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Abstract

In this paper, we present two new approaches to solve large-scale differential T-Lyapunov matrix equations. The first
one is based on the extended block Krylov subspaces, and the second is based on the extended global Krylov subspaces.
The initial problem is projected onto an extended block (or global) Krylov subspaces to get a small-scale differential
T-Lyapunov matrix equation. The latter problem is solved by iterative methods (Rosenbrock or BDF method), then
the obtained solution is used to create a low-rank approximate solution of the original problem. This process is being
replicated, which increases the dimension of the projection space until some planned accuracy is achieved. We give
some new theoretical results and numerical experiments then we compare the new approaches.
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1 Introduction

We consider the differential T-Lyapunov matrix equation (DTLE in short) on the time interval [t0, Tf ] of the form:

X ′(t) = AX(t) +X(t)TAT +BBT , (1.1)

with the initial condition X(t0) = X0 where A ∈ Rn×n is assumed to be large, sparse, and nonsingular and B ∈ Rn×s

is full rank matrix with s ≪ n.

The differential T-Lyapunov matrix equation play a fundamental role in numerous problems in control, filter
design theory, model reduction problems, differential equations and robust control problems; see, [1, 5] and the
references therein. Small or medium-sized differential T-Lyapunov equations can be solved, for example, by Backward
Differentiation Formula (BDF) method and Rosenbrock method [4, 14]. The DTLE (1.1) is equivalent to the following
linear ordinary differential equation using the Kronecker formulation:

x′(t) = Ax(t) + b, x(t0) = vec(X(t0)), (1.2)
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where A = In ⊗A+A⊗ In, b = vec(BBT ) and vec(X) is the vector of Rns defined by

vec(X) = [X11, X21, ..., Xn1, ..., X1s, X2s, ..., Xns]
T ∈ Rns.

Reasonable size problems, which are given by (1.2), are solved by using an integration method. The Kronecker
product A⊗B = [aijB], where A = [aij ], satisfies the properties: (A⊗B)(C⊗D) = (AC⊗BD), (A⊗B)T = AT ⊗BT

and vec(AXB) = (BT ⊗ A)vec(X). For large differential T-Lyapunov matrix equations, we propose a new method
based on projection onto extended block (or global) Krylov subspaces with an orthogonality Petrov-Galerkin condition.

The rest of the paper is organized as follows: In section 2, we recall the extended block Arnoldi process and some
of its properties. In section 3, we recall the extended global Arnoldi process and some of its properties. In section
4, we present a low-rank method for solving large-scale differential T-Lyapunov matrix equations, using projections
onto an extended block Krylov subspaces Ke

m(A,B) (or extended global Krylov subspaces GKe
m(A,B)), and Galerkin

orthogonality condition. Some iterative methods for solving the obtained low dimensional problem are presented in
section 5. In section 6, we show theoretical results related to the norm and the error. Finally, numerical examples are
presented in section 7 to evaluate the performance of our approaches.

Throughout the paper, we use the following notations. The Frobenius inner product of the matrices X and Y is
defined by ⟨X,Y ⟩F = tr(XTY ), where tr(Z) denotes the trace of a square matrix Z. The associated norm is the
Frobenius norm denoted by ∥ · ∥F ,

∥A∥2F = tr(ATA) =
n∑
i

m∑
j

a2ij with A = [aij ] ∈ Rn×m.

And the 2-norm denoted by ∥ · ∥2, ∥A∥22 = λmax(A
TA), and the 2-logarithmic norm of the matrix A is defined by

µ2(A) = λmax(A+AT )
2 . We also use the matrix product ⋄ defined in [3]. The following proposition gives some properties

satisfied by this product.

Proposition 1.1. Let A, B, C ∈ Rn×ps, D ∈ Rn×n, L ∈ Rp×p and α ∈ R. Then we have,

1. (A+B)T ⋄ C = AT ⋄ C +BT ⋄ C.

2. AT ⋄ (B + C) = AT ⋄B +AT ⋄ C.
3. (αA)T ⋄ C = α(AT ⋄ C).

4. (AT ⋄B)T = BT ⋄A.

5. AT ⋄ (B(L⊗ Is)) = (AT ⋄B)L.

6. (DA)T ⋄B = AT ⋄ (DTB).

A block matrix Vm = [V1, V2, ..., Vm] is F -orthonormal if VT
m ⋄ Vm = I. We have the following result.

Lemma 1.2. [11] Let Vm = [V1, V2, ..., Vm] be an n ×ms F -orthonormal block matrix, Z ∈ Rm×s and Y ∈ Rms×q.
Then we have

∥Vm (Z ⊗ Is) ∥F = ∥Z∥F and ∥VmY ∥F ≤ ∥Y ∥F .

2 The extended block Arnoldi process

We will consider extended block Krylov subspaces associated to the pair (A,B) and defined as follows

Ke
m(A,B) = range

{
B,A−1B,AB,A−2B,A2B, ..., Am−1B,A−mB

}
. (2.1)

We mention the extended block Arnoldi (EBA) [8, 16] algorithm when applied to the pair (A,B). EBA is described
in algorithm 1 as follows
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Algorithm 1 The extended block Arnoldi algorithm (EBA)

Inputs: A an n× n matrix, B an n× s matrix and m an integer.

1. Compute the QR decomposition of [B,A−1B], i.e, [B,A−1B] = V1Λ;

2. Set V0 = [ ];

3. For j = 1, 2, 3, ...,m

4. Set V
(1)
j = Vj(:, 1 : s) et V

(2)
j = Vj(:, s+ 1 : 2s)

5. Vj = [Vj−1, Vj ]; V̂j+1 = [AV
(1)
j , A−1V

(2)
j ];

6. For i = 1, ..., j,

7. Ti,j = V T
i V̂j+1;

8. V̂j+1 = V̂j+1 − ViTi,j ;

9. End For i

10. Compute the QR decomposition of U i.e., V̂j+1 = Vj+1Tj+1,j ;

11. End For j.

Output: Vm = [V1, ..., Vm], Tm = [Ti,j ].

After m steps, Algorithm 1 built an orthonormal basis Vm (VT
mVm = I2ms) of the extended block Krylov subspace

Ke
m(A,B). Let Tm = VT

mAVm be an 2s× 2s block upper Hessenberg matrix. Then we have the following relations

AVm = VmTm + Vm+1Tm+1,mET
m = Vm+1

[
Tm

Tm+1,mET
m

]
, VT

mB = ∇1Λ11 (2.2)

where ET
m = [02s×2s(m−1), I2s] is the matrix formed with the last 2s columns of the 2ms× 2ms identity matrix I2ms,

∇1 = [Is, 0s×(2m−1)s]
T and Λ11 is the s× s matrix obtained from the QR decomposition

[B,A−1B] = V1Λ with Λ =

[
Λ11 Λ12

0s×s Λ22

]
.

3 The extended global Arnoldi process

In this section, we recall the extended global Krylov subspace and the extended global Arnoldi process. Let B be a
matrix of dimension n× s and A be a matrix of dimension n×n, then the extended global Krylov subspace associated
to (A,B) is given by

GKg
m(A,B) = span

{
B,A−1B,AB,A−2B,A2B, ..., Am−1B,A−mB

}
. (3.1)

The extended global Arnoldi process constructs an F -orthonormal basis {V1, V2, ..., Vm} of the extended global Krylov
subspace GKg

m(A,B) [15]. The algorithm is summarized as follows

Algorithm 2 The extended global Arnoldi process (EGA)

Inputs: A ∈ Rn×n, B ∈ Rn×s and m an integer.

1. Compute the global QR [B,A−1B], i.e , [B,A−1B] = V1(Ω⊗ Is);

2. Set V0 = [ ];

3. For j = 1, ...,m

4. Set V
(1)
j = Vj(:, 1 : s); V

(2)
j = Vj(:, s+ 1 : 2s);

5. Vj = [Vj−1, Vj ];U = [AV
(1)
j , A−1V

(2)
j ];

6. For i = 1, ..., j

7. Hi,j = V T
i ⋄ U ;

8. U = U − Vi(Hi,j ⊗ Is);

9. End for(i).

10. Compute the global QR decomposition of U , i.e., U = Vj+1(Hj+1,j ⊗ Is);

11. End for(j).

Outputs: Vm = [V1, ..., Vm] ∈ Rn×2ms and Hm = [Hi,j ] ∈ R2m×2m
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The obtained n × 2ms matrix Vm = [V1, V2, . . . , Vm] is F-orthonormal VT
m ⋄ Vm = I2m, of the extended global

Krylov subspace GKg
m(A,B) with Vi ∈ Rn×2s and 2m× 2m upper block Hessenberg matrix

Hm = VT
m ⋄ (AVm).

We have the following relation

AVm = Vm(Hm ⊗ Is) + Vm+1(Hm+1,m(Ee
m)T ⊗ Is) (3.2)

= Vm+1(

[
Hm

Hm+1,m(Ee
m)T

]
⊗ Is), Vm = Vm+1

[
I2sm

02s×2sm

]
, (3.3)

where (Ee
m)T = [02×2(m−1), I2] is the matrix formed with the last 2 columns of the 2m× 2m identity matrix I2m.

4 Krylov method

4.1 Low-rank method by extended block Arnoldi

In this section, we show how to obtain low-rank approximate solutions to the differential T-Lyapunov matrix
equation (1.1) by first projecting directly the initial problem onto extended block Krylov subspaces and then solving
the obtained low-dimensional differential matrix equation. We, firstly, apply the extended block Arnoldi algorithm to
(A,B) to get the matrices

Vm = [V1, ..., Vm] and Tm = VT
mAVm

with Vm whose columns form orthonormal bases of the extended block Krylov subspaces Ke
m(A,B) and Tm the upper

block Hessenberg matrix. After m iterations, we consider the low-rank approximate solutions Xm(t) of exact solution
X(t) to equation (1.1) of the form

Xm(t) = VmYm(t)VT
m. (4.1)

The matrix function Ym(t) ∈ R2ms×2ms can be obtained by the Petrov-Galerkin orthogonality condition

VT
mRm(t)Vm = 02ms×2ms, t ∈ [t0, Tf ], (4.2)

where Rm(t) = X ′
m(t)−AXm(t)−Xm(t)TAT −BBT is the residual.

Theorem 4.1. Let Ym(t) be the matrix function defined by (4.1), then it satisfies the following low-order differential
T-Lyapunov matrix equation {

Y ′
m(t) = TmYm(t) + Ym(t)TT T

m +BmBT
m,

Ym(t0) = VT
mX0Vm,

(4.3)

where Bm = ∇1Λ11.

Proof . Using the condition (4.1) and the relation (4.2) we obtain the reduced differential T-Lyapunov matrix equation
Y ′
m(t) = TmYm(t) + Ym(t)TT T

m +BmBT
m. □

We have now to solve the last differential matrix equation (4.3) by Resenbrock method or Backward Differentiation
Formula (BDF) method.

Next, we give a result that allows us to compute the norm of the residual without forming the approximate solution
Xm(t) at each step m of the extended block Arnoldi process (EBA). The approximate solution Xm(t) is computed in
a factored form only when convergence is achieved.

Theorem 4.2. Let the matrix function Xm(t) = VmYm(t)VT
m be the approximate solution obtained at step m by

extended block Arnoldi process. Then, the Frobenius norm of the residual Rm(t) associated to the approximate
solution Xm(t) satisfies the following relation

∥Rm(t)∥F =
√
2∥Tm+1,mY m(t)∥F , (4.4)

where Y m(t) is the 2× 2ms matrix corresponding to the last 2s rows of Ym(t).
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Proof . We have Rm(t) = X ′
m(t)−AXm(t)−Xm(t)TAT −BBT and using the relations (4.2) and (2.2), so

Rm(t) = Vm+1

[
Y ′
m(t) 02ms×2s

02s×2ms 02s×2s

]
VT
m+1 − Vm+1

[
TmYm(t) 02ms×2s

Tm+1,mET
mYm(t) 02s×2s

]
VT
m+1

−Vm+1

[
Ym(t)TT T

m Ym(t)TEmTT
m+1,m

02s×2ms 02s×2s

]
VT
m+1 − Vm+1

[
VT
mBBTVm 02ms×2s

02s×2ms 02s×2s

]
VT
m+1

= Vm+1

[
Y ′
m(t)− TmYm(t) + Y T

m (t)T T
m −BmBT

m Ym(t)TEmTT
m+1,m

−Tm+1,mET
mYm(t) 02s×2s

]
VT
m+1.

and Ym(t) is the solution of the reduced differential T-Lyapunov matrix equation (4.3). We get

Rm(t) = Vm+1

[
02ms×2ms −Ym(t)TEmTT

m+1,m

−Tm+1,mET
mYm(t) 02s×2s

]
VT
m+1.

Since Vm+1 are the orthonormal matrices, so we have ∥Rm(t)∥F =
√
2∥Tm+1,mET

mYm(t)∥F . □
To save memory, the approximate solution Xm(t) = VmYm(t)VT

m can be given as a product of two low-rank
matrices. Thus, we consider the singular value decomposition of the 2ms× 2ms matrix Ym = UDV T where D is the
diagonal matrix of the singular values of Ym(t) sorted in decreasing order. Let Ul and Vl be the 2ms × l matrices of
the first l columns of U and V respectively, corresponding to the l singular values of magnitude greater than some
tolerance dtol. We obtain the truncated singular value decomposition Ym ≈ UlDlV

T
l , where Dl = diag[λ1, ..., λl].

Setting Zm,1 = VmUlD
1
2

l , Zm,2 = VmVlD
1
2

l , it follows that

Xm = Zm,1Z
T
m,2. (4.5)

This result is important for large-scale problems to decrease central processing unit (CPU) time and memory require-
ments; the approximate solution could be given as a product of low-rank matrices.

The following result shows that the approximate solution Xm(t) is an exact solution of perturbed differential
T-Lyapunov matrix equation.

Theorem 4.3. Let the matrix function Xm(t) be the approximate solution given by (4.1). Then we have

X ′
m(t) = (A− Fm)Xm(t) +Xm(t)T (A− Fm)T +BBT , (4.6)

where Fm = Vm+1Tm+1,mVT
m.

Proof . Multiplying (4.3) from left by Vm and from right by VT
m, we obtain

VmY ′
m(t)VT

m = VmTmYm(t)VT
m + VmYm(t)TT T

mVT
m + VmBmBT

mVT
m,

then,

X ′
m(t) = [AVm − Vm+1Tm+1,mET

m]Ym(t)VT
m + VmYm(t)T [AVm − Vm+1Tm+1,mET

m]T +BBT

= [A− Vm+1Tm+1,mET
mVT

m]Xm(t) +Xm(t)T [A− Vm+1Tm+1,mET
mVT

m]T +BBT ,

so X ′
m(t) = (A− Fm)Xm(t) +Xm(t)T (A− Fm)T +BBT . □

4.2 Low-rank method by extended global Arnoldi

In this section, we show how to obtain low-rank approximate solutions to the differential T-Lyapunov matrix
equation (1.1) by first projecting directly the initial problem onto extended global Krylov subspaces and then solving
the obtained low dimensional problem. We apply the extended global Arnoldi algorithm to the pair (A,B) to get the
matrices

Vm = [V1, ..., Vm] and Hm = VT
m ⋄ (AVm)

with Vm whose columns form orthonormal bases of the extended global Krylov subspaces GKe
m(A,B) and Hm the

upper block Hessenberg matrix. Let Xm(t) be the desired low-rank approximate solution given as

Xm(t) = Vm(Xm(t)⊗ Is)VT
m. (4.7)
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where the matrix function Xm(t) ∈ R2m×2m is the solution of the low-order differential T-Lyapunov matrix equation

X′
m(t) = HmXm(t) + Xm(t)THT

m + ∥B∥2F e
(2m)
1 (e

(2m)
1 )T , (4.8)

where (e
(2m)
1 )T = [1, 0, ..., 0] ∈ R2m.

The next result shows how to compute the norm of Rm(t) without forming the approximate solution Xm(t) which
is computed in a factored form only when convergence is achieved.

Theorem 4.4. The Frobenius norm of the residual matrix function Rm(t) associated to the approximation matrix
function Xm(t) obtained at step m by the extended global Arnoldi method satisfies the relation

∥Rm(t)∥F ≤
√
2∥Hm+1,mXm(t)∥F , (4.9)

where Xm(t) is the 2× 2m matrix corresponding to the last 2 rows of Xm(t).

Proof . Using the relation (4.7) and the fact that Rm(t) = X ′
m(t)−AXm(t)−Xm(t)TAT −BBT , therefore

Rm(t) = Vm(X′
m(t)⊗ Is)VT

m −AVm(Xm(t)⊗ Is)VT
m − Vm(Xm(t)T ⊗ Is)VT

mAT −BBT ,

using the relation (3.2), we obtain

Rm(t) = Vm+1

[
X′

m(t)⊗ Is 02ms×2s

02s×2ms 02s×2s

]
VT

m+1 − Vm+1

[
HmXm(t)⊗ Is 02ms×2s

Hm+1,m(Ee
m)TXm(t)⊗ Is 02s×2s

]
VT

m+1

−Vm+1

[
Xm(t)THT

m ⊗ Is Xm(t)TEe
mHT

m+1,m ⊗ Is
02s×2ms 02s×2s

]
VT

m+1

−Vm+1

[
VT

m ⋄BBT ⋄ Vm 02ms×2s

02s×2ms 02s×2s

]
VT

m+1

= Vm+1

([
X′

m(t)−HmXm(t)− Xm(t)THT
m −BmBT

m −Xm(t)TEe
mHT

m+1,m

−Hm+1,m(Ee
m)TXm(t) 02×2

]
⊗ Is

)
VT

m+1

As Xm(t) exact solution of the low dimensional differential T-Lyapunov matrix equation (4.8), so

Rm(t) = Vm+1

([
02m×2m −Xm(t)TEe

mHT
m+1,m

−Hm+1,m(Ee
m)TXm(t) 02×2

]
⊗ Is

)
VT

m+1,

so

∥Rm(t)∥2F =

∥∥∥∥Vm+1

([
02m×2m −Xm(t)TEe

mHT
m+1,m

−Hm+1,m(Ee
m)TXm(t) 02×2

]
⊗ Is

)
VT

m+1

∥∥∥∥2
F

≤
∥∥∥∥([

02m×2m −Xm(t)TEe
mHT

m+1,m

−Hm+1,m(Ee
m)TXm(t) 02×2

]
⊗ Is

)
VT

m+1

∥∥∥∥2
F

≤
∥∥∥∥ [ 02m×2m −Xm(t)TEe

mHT
m+1,m

−Hm+1,m(Ee
m)TXm(t) 02×2

] ∥∥∥∥2
F

.

So ∥Rm(t)∥2F ≤ 2∥Hm+1,m(Ee
m)TXm(t)∥2F . □

The following result shows that the approximate solution Xm(t) is an exact solution of a perturbed differential
T-Lyapunov matrix equation.

Theorem 4.5. Let Xm(t) be the approximate solution given by (1.1). Then we have

X ′
m(t) = (A− Fm)Xm(t) +Xm(t)T (A− Fm)T +BBT , (4.10)

where Fm = Vm+1(Hm+1,m(Ee
m)T ⊗ Is)(VT

mVm)−1VT
m.
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Proof . Multiplying (4.8) from left by Vm and from right by VT
m, we obtain

Vm(X′
m(t)⊗ Is)VT

m = Vm(HmXm(t)⊗ Is)VT
m + Vm(Xm(t)THT

m ⊗ Is)VT
m + Vm(BmBT

m ⊗ Is)VT
m

= Vm(Hm ⊗ Is)(Xm(t)⊗ Is)VT
m + Vm(Xm(t)T ⊗ Is)(HT

m ⊗ Is)VT
m

+Vm(Bm ⊗ Is)(B
T
m ⊗ Is)VT

m,

since AVm = Vm(Hm ⊗ Is) + Vm+1(Hm+1,m(Ee
m)T ⊗ Is), so

X ′
m(t) = [AVm − Vm+1(Hm+1,m(Ee

m)T ⊗ Is)](Xm(t)⊗ Is)

+(Xm(t)⊗ Is)
T [VT

mAT − (EmHT
m+1,m ⊗ Is)V

T
m+1] +BBT

= [A− Vm+1(Hm+1,m(Ee
m)T ⊗ Is)(VT

mVm)−1VT
m]Xm(t)

+Xm(t)T [AT − Vm(VT
mVm)−1(Ee

m(Hm+1,m)T ⊗ Is)V
T
m+1] +BBT ,

so X ′
m(t) = (A− Fm)Xm(t) +Xm(t)T (A− Fm)T +BBT . □

The approximate solution Xm(t) can be given as a product of two low-rank matrices, i.e., Xm = Z1 Z
T
2 where the

matrix Z1 and Z2 are of low rank (lower than 2m). Consider the singular value decomposition of the 2m× 2m matrix

Xm(t) = G̃1Σ G̃T
2 ,

where Σ is the diagonal matrix of the singular values of Xm sorted in decreasing order. Let X1,l and X2,l be the 2m× l

matrices of the first l columns of G̃1 and G̃2 respectively, corresponding to the l singular values of magnitude greater
than some tolerance dtol. We obtain the truncated SVD

Xm(t) ≈ X1,l Σl X2,l
T ,

where Σl = diag[σ1, . . . , σl]. Setting Z1,m = Vm

(
X1,l Σ

1/2
l ⊗ Is

)
and Z2,m = Vm

(
X2,l Σ

1/2
l ⊗ Is

)
, leads to

Xm ≈ Z1,m ZT
2,m. (4.11)

This is very important for large problems when one doesn’t need to compute and store the approximate solution Xm

at each iteration, see [16, 15].

In the next section, we give some iterative methods to solve the reduced order differential T-Lyapunov matrix
equations (4.3) and (4.8).

5 Iterative methods for solving the reduced differential T-Lyapunov matrix equation

5.1 Rosenbrock method

In this section, we will apply Rosenbrock method [4, 14] to the low dimensional differential T-Lyapunov matrix
equation (4.3). The new approximation Ym,j+1 of Ym(tj+1) obtained at step j + 1 is defined, by the relations

Ym,j+1 = Ym,j +
3

2
P1 +

1

2
P2, (5.1)

where P1 and P2 solve the following T-Sylvester matrix equations in these two articles [12, 7].

Tm,1P1 + PT
1 Tm,2 = TmYm,j + Y T

m,jT T
m +BmBT

m, (5.2)

and

Tm,1P2 + PT
2 Tm,2 = Tm(Ym,j + P1) + (Ym,j + P1)

TT T
m +BmBT

m − 2

h
P1, (5.3)

where Tm,1 = 1
hI2ms − γTm, and Tm,2 = −γT T

m .

We summarize the steps of the Rosenbrock method in the following algorithm
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Algorithm 3 The Rosenbrock method for (4.3)

Inputs: Tm, Bm, t0, Tf .

1. Choose h.

2. Compute: N =
Tf−t0

h

3. Compute: Tm,1,Tm,2

4. For j = 1 : N

5. Solve (5.2) and (5.3).

6. Calculate Ym,j+1 by (5.1)

7. End For j.

Output: Ym,j+1.

In the same way, we solve the reduced-order differential T-Lyapunov matrix equation (4.8) by Rosenbrock method,
it is enough to replace Tm by Hm.

We summarize the steps of the approach EBA-Rosenbrock method for the extended block Arnoldi and EGA-
Rosenbrock methods for the extended global Arnoldi in the following algorithm.

Algorithm 4 The EBA-Rosenbrock method or EGA-Rosenbrock method for solving DTLE.

Inputs: A and B an matrix.

1. Choose a tolerance dtol, tol > 0 and an integer mmax.

2. For m = 1 : mmax

3. Apply EBA Algorithm 1 for the EBA-Rosenbrock method to (A,B) to get the matrices Vm, Tm or apply EGA
Algorithm 2 for the EGA-Rosenbrock method to (A,B) to get the matrices Vm, Hm.

4. Apply Algorithm 3 to solve the low dimensional differential matrix equation.

5. If ∥Rm∥F < tol.

6. End For m

7. Compute the approximate solution Xm in the factored form given by the relation (4.5) for the EBA-Rosenbrock
method or the relation (4.11) for the EGA-Rosenbrock method.

Output: Xm.

5.2 BDF method

We use the Backward Differentiation Formula method for solving the reduced differential T-Lyapunov matrix
equation (4.3). At each time tj , let Ym,j be the approximation of Ym(tj), where Ym is a solution of (4.3). Then, the
new approximation Ym,j+1 of Ym(tj+1) obtained at step j + 1 by BDF2 is defined by the implicit relation

Ym,j+1 =
4

3
Ym,j −

1

3
Ym,j−1 +

2h

3
(TmYm,j+1 + Y T

m,j+1T T
m +BmBT

m), (5.4)

where h = tj+1 − tj is the step size. The approximation Ym,j+1 solves the following matrix equation

−Ym,j+1 +
2h

3
(TmYm,j+1 + Y T

m,j+1T T
m +BmBT

m) +
4

3
Ym,j −

1

3
Ym,j−1 = 0. (5.5)

Let Tm = 2h
3 Tm − 1

2I2ms and Qm,j+1 = 2h
3 BmBT

m + 4
3Ym,j − 1

3Ym,j−1, therefore, we can write (5.5) as the following
T-Sylvester matrix equation:

TmYm,j+1 + Y T
m,j+1TT

m = −Qm,j+1. (5.6)

We summarize the steps of the BDF method in the following algorithm
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Algorithm 5 The BDF method for (4.3)

Inputs: Tm, Bm, t0, Tf .

1. Choose h.

2. Compute: N =
Tf−t0

h

3. Compute: Tm

4. For j = 1 : N

5. Calculate Qm,j+1

6. Solve (5.6)

7. End For j.

Output: Ym,j+1.

In the same way, we solve the reduced order differential T-Lyapunov matrix equation (4.8) by BDF method, it is
enough to replace Tm by Hm.

We summarize the steps of the approach EBA-BDF method for the extended block Arnoldi and EGA-BDF method
for the extended global Arnoldi in the following algorithm.

Algorithm 6 The EBA-BDF method or EGA-BDF method for solving DTLE.

Inputs: A and B an matrix.

1. Choose a tolerance dtol, tol > 0 and an integer mmax.

2. For m = 1 : mmax

3. Apply EBA Algorithm 1 for the EBA-BDF method to (A,B) to get the matrices Vm, Tm or apply EGA Algorithm
2 for the EGA-BDF method to (A,B) to get the matrices Vm, Hm.

4. Apply Algorithm 5 to solve the low dimensional differential matrix equation.

5. If ∥Rm∥F < tol.

6. End For m

7. Compute the approximate solution Xm in the factored form given by the relation (4.5) for the EBA-BDF method
or the relation (4.11) for the EGA-BDF method.

Output: Xm.

6 The norm of the error

In this section, we give results related to the norm of the error. The next result states that the error Em(t) =
X(t)−Xm(t) also satisfies a differential T-Lyapunov matrix equation.

Theorem 6.1. The error Em(t) satisfies the following differential T-Lyapunov matrix equation

E ′
m(t) = AEm(t) + Em(t)TAT −Rm(t). (6.1)

Proof . We have

E ′
m(t) = X ′(t)−X ′

m(t)

= AX(t) +X(t)TAT +BBT −AXm(t)−Xm(t)TAT −BBT −Rm(t)

= A(X(t)−Xm(t)) + (X(t)−Xm(t))TAT −Rm(t)

= AEm(t) + Em(t)TAT −Rm(t),

so E ′
m(t) = AEm(t) + Em(t)TAT −Rm(t). □

Theorem 6.2. Let β = max
τ∈[t0,t]

∥Rm(τ)∥F . The norm of the error Em(t) satisfies the following upper bound

∥Em(t)∥F ≤ ∥Em(t0)∥F e2∥A∥2(t−t0) +
β

2∥A∥2
(e2∥A∥2(t−t0) − 1).
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Proof . Applying vec and ∥.∥2 the differential T-Lyapunov matrix equation (6.1), we obtain

∥vec(Em(t))∥2 ≤ ∥vec(AEm(t))∥2 + ∥vec(Em(t)TAT )∥2 + ∥vec(Rm(t))∥2
≤ ∥In ⊗Avec(Em(t))∥2 + ∥A⊗ Invec(Em(t)T )∥2 + ∥vec(Rm(t))∥2
≤ ∥In ⊗A∥2∥vec(Em(t))∥2 + ∥A⊗ In∥2∥vec(Em(t)T )∥2 + ∥vec(Rm(t))∥2,

As ∥vec(Em(t))∥2 = ∥Em(t)∥F , so

∥Em(t)∥F ≤ ∥A∥2∥Em(t)∥F + ∥A∥2∥Em(t)∥F + ∥Rm(t)∥F
≤ 2∥A∥2∥Em(t)∥F + ∥Rm(t)∥F ,

through the Grönwall’s lemma, so

∥Em(t)∥F ≤ ∥Em(t0)∥F e2∥A∥2(t−t0) +

max
τ∈[t0,t]

∥Rm(τ)∥F

2∥A∥2
(e2∥A∥2(t−t0) − 1).

□

In Figure 1, diagram of the proportion of the Frobenius error norm log(||XEGA
m −Xode23s

exact ||F ) in functions of the
numbers iterations, and the time interval was [0, 1], n = 49, we used s = 2. The tolerance was set to 10−9 for the stop
test on the residual. For the EGA-BDF method, we used a constant timestep h = 0.01.
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Figure 1: The log(||XEGA
m −Xode23s

exact ||F ) in functions of the numbers iterations

7 Numerical experiments

In this section, we compare the approach presented in this article with the solution that is given by the command
in MATLAB: ode23s, and trace the residual according to the iterations. All the experiments were performed on a
laptop with an Intel Core i3 processor and 4GB of RAM. The algorithms were coded in MATLAB R2018b, the matrix
B is generated randomly and their coefficients were uniformly distributed in [0, 1]. We compare the two approaches
proposed in algorithm 6 (EBA-BDF method and EGA-BDF method), and algorithm 4 (EGA-Rosenbrock method and
EBA-Rosenbrock method).

7.1 Example 1

In this example, the matrix A is obtained from the centered finite difference discretization of the operators:

L(u) = ∆u+ f1(x, y)
∂u

∂x
+ f2(x, y)

∂u

∂y
+ f3(x, y)u
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on the unit square [0, 1] × [0, 1] with homogeneous dirichlet boundary conditions. The number of inner grid points
in each direction was n0 for the operators L. The matrix A was obtained from the discretization of the operator
L with the dimensions n = n2

0. The discretization of the operator L(u) yields matrix extracted from the Lyapack

package [13] using the command fdm 2d matrix and denoted as fdm(n0,′ f 1(x, y)′,′ f 2(x, y)′,′ f 3(x, y)′). To the
author’s knowledge, there is no exact solution available in the literature. We compared the results obtained from
the new four ways and Matlab’s ode23s solver to test if our approach gives reliable results. For this experiment, we
consider A = fdm(n0, f1(x, y), f2(x, y), f3(x, y)) with f1(x, y) = exy, f2(x, y) = sin(xy) and f3(x, y) = y2, we used
s = 2. The time interval considered was [0, 1]. The tolerance was set to 10−9 for the stop test on the residual and
dtol = 10−10 for the EBA-BDF, EGA-BDF, EGA-Rosenbrock and EBA-Rosenbrock methods, we used a constant
timestep h = 0.005. We chose a size of 64× 64 for the matrix A. In Figure 2, we plotted the solutions using the new
four ways and ode23s method in functions of the times. Computational time taken from an EBA-BDF method is 1.02
seconds, EGA-BDF method is 0.64 seconds, EGA-Rosenbrock method 1.21 seconds, EBA-Rosenbrock method is 3.54
seconds versus ode23s method is 496.24 seconds.
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Figure 2: Values of X1,1(t) for t ∈ [0, 1] computed by using the new four ways and ode23s method

In Fig 3, we chose a size of 4096×4096 for the matrix A, we plotted the Frobenius norms of the residuals ∥Rm(Tf )∥F
at final time Tf versus the number of EBA and EGA iterations for the EBA-Rosenbrock, EGA-Rosenbrock, EBA-BDF
and EGA-BDF methods, we used a constant timestep h = 0.1.
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Figure 3: Residual norm versus number m of EBA and EGA iterations

In Table 1, we list the Frobenius residual norms at final time Tf = 1 and the corresponding CPU time for each
method. For this experiment, the algorithms are stopped when the residual norms are smaller than 10−9.
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Test Problem Method CPU time (seconds) Iterations (m) ∥Rm(Tf )∥F
EBA-Rosenbrock 4.91 24 4.11× 10−10

4096× 4096 EGA-Rosenbrock 7.90 29 4.64× 10−10

EBA-BDF 4.60 24 8.19× 10−10

EGA-BDF 2.23 30 2.39× 10−10

EBA-Rosenbrock 4.25 26 8.29× 10−10

5776× 5776 EGA-Rosenbrock 2.61 31 7.74× 10−10

EBA-BDF 4.94 35 8.83× 10−10

EGA-BDF 2.03 32 8.64× 10−10

Table 1: Runtimes in seconds and the residual norms for the new four ways

7.2 Example 2

For the second set of experiments, we used the matrices add32 and thermal from the University of Florida Sparse
Matrix Collection [6] and from the Harwell Boeing Collection

(http://math.nist.gov/MatrixMarket). The tolerance was set to 10−11 for the stop test on the residual. For the
EBA-BDF and EBA-Rosenbrock methods, we used a constant timestep h = 0.1.

For this example, the matrix A = add32, n = 4960. The time interval considered was [0, 1]. In Figure 4, we
plotted the Frobenius residual norm ∥Rm(Tf )∥F in functions of the numbers iterations.
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Figure 4: Frobenius residual norm in functions of the numbers iterations for example 2

For this example, the matrice A = thermal, n = 3456. The time interval considered was [0, 1]. In Figure 5, we
plotted the times, and the Frobenius residual norm ∥Rm(Tf )∥F in functions of the numbers iterations.
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Figure 5: Frobenius residual norm in functions of the numbers iterations for example 2

In Table 2, we list the Frobenius residual norms at final time Tf = 1 and the corresponding CPU time for each

http://math.nist.gov/MatrixMarket
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method. For this experiment, the algorithms are stopped when the residual norms are smaller than 10−11.

Test Problem Method CPU time (seconds) Iterations (m) ∥Rm(Tf )∥F
A = thermal EBA-Rosenbrock 9.09 11 2.88× 10−12

3456× 3456 EGA-Rosenbrock 8.74 11 6.16× 10−12

EBA-BDF 8.87 11 1.95× 10−12

EGA-BDF 9.37 11 2.23× 10−12

A = add32 EBA-Rosenbrock 25.11 6 2.69× 10−12

4960× 4960 EGA-Rosenbrock 24.06 6 4.96× 10−12

EBA-BDF 23.16 6 5.13× 10−12

EGA-BDF 23.54 6 9.84× 10−12

Table 2: Runtimes in seconds and the residual norms for example 2

8 Conclusion

We presented in this paper a way to solve large-scale differential T-Lyapunov matrix equations. Our approach
consists in projecting the initial problem on extended Krylov subspaces, through low-rank approximate solutions
and an expanded Arnoldi algorithm to obtain a small-scale differential matrix equation that is solved using iterative
methods (Rosenbrook method or BDF method). The process is stopped as soon as selected accuracy is achieved. We
have given some theoretical results. In particular, we have demonstrated that the residual norm can be calculated
without explicitly calculating the approximate solution. This result is very important as calculating an approximate
solution can be a major memory challenge for large-scale cases. Moreover, this allowed us to design a stop test
for Arnoldi iterations. Numerical experiments have shown that our approach is interesting for large-scale problems,
providing accurate results, and that computing time is much lower. As there is no other way to deal with such large
dimensions cases available in the literature, we have not been able to cope with our way to other approaches (except
for small-scale cases that have led to a very satisfactory way), but the fact that we were able to calculate the remaining
standard ensures that the method is accurate.
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