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Abstract

We describe here all those weight functions u such that Mu ∈ A∞ (Q) for M the local Hardy-Littlewood maximal
operator restricted to a cube Q ⊂ Rn. In a recent paper it is shown that for the maximal operator in Rn, Mu ∈ A∞
implies that Mu ∈ A1; here we see that the same is true for the local M but this imposes a stronger condition for
weights in Q, that is, for M restricted to a finite cube Mu ∈ A∞ if and only if u ∈ A∞. This differs from the case in
Rn where there are weights u not belonging to A∞ such that Mu is in A∞. As an application we get a new shorter
proof of a result of I. Wik. We also give a characterization for those weights in terms the K-functional of Peetre.
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1 Introduction

The goal of this work is to characterize the weights u on a cube Q0 ⊂ Rn(Let’s point out that along this work the
cubes have their sides parallel the coordinate axes, and a weight is a positive measurable function in a cube). such that

Mu are in A∞ (Q0) =
∞⋃
p=1

Ap (Q0) where Ap (Q0) are the Muckenhoupt classes of weights for M the local maximal

operators of Hardy-Littlewood associated with a fixed cube Q0, that is:

Mf (x) = sup
x∈Q⊂Q0

1

|Q|

∫
Q

|f (z)| dz

To our knowledge, there are no previous works characterizing the weights in the preimage of A∞ for the local maximal
operator M .

We will show that as in the case for M in the whole Rn, if Mu ∈ A∞ (Q0) then, Mu ∈ A1 (Q0) (see 5 for Rn).
Then, following a result from 2 we have that weights u satisfying that Mu ∈ A∞ (Q0) (and a fortiori Mu ∈ A1 (Q0))
can be characterized by means of an inequality for Peetre’s K − functional. Thus, this inequality ensures that u
must satisfy a reverse Hölder condition, RHp, for some p > 1 but this implies that u itself belongs to A∞ (Q0). This
contrasts with the Rn case, where there are weights not belonging to A∞ but such that Mu ∈ A∞ -for instance
weak-A∞ weights-.
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As an application we give a new proof of an interesting result: In 12 I. Wik proved that if u ∈ Ap (Q0) then
u∗ ∈ Ap ([0, |Q0|]), being u∗ the non-increasing rearrangement of u. Although it is not mentioned in 12, an immediate
consequence of this is the fact that equimeasurable A∞ weight functions supported on finite cubes included in Rn,
even for different n, belong to the same Ap classes. The proof we give here is much shorter; the original requires
several previous lemmas, including one on coverings subsumed here in the Herz-Stein equivalence.

So the main results of this work are the following:

Proposition 1.1. Let Q0 ⊂ Rn and u a weight Mu ∈ A1 (Q0) if and only Mu ∈ A∞ (Q0).

Theorem 1.2. A weight u satisfies Mu ∈ A∞ (Q0) if and only if for some C > 0, s > 1 and for any Q ⊂ Q0 and(
1

t
K
(
t, us, L1, L∞)) 1

s

≤ C.
1

t
K
(
t, u, L1, L∞) (1.1)

for 0 < t < |Q|, where L1 and L∞ means L1 (Q) and L∞ (Q).

And finally, because it will be seen that the condition(
1

t
K
(
t, us, L1, L∞)) 1

s

≤ C.
1

t
K
(
t, u, L1, L∞) (1.2)

for 0 < t < |Q| implies that u ∈ A∞ (Q0), we have:

Theorem 1.3. Let u a weight on a cube Q0, the following statements are equivalent:

i) u ∈ A∞ (Q0)

ii) u ∈
⋃
r>1

RHr (Q0)

iii) (Mus)
1
s (x) ≤ C.Mu (x) for some s > 1, C > 0 and a.e. x ∈ Q0

iv) Mu ∈ A1 (Q0)

v) Mu ∈ A∞ (Q0)

vi) ∃C > 0, s > 1 :
(
1
tK
(
t, us, L1, L∞)) 1

s ≤ C. 1tK
(
t, u, L1, L∞) for 0 < t < |Q| , ∀Q ⊂ Q0.

Theorem 1.4. (I. Wik) Let u ∈ Ap (Q0) for a finite cube Q0 ⊂ Rn. Then u∗ ∈ Ap ([0, |Q0|]) for u∗ the non-increasing
rearrangement of u.

2 Definitions, lemmas and some of the proofs

The definition of Ap (Q0) and RHp (Q0) classes is analogous to the definition of Ap and RHp classes in Rn, but
requiring that the cubes were included in Q0. To lighten the notation, from now on, if there is no ambiguity we will
write Ap, A∞, RHp instead of Ap (Q0), A∞ (Q0) and RHp (Q0).

A weight w is a non-negative locally integrable function. A weight w ∈ Ap class for 1 < p < ∞ if and only if

[w]Ap
:= sup

Q⊂Q0

(
1

|Q|

∫
Q

w

)(
1

|Q|

∫
Q

w− 1
p−1

)p−1

< +∞

A weight w ∈ A1 if and only if
Mw (x) ≤ Cw (x) a.e. x ∈ Q0

and [w]A1
is the minimal constant C such that this inequality occurs.

Of course we will denote A∞ =
⋃

p<∞
Ap and in this section Ap classes and [Ap] constants refers to the ones for the

local maximal Hardy-Littlewood operator for Q0.
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We also define the reverse Hölder classes: w ∈ RHr for r > 1 if and only if w fullfills a reverse Hölder inequality

with exponent r for each Q ⊂ Q0 :
(

1
|Q|
∫
Q
wr
) 1

r ≤ C. 1
|Q|
∫
Q
w with C independent from Q. It is well known (cf 6)

that A∞ =
⋃
r>1

RHr.

As we have mentioned in the introduction we can reduce the problem of describing the weights whose image is in
A∞ to those whose images are in A1; actually Mu ∈ A∞ ⇐⇒ Mu ∈ A1 it is true both for the local and for the usual
maximal operator of Hardy-Littlewood (see 5 for the usual, non-local, case); the proof for the non-local operator still

works if we show that (Mu)
δ
is in A1 for 0 ≤ δ < 1 and M the local maximal operator respect to Q0. For the usual

maximal operator of Hardy-Littlewood this is the first statement of the characterization of Coifman and Rochberg for
the A1 weights. The analogous result is true for the local operator, moreover we have:

Lemma 2.1. Let Q0 any domain in Rn and Mf (x) = sup
x∈Q⊂Q0

1
|Q|
∫
Q
|f (z)| dz

(1) Let f ∈ L1 (Q0) be such that Mf (x) < ∞ a.e. and 0 ≤ δ < 1, then w (x) = (Mf (x))δ is in A1. Also the A1

constant depends only on δ.

(2) Conversely, if w ∈ A1 then there are f ∈ L1 (Q0) and k (x) with k and k−1 both belonging to L∞ such that
w (x) = k (x) (Mf (x))δ.

The result is probably part of the folklore of the subject but we didn’t see the result explicity written so we give
the proof:

Proof . For the first statement we can rely in the corresponding result for Rn. Then, let’s write MRn for the usual
Hardy-Littlewood operator in Rn and we keep M for the local maximal operator respect to Q0. Also we extend f
being null outside Q0, and thus, if x ∈ Q0, then MRn (f) (x) ≤ M (f · χQ0) (x) = Mf (x). Therefore

M
(
(Mf)

δ
)
(x) ≤ MRn

(
(Mf)

δ
)
(x) = MRn

(
(Mf · χQ0

)
δ
)
(x)

≤ C · (Mf · χQ0)
δ
(x) = C · (Mf (x))δ

where the second inequality follows from the corresponding theorem for the usual case.

And then (Mf (x))δ ∈ A1. The dependence of the constant only on δ is inherited for the usual case.

For the proof of (2) we can observe that for any cube Q1 ⊂ Q0 the local operator respect to Q1: MQ1f (x) =
sup

x∈Q⊂Q1

1
|Q|
∫
Q
|f (z)| dz satisfies MQ1w ≤ Mw ≤ cw and then MQ1 (MQ1w) ≤ cMQ1w and this condition for local M

implies a reverse Hölder inequality for w in Q1 (see for instance 2 sections 3 and 4 for two different proofs) with r and
C independent from the cube Q1: (

1

|Q1|

∫
Q1

wr

) 1
r

≤ C.
1

|Q1|

∫
Q1

w

and then Hölder inequality:

1

|Q1|

∫
Q1

w ≤
(

1

|Q1|

∫
Q1

wr

) 1
r

≤ C.
1

|Q1|

∫
Q1

w

and taking suprema for Q1 ⊂ Q and using that a.e. in Q is w ≤ Mw ≤ cw we have:

w ≤ Mw ≤ (M (wr))
1
r ≤ C.Mw ≤ cCw

and then for f = wr and δ = 1
r ∈ (0, 1) we have for a.e. x ∈ Q0 :

1 ≤ (M (f))
δ
(x)

w (x)
≤ cC

so if k (x) = w(x)

(M(f))δ(x)
we have that k ∈ L∞ (Q0) and k−1 ∈ L∞ (Q0) and w (x) = k (x) (Mf (x))δ as we wished to

prove. □

As we mentioned before, using this local version of the theorem, we can obtain for the local operator M the
proposition that follows below. The analogous result for MRn can be found in 5. The proof for local M goes in the
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same way once it was established the statement of the previous lemma with the Coifman-Rochberg characterization
for A1 (Q0); but we include it here for completeness:

Proposition 2.2. If u is any weight, Mu ∈ A∞ ⇐⇒ Mu ∈ A1

Proof . The implication Mu ∈ A1 =⇒ Mu ∈ A∞ is obvious because A1 ⊂ A∞. So we need only to prove that
Mu ∈ A∞ =⇒ Mu ∈ A1.

If Mu ∈ A∞ =
⋃

p<∞
Ap, then Mu ∈ Ap for some p ≥ 1. If p = 1 the result is ready. Let p > 1. Because of the

latter lemma we have that (Mu)
δ ∈ A1 for any δ with 0 ≤ δ < 1 and any u locally integrable. We will see that if

Mu ∈ Ap actually we can extend δ to be 1, that is: Mu ∈ A1.

We will use the following result: For a measure space (Ω, µ) with measure µ (Ω) = 1 and
(∫

Ω
|f |r dµ

) 1
r < ∞ for

some r > 0, we have that

lim
r→0+

(∫
Ω

|f |r dµ
) 1

r

= exp

(∫
Ω

log (|f |) dµ
)

(see, for instance, 11, ej 5 d) Chap 3).

Let’s remark that using that µ (Ω) = 1 and Hölder Inequality we obtain
(∫

Ω
|f |r1 dµ

) 1
r1 ≥

(∫
Ω
|f |r2 dµ

) 1
r2 if r1 ≥ r2.

So for r > 0 we have that (∫
Ω

|f |r dµ
) 1

r

≥ exp

(∫
Ω

log (|f |) dµ
)

= lim
r→0+

(∫
Ω

|f |r dµ
) 1

r

.

Now for q > p,and using that

sup
Q

Mu(Q)

|Q|

(
1

|Q|

∫
Q

Mu (x)
− 1

q−1 dx

)q−1

= [Mu]Aq
≤ [Mu]Ap

, we obtain that for any cube Q ⊂ Q0 :

Mu(Q)

|Q|

(
1

|Q|

∫
Q

Mu (x)
− 1

q−1 dx

)q−1

≤ [Mu]Ap
< ∞

.

If q tends to infinity then 1
q−1 tends to 0+, so taking r = 1

q−1 and applying the mentioned result for f = Mu−1,

Ω = Q and dµ = dx
|Q| , we have

lim
q→+∞

(
1

|Q|

∫
Q

Mu (x)
− 1

q−1 dx

)q−1

= exp

(∫
Q

log
(
Mu (x)

−1
)
dx

)

= exp

(∫
Q

− log (Mu (x)) dx

)
=

1

exp
(∫

Q
log (Mu (x)) dx

)
.

Taking limit in Mu(Q)
|Q|

(
1

|Q|
∫
Q
Mu (x)

− 1
q−1 dx

)q−1

≤ [Mu]Ap
we have that

Mu(Q)

|Q|
1

exp
(∫

Q
log (Mu (x)) dx

) ≤ [Mu]Ap

, so
Mu(Q)

|Q|
≤ [Mu]Ap · exp

(∫
Q

log (Mu (x)) dx

)
.
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Also, applying the observation for f = Mu we get for any r > 0 that(
1

|Q|

∫
Q

(Mu)
r
dx

) 1
r

≥ exp

(∫
Q

log (Mu (x)) dx

)
.

Thus
Mu(Q)

|Q|
≤ [Mu]Ap

· exp
(∫

Q

log (Mu (x)) dx

)
≤ [Mu]Ap

(
1

|Q|

∫
Q

|Mu|r dx
) 1

r

, and then

Mu(Q)

|Q|
≤ [Mu]Ap

(
1

|Q|

∫
Q

|Mu|r dx
) 1

r

.

We take r = δ with 0 ≤ δ < 1 and we use that (Mu)
r
= (Mu)

δ ∈ A1; then

1

|Q|

∫
Q

|Mu|r dx ≤ [(Mu)
r
]A1

· (Mu (x))
r

a.e for every x ∈ Q ⊂ Q0.

So we have a.e for x ∈ Q

Mu(Q)

|Q|
≤ [Mu]Ap

(
1

|Q|

∫
Q

|Mu|r dx
) 1

r

≤ [Mu]Ap · ([(Mu)
r
]A1 · (Mu (x))

r
)

1
r

= [Mu]Ap · ([(Mu)
r
]A1)

1
r · (Mu (x))

.

Taking C = [Mu]Ap · ([(Mu)
r
]A1)

1
r independent of Q, for every Q we obtain that

Mu(Q)

|Q|
≤ C ·Mu (x)

a.e for x ∈ Q.

Then for almost every x ∈ Q0 we have that

M (Mu) (x) = sup
Q0⊃Q∋x

Mu(Q)

|Q|
≤ C ·Mu (x)

, that is
M (Mu) (x) ≤ C ·Mu (x)

and then we obtain that Mu ∈ A1 (Q0). □

A result similar to the next lemma for the operator MRn is due to Neugebauer (see 8). For the local maximal
operator M is essentially proven along 2; for completeness we isolate here their argument:

Lemma 2.3. Let M the local maximal operator of Hardy-Littlewood associated with Q0. For a weight u it holds

that Mu ∈ A1 if and only if there exists s > 1 and C0 > 0 such that (Mus)
1
s (x) ≤ C0.Mu (x)

Proof . The non trivial implication: If Mu ∈ A1 then (Mus)
1
s (x) ≤ C0.Mu (x) was already mentioned in the second

part of the previous theorem, coming from the reverse Hölder inequalities.

The other implication is consequence of the first part of the theorem: If (Mus)
1
s (x) ≤ C0.Mu (x), we name us = f

and δ = 1
s and because (Mus)

1
s = (Mf)

δ ∈ A1 we have that a.e x ∈ Q0

M (Mu) (x) ≤ M
(
(Mus)

1
s

)
(x) ≤



384 Corvalàn

[(Mus)
1
s ]A1

(Mus)
1
s (x) ≤ [(Mus)

1
s ]A1

C0.Mu (x)

so for C = [(Mus)
1
s ]A1

C0 we have M (Mu) (x) ≤ CMu (x) a.e x ∈ Q0. That is Mu ∈ A1. □

Now, putting together the last lemma and the proposition we have the corresponding criterion for the local M
operator:

Criterion 2.4. Let u a weight function in Q0, Mu ∈ A∞ if and only if there exists s > 1 and C0 > 0 such that

(Mus)
1
s (x) ≤ C0.Mu (x).

Binding the former arguments for M the maximal operator of Hardy-Littlewood associated with Q0 and the
corresponding Ap classes we have already shown the following implications of the statement of Theorem 3:

i) ⇔ ii) ⇒ iii) ⇔ iv) ⇔ v)

The first equivalence i) ⇔ ii) is known; the second implication: ii) ⇒ iii) is obvious taking suprema; the equivalence
iii) ⇔ iv) is the Criterion mentioned above; and the non trivial implication of iv) ⇔ v) follows from Proposition 1.

To end the proof of Theorem 3 we can observe that ii) gives iii) for any Q ⊂ Q0 with the same RHr constante ant
then we follow an argument from 2 (cf. 2 section 3) to see that for the local M operator if (Mus) (x) ≤ C. (Mu (x))

s

for some s > 1, C > 0, then there is C > 0: for every Q ⊂ Q0 and 0 < t < |Q| it occurs that(
1

t
K
(
t, us, L1, L∞)) 1

s

≤ C.
1

t
K
(
t, u, L1, L∞)

; that is iii) ⇒ vi), and on the other hand that vi) can be easily rewritten to obtain ii) and then vi) ⇒ ii) closing
the chain of deductions and proving Theorem 3. In the last section we give some definitions related to Peetre’s
K − functional and we sketch the proofs from 2 of the remaining implications of Theorem 3.

LetÂ´s remark again the difference with the global case, where the pointwise condition (Mus)
1
s (x) ≤ C0.Mu (x)

is strictly weaker than belonging to
⋃
r>1

RHr as we can see taking any non-doubling weak −A∞ weight u. That is, if

u satisfies
(

1
|Q|
∫
Q
us
) 1

s ≤ C. 1
|2Q|

∫
2Q

u for every Q ⊂ Rn for some C > 0 and s > 1 and then (Mus)
1
s ≤ C.Mu and

thus Mu ∈ A∞ but being u non-doubling u /∈ Ap for any p < ∞, so u /∈ A∞ and u /∈ RHr for any r > 1.

3 Some more definitions and the missing implications

The first proof from 2 of the fact that u ∈
⋃
r>1

RHr whenever Mu ∈ A1 is based on interpolation theory, the

K functionals and Holmstedt formula. We begin introducing some necessary definitions and recalling some known
results:

A compatible couple of Banach spaces is a pair of two Banach spaces A0 and A1 that are continously embed-
ded in certain Hausdorff topological vector space Z. Clearly A0 ∩ A1 and A0 + A1 with the norms ∥x∥A0∩A1

=

max
(
∥x∥A0

, ∥x∥A1

)
and ∥x∥A0+A1

= inf
(
∥x0∥A0

+ ∥x1∥A1
: xi ∈ Ai

)
are also subspaces of Z and the obvious injec-

tions of A0 ∩A1 in Ai and of Ai in A0 +A1 are continuous.

For (A0,A1) a compatible couple of Banach spaces, A0 ⊃ A1, for f ∈ A0 and t > 0 the K-functional is defined by

K (t, f, A0, A1) = inf
f=f0+f1,fi∈Ai

{∥f0∥A0
+ t ∥f1∥A1

}

If (X,µ) is a totally σ-finite measure space and A0 = L1, A1 = L∞, respectively the µ-integrable and µ-essentially
bounded real functions, they are continously embedded in the space Z of real µ-measurable functions. It is well known
(see 4) that for any f ∈ L1 + L∞.

K
(
t, f, L1, L∞) = ∫ t

0

f∗ (z) dz = t

(
1

t

∫ t

0

f∗ (z) dz

)
= tf∗∗ (t)

where f∗ = f∗
µ denotes the non-increasing rearrangement of f respect to µ and f∗∗ (t) = 1

t

∫ t

0
f∗ (z) dz the action of

the Hardy operator on f∗.
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Another well known result (see 3) for A0 = Lp and A1 = L∞ with 1 < p < ∞ is that

K (t, f, Lp, L∞) ≈

(∫ tp

0

f∗ (z)
p
dz

) 1
p

Now if u satisfies iii), that is (Mus) (x) ≤ C. (Mu (x))
s
for some s > 1, C > 0 and taking rearrangements in the

last inequality one has (
(Mus)

∗
(t)
) 1

s ≤ C. (Mu)
∗
(t)

for 0 < t < |Q0|. Applying the equivalence, due to Herz, Stein (cf. Bennett-Sharpley 4, theorem 3.8, see also 1), and
valid for every locally integrable f :

(Mf)
∗
(t) ≈ f∗∗ (t)

to the inequality (Mus)
∗
(t) ≤ C.

(
(Mu)

∗
(t)
)s

one obtains(
1

t

∫ t

0

u∗ (z)
s
dz

) 1
s

≤ C.
1

t

∫ t

0

u∗ (z) dz

that in terms of the mentioned equivalences for the K-functionals is written like this:

1

t
1
s

K
(
t
1
s , u, Ls, L∞

)
≤ C.

1

t
K
(
t, u, L1, L∞)

or equivalently, using that K
(
t
1
s , u, Ls, L∞

)
≈
(
K
(
t, us, L1, L∞)) 1

s we can also write(
1

t
K
(
t, us, L1, L∞)) 1

s

≤ C.
1

t
K
(
t, u, L1, L∞)

for 0 < t < |Q0|. So we have obtain that iii) ⇒ vi).

If one translates back the last inequality obtaining
(

1
t

∫ t

0
u∗ (z)

s
dz
) 1

s ≤ C. 1t
∫ t

0
u∗ (z) dz, then for t = |Q0| it results(

1

|Q0|

∫ |Q0|

0

u∗ (z)
s
dz

) 1
s

≤ C.
1

|Q0|

∫ |Q0|

0

u∗ (z) dz

and then (
1

|Q0|

∫
Q0

u (x)
s
dx

) 1
s

≤ C.
1

|Q0|

∫
Q0

u (x) dx

In 2 is observed that the argument can be localized for any Q ⊂ Q0 because M (Mu) ≈ ML(logL) (see 10) where

ML(logL) = sup
Q⊂Q0,x∈Q

∥u∥L(logL)(Q, dx
|Q| )

with ∥u∥L(logL)(Q, dx
|Q| )

the Luxemburg norm respect to the Young function Φ (t) = t(1 + log+ t), being log+ t =

max (log t, 0).

That is

∥u∥L(logL)(Q, dx
|Q| )

= inf{λ > 0 :
1

|Q|

∫
Q

Φ

(
u (x)

λ

)
dx ≤ 1}

Clearly for any Q ⊂ Q0 and ML(logL) (x) ≈ M (Mu) (x) ≤ C.Mu (x) a.e. x ∈ Q0 we have an analogous inequality
with the same constant a.e. x ∈ Q and then for the restriction of u to any Q the argument of 2 gives a similar reverse
Hölder inequality with the same constant C and exponent s:(

1

|Q|

∫
Q

us

) 1
s

≤ C.
1

|Q|

∫
Q

u

from where one can recover that (Mus)
1
s (x) ≤ C.Mu (x) a.e. x ∈ Q0. Then we have that vi) ⇒ ii) for the statement

of Theorem 3. Now putting together the results of this sections with the implications proven in the previous section
we end the proof of the theorem.
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4 An application

Now, let’s give our proof of Wik’s Theorem.

Proof . From our theorem 3 for Q0 we have that

u ∈ A∞ ⇐⇒ Mu ∈ A∞ ⇐⇒ Mu ∈ A1

Thus if we take (Mu)
∗
: [0, |Q0|] −→ R+ the non-increasing rearrangement of Mu in Q0, and using that for non-

increasing positive functions the Hardy-Littlewood operator M and the Hardy operator P with Pf (t) = 1
t

∫ t

0
|f (s)| ds

are the same one, for t ∈ [0, |Q0|], the Herz-Stein equivalence (Mf)
∗
(t) ≈ f∗∗ (t), and the above mentioned fact that

if u ∈ A∞ then Mu ∈ A1 we have that for some c > 0 :

M
(
(Mu)

∗)
(t) = P

(
(Mu)

∗)
(t) = (Mu)

∗∗
(t)

≈ (M (Mu))
∗
(t) ≤ (cMu)

∗
)t = c (Mu)

∗
(t)

Thus (Mu)
∗ ∈ A1, but from Herz-Stein again and using that for u∗ decreasing M is the same as P we get: (Mu)

∗

≈ u∗∗ = P (u∗) = M (u∗), so M (u∗) ∈ A1. Now using again our theorem 3 for [0, |Q0|] considered as cube of R and

for the weight u∗ we have that u∗ ∈ A∞ ([0, |Q0|]). So far we have that u∗ ∈ Aq for some q > 1, but we we can’t ensure

yet that q = p as in Wik’s result. To obtain this we continue as follows: Because u ∈ Ap we have that σ = u1−p′ ∈ Ap′

and then aplying he above argument to σ we get that σ∗ ∈ A∞ ([0, |Q0|]), but σ∗ =
(
u1−p′

)∗
= (u∗)

1−p′
. And then

we get that u∗ ∈ A∞ and (u∗)
1−p′

∈ A∞, and it is a well known result (see for instance 9, theorem 2.17, chapter IV)
that w ∈ Ap ⇐⇒ w ∈ A∞ and w1−p′ ∈ A∞ for any weight w; so we have, at last, that u∗ ∈ Ap. □
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