat pump by using non-dominated sorting genetic algorithm, Energy Conver. Manag. 91 (2015), 315–322. [3] M.H. Ahmadi, M.A. Ahmadi, F. Pourfayaz and M. Bidi, Thermodynamic analysis and optimization for an irreversible heat pump working on reversed Brayton cycle, Energy Conver. Manag. 110 (2016), 260–267. [4] S. Babaie-Kafaki, R. Ghanbari and N. Mahdavi-Amiri, Two effective hybrid metaheuristic algorithms for minimization of multimodal functions, Int. J. Comput. Math. 88 (2011), no. 11, 2415–2428. [5] S. Babaie-Kafaki, R. Ghanbari and N. Mahdavi-Amiri, An efficient and practically robust hybrid metaheuristic algorithm for solving fuzzy bus terminal location problems, Asia-Pacific J. Oper. Res. 29 (2012), no. 2, 1250009. [6] S. Babaie-Kafaki, R. Ghanbari and N. Mahdavi-Amiri, Hybridizations of genetic algorithms and neighborhood search metaheuristics for fuzzy bus terminal location problems, Appl. Soft Comput. 46 (2016), 220–229. [7] S. Babaie-Kafaki and S. Rezaee, A randomized nonmonotone adaptive trust region method based on the simulated annealing strategy for unconstrained optimization, Int. J. Intell. Comput. Cyber. 12 (2019), no. 3, 389–399. [8] S. Babaie-Kafaki and S. Rezaee, A randomized adaptive trust region line search method, Int. J. Optim. Control: Theor. Appl. (IJOCTA) 10 (2020), no. 2, 259–263. [9] D. Bertsimas and J.N. Tsitsiklis, Introduction to linear optimization, vol. 6, Athena Scientific Belmont, MA, 1997.[10] P.A. Castillo, J. Carpio, J.J. Merelo, A. Prieto, V. Rivas and G. Romero, G-Prop: Global optimization of multilayer perceptrons using GAs, Neurocomput. 35 (2000), no. 1-4, 149–163. [11] Y. Da and X.R. Ge, An improved PSO-based ANN with simulated annealing technique, Neurocomput. 63 (2005), 527–533. [12] J.A. Duffe and W.A. Beckham, Solar engineering of thermal processes, 3, Wiley New York, 2006. [13] W.L. Dong, X. Li and Z. Peng, A simulated annealing-based Barzilai–Borwein gradient method for unconstrained optimization problems, Asia-Pacific J. Oper. Res. 36 (2019), no. 4, 195–207. [14] B. Hajek, Cooling schedules for optimal annealing, Math. Oper. Res. 13 (1988), no. 2, 311–329. [15] D. Henderson, Sh. H. Jacobson and A.W. Johnson, The theory and practice of simulated annealing, Handbook of metaheuristics, Springer, 2003. [16] J.S. Jang, ANFIS: adaptive-network-based fuzzy inference system, IEEE Trans. Syst. Man Cyber. 23 (1993), no. 3, 665–685. [17] J.S.R. Jang, C.T. Sun and E. Mizutani, Neuro-fuzzy and soft computing: A computational approach to learning and machine intelligence, IEEE Trans. Automatic Control 42 (1997), no. 10, 1482–1484. [18] M. Kahani, M.H. Ahmadi, A. Tatar and M. Sadeghzadeh, Development of multilayer perceptron artificial neural network (MLP-ANN) and least square support vector machine (LSSVM) models to predict Nusselt number and pressure drop of TiO2/water nanofluid flows through non-straight pathways, Numer. Heat Transfer Part A: Appl. 74 (2018), no. 4, 1190–1206. [19] D. Karaboga and B. Basturk, A powerful and efficient algorithm for numericalfunction optimization: artificial bee colony (ABC) algorithm, J. Glob. Optim. 39 (2007), no. 3, 459–471. [20] A. Kasaeian, M. Ghalamchi, M.H. Ahmadi and M. Ghalamchi, GMDH algorithm for modeling the outlet temperatures of a solar chimney based on the ambient temperature, Mech. Ind. 18 (2017), no. 2, 216. [21] A.Y.S. Lam and V.O.K. Li, Chemical-reaction-inspired metaheuristic for optimization, IEEE Trans. Evo. Comput. 14 (2009), no. 3, 381–399. [22] T. Liao, K. Socha, M.A. Montes de Oca, T. Sttzle and M. Dorigo, Ant colony optimization for mixed-variable optimization problems, IEEE Trans. Evo. Comput. 18 (2013), no. 4, 503–518. [23] R. Loni, A. Kasaeian, K. Shahverdi, E. Askari Asli-Ardeh, B. Ghobadian and M.H. Ahmadi, ANN model to predict the performance of parabolic dish collector with tubular cavity receiver, Mech. Ind. 18 (2017), no. 4, 408. [24] I.G. Manuel, R.P. Luis and H.L. Jesus ,Evaluation of thermal parameters and simulation of a solar-powered, solid-soition chiller whith a CPC collector, Renewable Energy 34 (2009), no. 3, 570–577. [25] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, E. Teller, Equation of state calculations by fast computing machines, J. Chem. Phys. 21 (1953), no. 6, 1087–1092. [26] N.A. Mohammad, Sh.R. Aliakbari and A.H. Eshraghniaye Jahromi, A particle swarm-BFGS algorithm for nonlinear programming problems, Comput. Oper. Res. 40 (2013), no. 4, 963–972. [27] A. Mohebbi, M. Taheri and A. Soltani, A neural network for predicting saturated liquid density using genetic algorithm for pure and mixed refrigerants, Int. J. Refrig. 31 (2008), no. 8, 1317–1327. [28] M. Mustapha, M.W. Mustafa, S.N. Khalid, I. Abubakar and A.M. Abdilahi, Correlation and wavelet-based shortterm load forecasting using Anfis, Indian J. Sci. Technol. 9 (2016), no. 46, 1–8. [29] J.M. Ortiz-Rodriguez, M. del Rosario Martinez-Blanco and H. Vega-Carrillo, Evolutionary artificial neural networks in neutron spectrometry, IntechOpen, 2011. [30] M.M. Papari, F. Yousefi, J. Moghadasi, H. Karimi and A. Campo, Modeling thermal conductivity augmentation of nanofluids using diffusion neural networks, Int. J. Thermal Sci. 50 (2011), no. 1, 44–52. [31] I. Pence, M.C. Cesmeli, F.A. Senel and B. Cetisli, A new unconstrained global optimization method based on clustering and parabolic approximation, Expert Syst. Appl. 55 (2016), 493–507. [32] R. Prasad Parouha and K. Nath Das, A memory based differential evolution algorithm for unconstrained opti-mization, Appl. Soft Comput. 38 (2016), 501–517. [33] E. Rashedi, H. Nezamabadi–pour and S. Saryazdi, GSA: a gravitational search algorithm, Information sciences, 179 (2009), no. 13, 2232–2248. [34] C.R. Reeves, Modern heuristic techniques, Modern Heuristic Search Meth. 1 (1996), 1–25. [35] R.M. Rizk-Allah, E.M. Zaki and A.A. El-Sawy, Hybridizing ant colony optimization with firefly algorithm for unconstrained optimization problems, Appl. Math. Comput. 224 (2013), 473–483. [36] M. Roozbeh, S. Babaie-Kafaki and A. Naeimi Sadigh, A heuristic approach to combat multicollinearity in least trimmed squares regression analysis, Appl. Math. Model. 57 (2018), 105–120. [37] S.A. Sadatsakkak, M.H. Ahmadi, R. Bayat, S.M. Pourkiaei and M. Feidt, Optimization density power and thermal efficiency of an endoreversible Braysson cycle by using non-dominated sorting genetic algorithm, Energy Conver. Manag. 93 (2015), 31–39. [38] J.R.M. Smits, W.J. Melssen, L.M.C. Buydens and G. Kateman, Using artificial neural networks for solving chemical problems: part I. Multi-layer feed-forward networks, , Chemom. Intell. Lab. Syst. 22 (1994), no. 2, 165–189. [39] M. Tahani, M. Vakili and S. Khosrojerdi, Experimental Evaluation and ANN Modeling of Thermal Conductivity of Graphene Oxide Nanoplatelets/Deionized Water Nanofluid, Int. Commun. Heat Mass Transfer 76 (2016), no. 76, 358–365. [40] S. Toghyani, M.H. Ahmadi, A. Kasaeian, A.H. Mohammadi, Artificial neural network, ANN-PSO and ANN-ICA for modelling the Stirling engine, Int. J. Ambient Energy 37 (2016), no. 5, 456–468. [41] M.D. Toksari, Ant colony optimization for finding the global minimum, Appl. Math. Comput. 176 (2006), no. 1, 308–316. [42] M.D. Toksari, A heuristic approach to find the global optimum of function, J. Comput. Appl. Math. 209 (2007), no. 2, 160–166. [43] M.D. Toksari, Minimizing the multimodal functions with ant colony optimization approach, Expert Syst. Appl. 36 (2009), no. 3, 6030–6035. [44] M.D. Toksari and E. Guner, Solving the unconstrained optimization problem by a variable neighborhood search, J. Math. Anal. Appl. 328 (2007), no. 2, 1178–1187. [45] V.J.P. Vilar, L.X. Pinho, A.M.A. Pintor and R. Boaventura, Treatment of textile waste waters by solar-driven advanced oxidation processes, Solar Energy 85 (2011), no. 9, 1927–1934. [46] Z. Wang, C.D. Massimo, M.T. Tham and A.J. Morris, A procedure for determining the topology of multilayer feed forward neural networks, Neural Networks 7 (1994), no. 2, 291–300. [47] X.S. Yang, Nature-inspired optimization algorithms, J. Comput. Sci. 46 (2020), 101–104. | ||
آمار تعداد مشاهده مقاله: 44,345 تعداد دریافت فایل اصل مقاله: 514 |