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Abstract

In this paper, we make a start by considering the automorphisms of strong semilattice of mw-groups, relating them
to the automorphisms of underlying w-groups. We also provide a condition under which an automorphism of strong
semilattice of w-groups can be constructed.
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1 Introduction

Let A be a semilattice and for each a € A, let S, be a semigroup and suppose S, N Sg = @ for a # B. For every
o, € A with o > S, there exists a homomorphism f, g : So — Sg satisfying the following conditions:

(i) fa,o =1Idg, for any o € A.
(ii) For any o, 8,7 € A with a > 8>, fa.y fa.8 = fan-

The semigroup operation on S = Ugep S, is defined in terms of the multiplication in the components S, and the
homomorphism fq 3 (called linking homomorphism) by st = fq(5)fs~(t) for s € S, and t € Sg, where v =
a A B. Then S with multiplication defined above is a strong semilattice A of semigroup S, and is denoted by

S = (A7 {Sa}ael\a {fa,,ﬁ}aZ/f)'

A semigroup S is said to be a m-group if there exists a subgroup G of S which is an ideal, and for any s € S, there
exists a natural number n € N such that s” € G°. An element s € S is said to be regular if there exists an element
a € S such that sas = s and S is said to be regular if every element of S is regular. An element s of S is said to be
m-regular if there exists a positive integer n € N such that s € s"5s™ and S is said to be m-regular if every element of
S is w-regular. Infact, w-regular semigroups is one of the important classes of non-regular semigroups. Let RS denote
the set of all regular elements of S. We write, S = R® U N®, where N¥ = S\ R is the set of non-regular elements of
S.

The set of idempotents in S will be denoted by Eg. Thus Es = {es;a € A}. If S is a m-group and s € R®, then
s = se for the (unique) idempotent e, and so s € G°. Since obviously G® C R®, so we have G° = R® in a m-group.
In this paper, we are looking for automorphisms of strong semilattice of w-groups.
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2 Automorphisms

In this section, first, we fix some notations without further mention. Let S be a strong semilattice of m-groups.
We write S, = R, U N,, where N, = S, \ R, is the set of non-regular elements of S, and it is the partial semigroup
by definition of m-group.

Lemma 2.1. Let S be a strong semilattice of m-groups. Let ¢ € Aut(S), then the following hold:

(i) @|Es is an automorphism of semilattices.
(ii) If G C S is a group, then there exists a € A such that G C S,,.
(iii) For each o € A, ¢|,, is an isomorphism of m-groups from S, to S;, where ¢(e,) = €.

Proof . Let ¢ € Aut(S).
(i). Suppose e, € Eg, we have ¢(eq) = d(eata) = ¢(eq)P(eq), that is, ¢(eqs) is idempotent, hence ¢p(Eg) C Es.

Now for any e, € Eg, since ¢ is onto, therefore there exists some s € S such that ¢(s) = e,. Now we show that
s € Eg. For this we have

P(s) = ey

=e,eq (asey € Eg)

= ¢(s)9(s)

= ¢(s?) (as ¢ is homomorphism).
That is, ¢(s) = ¢(s?). Since ¢ is injective, therefore we have s = s2, implies, s is idempotent. Hence we have
ey = ¢(s) € ¢(Eg), that is, Es C ¢(Eg). Thus we have ¢(Es) = Eg. Since each S, contains a unique idempotent e,
and ¢ € Aut(S) permutes the idempotents, ¢ induces a bijection on A. Since eqyep = eg if and only if o > 3, then ¢
preserves the order on A.

(ii). Suppose G is a subgroup of S. Let e be the identity element of G. Then e = ¢, € S, for some o € A. We
show that G is a subgroup of S,. Let g € G, then g € Sy for some 3 € A. Since e is the identity element of G, so
ge=g. Also, g = ge = f3,08(9) fa,ap(€) € Sap. So B =af, as SgN Ses = 0, this implies, 8 < a.

1 1

Let ¢! be the inverse of g, then g=' € S, for some n € A. Thus gg! = e € S,. Also, e = gg~! =
I8.80(9) fn.pn(g7") € Sgy. So e € Sg,y, implies, « = Bn and so o < 3. Hence o = 8 and g € S, that is, G C S,.

(iii). Let g € Sy, since S,, is a m-group, so there exists a subgroup G of S, which is an ideal of S, and there exists
n € N such that ¢” € G5~. Since G is a group, it implies the inverse of ¢" exists in GS>. That is, ¢~ € G% C S,
such that g"¢g™" = eq € So. Let ¢(g") € S, for some v € A. Also, by part (i), ¢(eqn) = e, € S; for some 7 € A and
P(g7") €S-

Now we have

Plea) = d(g"g™™)
=o(g")p(g™") € S,

That is, S; = S,. Hence ¢(S,) C S;. Since ¢ is an automorphism and so ¢! exists and will do same and hence
#71(S;) C Sa, that is, S; C ¢(S,) and from part (i), we are done. [J

By the above lemma we know that every automorphism of S induces an automorphism of A. We will denote this
automorphism of semilattices by ¢,. Hence, we can write ¢p(a) = 7, where ¢(en) = e,. Let ¢ € Aut(S). Then we
write ¢, for ¢|s., where @ € A. By Lemma 2.1, we know ¢,, is an isomorphism. So given an automorphism ¢ of S,
we obtain family {¢, : @ € A} of m-group isomorphisms and a semilattice automorphism denoted by ¢. Thus we
have ¢ and {d, : @ € A} determines ¢ completely.

Following lemma is due to Lallement; for the proof, one can see [2].

Lemma 2.2. Let ¢ : S — T be a homomorphism from a regular semigroup S into a semigroup 7. Then im(yp) is
regular. O
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Let S = (A, {Sa}aca, {fa.5}a>p) be strong semilattices of m-groups. Note that R = | | R%. Now, for any s € 9,
a€A

we define a mapping ¢ : S — RS by
P(s) =eqs if s € 5,.

Where e, is the unique idempotent of the m-group S,. Since we know RS is an ideal of S. Thus the map 9 is well
defined. The following lemma shows that the map 1 commutes with the linking homomorphisms.

Lemma 2.3. Let S = (A, {Sa}acr, {fa,3}a>p) be strong semilattices of m-groups. Then for any «, f € A with a > 3
and for any s € S,, we have

(0 fa,ﬁ = focﬁ .
Proof . Let a, 8 € A with a > . Then for any s € S, we have

fap ¥(s) = fa,p(€as)
= fa,p(€a)fa,p(s)
= eg(fa,8(5))
=1 fa,ﬁ(s)'
Thus we have
» fa,ﬂ = fa,ﬁ .

[0 Next, we start from semilattices automorphism and a family of 7m-group isomorphisms satisfying a condition under
which an automorphism of strong semilattices of m-groups can be constructed.

Theorem 2.4. Let S = (A, {Sa}taea, {fa,8}e>p) be strong semilattices of m-groups. Let ¢o € Aut(A) and for each
a €A, ¢o: Sa — S, (a) be an isomorphism of w-groups. Also, assume that the following conditions are satisfied.

(1) ¢|N* is a partial automorphism of N, and for any s,s’ € N9, if ss' ¢ N°, then ¢(s)¢(s') ¢ N5.

(2) ¥ dp fa,8 =Y for(a).én(s) Pa-

Define a mapping ¢ on S by ¢(s) = ¢ (s) if s € S,. Then ¢ is an automorphism of S. Conversely, every automorphism
of strong semilattices of w-groups satisfies the conditions.

Proof . Suppose there exists a semilattice automorphism ¢, : A — A and a family of m-group isomorphisms
{¢a : @ € A} where ¢o : So — Sp,(a) satisfying the above two conditions. Let ¢ : S — S be a map defined by
d(s) = da(s) if s € So. We show that ¢ € Aut(S). Let 51,80 € S. If 81 = s9, then there exists & € A such that
81,82 € Sq. Since @q 1 Sq — Sy, (o) 18 an isomorphism, therefore we have

S1 = S2
& ¢(s1) = ¢(s2).
That is, ¢ is well defined and injective. Now for any ¢ € S, there exists some a € A with ¢ () = 6 € A such that

t € Ss. As ¢o : Sa — S4,(a) is an isomorphism. Therefore there exists some s € S, such that t = ¢, (s) = ¢(s), and
so ¢ is surjective. Hence ¢ is bijective.

Now we need to show ¢ is a homomorphism. For this, let s, € S, and sg € Sg. Then we have the following cases.

Case 1: If sos3 € Nog, then s, € N, and sg € Ng, hence by condition (1), we have ¢(sqas3) = d(sqa)P(s3).
Case 2: If 5,55 ¢ Nup, then we have ¢(sas5) ¢ N¥, therefore we have

B(5a58) = Pap(Sass)
= ¢ap(fa,ap(sa)f,05(s8))
= ¢ap(fa,ap(5a))Pap(fs,a5(s8))
= egp(ap)Pap(fa,ap(5a))Pas(fs,a8(s8))
= (egr(ap)Pap(fa,ap(5a)))(€py(ap)Pas(f5.08(58)))
= (¢ bap fa,ap(5a)) (¥ das f5,a5(58))-
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On the other hand, we have

H(5a)P(s5) = Pal(sa)Ps(58)
= fon(a).6a(a) (Pa(5a)) for(8).0n(an) (P5(58))
= (€4x(a8) fon(a).0n(ap) (Pal5a))) (€gx(a) fon(8).6n(as) (P5(58))) (Dy condition (1))
= (¥ fon(a)oa(ap) Palsa)) (¥ for(s).6n(an) 98(s8))
= (¥ ¢ap fa,ap(5a)) (¥ Gap [5.a5(s5)) (by condition (2)).

Hence we have ¢(sa53) = ¢(sq)¢(sp). Thus ¢ is an automorphism of S.

Conversely, suppose ¢ is an automorphism of S. By Lemma 2.1, we have the existence of semilattice automorphism
¢ and a family {@q : So — Sg, (a)} of T-group isomorphisms. Since ¢ € Aut(S), then image of N° is N¥, by Lemma
2.2. Therefore, condition (1) holds clearly.

Now for any a > 3, then off = . For s € S,, we have egs = fzg(eg)fa,3(s) = €gfa,p(s) = ¥fap(s). Thus
we have,

p(ess) = (Y fa,p(5))
= (Y fa(s))
= ¢ U fa,p(s).

Also, we have
P(e)d(s) = epr(8)Pals)
= (€pr(8)) (€gx(a)) (Pals))

= Coa(B) ¥ Pals)
= for(a),on(8) ¥ Pals).

Thus we have

P8 Y fo.p = for(@)6a(8) ¥ Pa- (1)
Now for any o € A and s € S, we have
Pat)(s) = pal€as)
= da(€a)Pa(s)

= €y (a)Pals)
= 'l/] ¢o¢(5)'

Therefore, we have
ba Y =1 Pa- (2)
Hence we have
¥ ¢p fo.p = dp ¥ fap (by equation (2))

= f¢A(a)7¢A(g) P Gq (by equation (1))
= 1/) f¢A(a)7¢A(ﬁ) (ba (by Lemma (23))

That is,

Y $3 fa,8 =V for(a).ea(8) Pa-

Thus the proof is completed. [J In the following theorem, we provide a construction for the automorphisms of S from
the automorphisms of underlying 7-groups S,.

Theorem 2.5. Suppose all the linking homomorphisms are bijective and A = {«, S}a<p. Consider S = S, U Sg, then
every automorphism of S, or Sy gives rise to an automorphism of S.
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Proof . Suppose all the linking homomorphisms be bijective. Then S, = Sz = G. Let § € Aut(G) be the arbitrary
automorphism of G. Since S, = Sg = G, therefore we have the isomorphisms ¢, : G = S, and ¢5: G — Sp.

Let ¢ : S — S be the map defined by
N if s € S,
9o(s) = { 200 )i
¢59¢ﬂ (S) if s € SB.
We show that % € Aut(S). For this, we first show that for all s € S

9¢fﬁ,o¢(5) = fﬂ,a9¢(5)' (3)

Since ¢35 : G — Sz and fg o : Sp — S are isomorphisms, we can define ¢, = fg,o¢s. Therefore, we have

b = (fp.a0p) "

bo' =05 f5a

Pl = datid; f5 1
G065 = f5.a08005" f54
0005 5.0 = [5.005005"

Pl

Now for any s € S3, we have
¢a9¢;1f6,a(s) = fﬁ,a¢B9¢§1(3)
= $a885" (f5,0(5)) = f5,a0%(5)
= 07(f5.0(5)) = f5.a0°(s).

Hence for all s € S we have 0 f5 o (s) = f5,00%(s).
It is clear that 6 is bijective. Now we show that 6 is a homomorphism. For this, we have the following cases.
Case(i). If s,t € S, or Sg, then we have

P2 (st) = daboy ' (st)
= Gabdy " (5)pabdy (1)
= 0%(s5)0°(t).

Case(ii). If s € S, and t € Sg, then we have

Hence we have 0% € Aut(S) and every automorphism of S can be constructed in this way. [J

The next lemma helps us to prove the above theorem for arbitrary semilattices.

Lemma 2.6. Let S = (A, {Sa}taea, {fa,8}a>p) be strong semilattices of m-groups with all the linking homomorphisms
bijective, then for any A € A, we have S 2 A x S) (2 A x G).

Proof . Fix A € A, then for each oo € A we have an isomorphism

—1
Oq = f)\’)\a foc,/\a :Sqa — S
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Now define a map x : S — A x Sy by x(s) = («, 04(s)) if s €. S,. We show x is an isomorphism. Let s1,s2 € S.
If s; = s9, then there exists o € A such that s1,s5 € S,. Since o, : S, — S is an isomorphism, therefore we have
S§1 = 82
< Ua(Sl) = UQ(SQ)
& (a,0a(s1) = (a,00(s2)).

That is, x is well defined and injective. Now for any (a,t) € A x Sy, there exists some s’ € S, such that t = o,(s’)
as o, Is surjective, therefore we have (o, t) = (a, 04(s")) = x(s'), that is, x is surjective.

Now for any s,t € S then s € S, and t € S3 for some o, 8 € A. If & = 3, then there is nothing to prove. Now
suppose « # [, we have

x(st) = (B, gap(st))
afB,04(s)op(t)) (as all the linking homomorphisms are bijective)

= (
= (o, 0a(5))(8,05(1))
= x(s)x(t).

Therefore y is an isomorphism. [J

Corollary 2.7. Let S = (A, {Sa}aca, {fa,8}a>p) be strong semilattices of m-groups with all the linking homomor-
phisms bijective, then every automorphism of S, for some o € A gives rise to an automorphism of S.

Proof . The proof follows from Lemma 2.6 and Theorem 2.5. OJ
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