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Abstract

The meniscus has a crucial function in human anatomy, and Magnetic Resonance Imaging (M.R.I.) plays an essential
role in meniscus assessment. It is difficult to identify cartilage lesions using typical image processing approaches
because the M.R.I. data is so diverse. An M.R.I. data sequence comprises numerous images, and the attributes area
we are searching for may differ from each image in the series. Therefore, feature extraction gets more complicated,
hence specifically, traditional image processing becomes very complex. In traditional image processing, a human tells
a computer what should be there, but a deep learning (D.L.) algorithm extracts the features of what is already there
automatically. The surface changes become valuable when diagnosing a tissue sample. Small, unnoticeable changes
in pixel density may indicate the beginning of cancer or tear tissue in the early stages. These details even expert
pathologists might miss. Artificial intelligence (A.I.) and D.L. revolutionized radiology by enhancing efficiency and
accuracy of both interpretative and non-interpretive jobs. When you look at AI applications, you should think about
how they might work. Convolutional Neural Network (C.N.N.) is a part of D.L. that can be used to diagnose knee
problems. There are existing algorithms that can detect and categorize cartilage lesions, meniscus tears on M.R.I.,
offer an automated quantitative evaluation of healing, and forecast who is most likely to have recurring meniscus tears
based on radiographs.
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1 Introduction

Knee discomfort and damage are common in clinical practice. Approximately 2.5 million emergency department
visits are attributed to sports-related knee injuries each year [20], and physicians are increasingly based on the results
of musculoskeletal (M.S.K.) examinations imaging to aid diagnosis and therapy. [24] Even when interpreted by
subspecialty trained M.S.K. radiologists, advanced M.S.K. imaging interpretation is labor-intensive and sensitive to
reader variability, which may be ascribed to the huge amount of data given by each research and the tier of imaging
particulars. D.L. algorithms incorporated into M.S.K. radiology workflows have the ability to improve diagnosis
accuracy, speed up cases with critical findings, minimize tiredness for reader, and assist in decision-making in instances
when radiological knowledge is lacking [4]. The majority of AI research on diagnosing knee pathology has focused on
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creating C.N.N.s designed to perform interpretive jobs in the fields of pathology detection (cartilage lesion, meniscus
torn), classification (assign osteoarthritis scores to knee radiographs, meniscus tears classification and segmentation
(Figure 1).

Figure 1: Interpretive applications of D.L.(C.N.N.) in the evaluation of knee pathology [21].

C.N.N.s are a kind of D.L., a subclass of machine learning (M.L.) it denotes to algorithms with several intercon-
nected layers similar of the layered technique employed by neurons in the brain [28]. C.N.N.s are a type of D.L.
method that uses a mathematical process termed convolution, and they’re used for image categorization and analysis
(Figure 2). C.N.N. architecture is made up of a series of layers that, using a differentiable function, convert the input
volume into an output volume (e.g., holding the class scores). There are several different sorts of layers that are often
used. The convolutional layer is the most important parts of C.N.N.. The layer’s parameters are made up of a set of
learnable filters (or kernels) They have a narrow perceptron but cover the entire depth volume of the input.

Advances are being made using D.L. to accelerate M.R.I. acquisition. Regarding image-based tasks used to evaluate
knee pathology after the acquisition of an image, C.N.N. currently has the greatest feasible to impacting lesion discover,
characterization, and disease observing (Figure 3).

Figure 2: declarations outline of C.N.N.s [21].
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Figure 3: The impact of D.L. on image-based tasks used to evaluate knee pathology [21].

2 Magnetic resonance image

Magnetic resonance imaging (M.R.I.) is a radiographic technique used in radiology to create images of human
body components. The brain, cartilages, spinal cord, bones and meniscus, the heart, and other internal organs are all
imaged using M.R.I., which was produced with the use of massive and strong magnets. M.R.I. scanning is a method of
generating three-dimensional reconstructions from several two-dimensional cross-sections or ”slices” of tissue. M.R.I.
scans are frequently made in three different orientations or planes, namely from the side (sagittal plane), the front
(coronal plane), and the top-down (coronal plane) (axial plane). These planes are graphically shown in Figure 4.
Three-dimensional M.R.I.s are thus a more difficult method of diagnostic imaging than two-dimensional X-rays.

Figure 4: M.R.I. Image Reconstruction Planes [6]

2.1 M.I.R. Meniscus

M.R.I. is best suitable for achieving the desired result in the imaging diagnosis of meniscus tear and degeneration
for several decades. The knee meniscus is a soft fiber kind of tissue present in between the femoral condyles and the
tibial plateau, as shown in Figure 5.

Figure 5: Knee Meniscus [6]
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2.2 M.R. image characteristic of knee

Musculoskeletal (M.S.K.) imaging is a sub-specialty in clinical radiology coping with diagnosing diseases related
to bones and soft tissues. Different imaging modalities are used in M.S.K. radiology, including computed-tomography
(C.T.), M.R.I., and Ultrasound. When various imaging modalities are available, M.R.I. is frequently selected due to
its superior capacity to provide excellent soft tissue, meniscus contrast and its radiation-free nature [35]. Radiologists
review scans for diagnostic reasons by imaging joints in various body areas such as the knee, hip, and shoulders, as
well as tissues such as bone and muscle, monitoring the peripheral nervous system, and doing whole-body imaging to
identify metabolic, aging, and other conditions. With enhanced imaging sequences and accompanying computational
methods, the spectrum of clinical diagnoses that may be made with these radiology images is growing [25]. Knee
M.R.I. is the most widely used M.S.K. radiology application because it has the most potential for accurately detecting
abnormalities in the knee region [4]. Knee M.R.I. can identify a variety of abnormalities, including meniscus and
cruciate pathology, as well as cartilage [43]. The number of scans and information given inside a knee M.R.I. fuel the
necessity for developing automated analysis methodologies in such clinical applications (Figure 6).

Figure 6: General flowchart for tear detection pipeline [63]

2.3 M.R.I. dataset of Knee Meniscus

We used a standard available dataset, contain multi-view knee M.R.I.s. The researchers used the examined dataset
and categorized it as healthy or tears, which helped build a D.L. model that give robust results.

� MRNet dataset.

� Fast M.R.I. dataset.

� The Osteoarthritis Initiative (O.A.I.).

2.3.1 MRNet data set

The Stanford University Medical Center in Palo Alto, California, provided the MRNet with 1,370 M.R.I. exams
of the knee and image size (255× 255). The dataset contains 1,104 (80.6 percent) abnormal exams, Through manual
extraction from clinical data, labels for 319 (23.3 percent) A.C.L. tears and 508 (37.1 percent) meniscus tears were
acquired [1, 4, 29, 58] (Figure 7).

2.3.2 FastM.R.I. dataset

On 3 and 1.5 Tesla magnets, over 1,500 completely sampled knee M.R.I.s were acquired, as well as DICOM pictures
(320× 320) from 10,000 clinical knee M.R.I.s acquired on the same magnets. Coronal proton density-weighted images
with and without fat suppression are included in the raw dataset. Axial proton density-weighted images with fat
suppression, coronal proton density-weighted images with and without fat suppression, sagittal proton density, and
sagittal T2-weighted images with fat suppression are all included in the DICOM collection [63].
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Figure 7: MRNet dataset [4]

Figure 8: FastM.R.I. dataset in different position; image ’a’ from the side of Knee, image ’b’ from the back of Knee, image ’c’ from front
of Knee and image ’d’ decleare the medial meniscus of Knee; from different patient [61]

2.3.3 The Osteoarthritis Initiative (O.A.I.)

Its massive database from an observational study of males and females over a 10 year period conducted across
many centers. It contains data approximately 431,000 medical imaging visits and 26,626,000 M.R.I. and X-Ray images
and different image size(from 128× 128 to 256× 256) [42, 50, 52].

3 Evaluation Metrics

This section discusses the evaluation processes to validate the performance of the meniscus stripping techniques
and methods. The validation of meniscus stripping in term of quantitative measure.Quantitative is measurement of
data that can be put into numbers. It is based on mathematical modeling, it used to run statistical analysis, so data
has to be in numerical form. there are many measurement tools which used for the performance evaluation like :

3.1 Dice similarity index (D.S.I.)

Dice was the first to introduce the D.S.I., which is currently extensively used as a volume-based criterion for
segmentation accuracy. Sometimes referred to as the Zijdenbos similarity index (ZSI) [56]. D.S.I. defined as:

S =
2× |A ∩M |
|A|+ |M |

× 100%
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Figure 9: Osteoarthritis image ’a’ from the side of Knee, image ’b’ from the front of Knee and image ’c’ from side with zoom to decleare
cartilages of Knee from different patient [? ]

Figure 10: Explain Dice Similarity Index [2]

3.2 Dice similarity coefficient (D.S.C.) and sensitivity and specificity

It’s the most often used benchmarks for metrics validation in knee joint segmentation architectures and tear
detection processes are dice, sensitivity and specificity [57]. The following steps are used in performance assessment
routines:

Dice similarity coefficient (D.S.C.): it is preventing the imbalance issue by focusing on local regions when seg-
mentation the meniscus.

D.S.C. =
2× T.P.

2T.P.+ F.P.+ F.N.
× 100%

Sensitivity: the ability of a test to correctly identify M.R.I. with meniscus.

Sensitivity =
T.P.

T.P.+ F.N.
× 100%

Specificity: the ability of a test to correctly identify M.R.I. without the meniscus.

Specificity =
T.N.

T.N.+ F.P.
× 100%
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WE can think of the true-positives (T.P.) and false-positives (F.P.), and false-negatives (F.N.) and true-negatives
(T.N.) used in this way.

Figure 11: Explain Dice Similarity Coefficient (D.S.C.) [32]

3.3 Hausdorff Distance and average surface distance Measurement

They determine the distance between two surfaces’ segmentation boundaries.

Hausdorff Distance:

max(H(eS , eF ), H(eS , eF )),

H(eS , eF ) = max
di∈eS

{
min
dj∈eF

dist(di, dj)

}
average surface distance:

1

2

(∑
di∈eS

mindj∈eF dist(di, dj)∑
di∈eS

1
+

∑
dj∈eF

mindi∈eS dist(dj , di)∑
dj∈eF

1

)

Where S =Segmentation of ground truth; F =Segmentation automatically; V =Size of volume; eS =Ground-truth
segmentation surfaces; eF =Automatic segmentation surface; di =Surfaces vertices eS , dj =Surfaces vertices on the
eF ; dist(di, dj)= Euclidean distance among vertices di and dj .

Hausdorff distance is the Max of all distances between voxels in Point 1 and their nearest voxels in Point 2, and
vice versa.

when we takes the distances from the voxels of the gold standard mask to their nearest voxel in segmentation, and
then it takes those distances and adds them together. This is called the average surface distance.

3.4 Receiver operating characteristic curve (R.O.C.)

At each classification threshold, a R.O.C. (receiver operating characteristic) curve can be seen. This graph illus-
trates the performance of classification model does at each threshold. This two parameters of curve plots:

� Rate of True Positive.

� Rate of False Positive.

True Positive Rate (T.P.R.) is a word for recall and hence has the following definition:

T.P.R. =
T.P.

T.P.+ F.N.
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False Positive Rate (F.P.R.) has the following definition:

F.P.R. =
F.P.

F.P.+ T.N.

T.P.R. vs. F.P.R. at various classification thresholds is plotted on a R.O.C. curve. When classification threshold
is lowered, more items are classified as positive, resulting in an increase in both False Positives and True Positives. A
typical R.O.C. curve is shown in Figure 12.

Figure 12: Rates of T.P. vs. F.P. at various classification threshold [? ]

We might evaluate a logistic regression model multiple times with different classification thresholds to compute
the points on a R.O.C. curve, but this would be inefficient. Fortunately, there is a fast, sorting-based algorithm called
A.U.C. that can give us with this information.

3.5 Area Under the R.O.C. Curve

A.U.C. indicates ”Area under the R.O.C. Curve”. A.U.C. is a two-dimensional measurement of the complete lower
portion the entire R.O.C. curve from (0,0) to (1,1) Figure 13.

Figure 13: A.U.C. [? ]

A.U.C. is a total measure of performance that takes into account whole forecasts classification thresholds. The
likelihood that the model ranks a random positive example higher than a random negative example is one approach
to analyze A.U.C.. For the following cases, which are listed in ascending order of logistic regression predictions from
left to right:

The probability of a random positive (green) example being positioned to the right of a random negative (red)
example is represented by the A.U.C..
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Figure 14: Forecasts are ranked by their logistic regression score in ascending order [? ]

The A.U.C. value varies from 0 to 1. The A.U.C. of a model whose forecasts are 100 percent incorrect is 0.0,
whereas the A.U.C. of a model whose forecasts are 100 percent right is 1.0.

For the 2 main reasons, A.U.C. is beneficial:

A.U.C. is scale-invariant: Rather of measuring absolute values, it assesses how well predictions are ordered.

A.U.C. is classification-threshold-invariant: It assesses the accuracy of the model’s forecasts regardless of the
categorization threshold used.

Both of these arguments, however, come with restrictions that may reduce A.U.C.’s utility in specific situations:

Scale invariance is not always desirable: For illustration, there are situations when we truly require finely cali-
brated probability outputs, which A.U.C. does not indicate.

Classification-threshold invariance is not always the best option. In circumstances where the cost of F.N vs.
F.P is significantly different, it may be crucial to limit one form of classification error.

4 Related Work

4.1 Deep Learning

D.L. has several advantages over traditional M.L. methods [5], including the ability to automatically learn features
at various abstraction levels using high-level classification objective functions [3] and the ability to design ”end-to-
end” methodologies in which the system can learn how to extract image features, detect and segment visual objects
of interest, and classify the scene using a unified classification model [15]. The main challenge with D.L. models are
the large number of parameters that must be estimated through the training process, necessitating an equally big,
explanation training set in order to create stable training process. Due to the scarcity of large, annotated training sets,
this problem is especially acute in medical-image-analysis (MIA) applications. In reality, the biggest MIA datasets
often include tens of thousands of samples, which is widely regarded insufficient for successful D.L. model training.
Mitosis detection and lymph node detection are two examples of early, successful MIA applications that used huge,
annotated training sets [12, 47]. However, MIA issues with limited training sets have typically been addressed using
regularization techniques such as unsupervised training [9, 14, 17, 33]. Deep auto-encoders have also been used to
assess the utilization of registered multi-view input data [8, 23], which is identical to our methods excluding that
our multi-view data is not commensurate. freshly, there was a surge of attention in developing D.L. methods for
mammography analysis, which can be separated into three phases [22]:

� Tears detection (i.e., microcalcifications and aggregates).

� Segmentation of tears detected in the first stage.

� Tears are classified dependently textile and form features extracted from segmented tears.

Roblot et al. (2019) [46] presented D.L. assisted method to diagnosis knee (whole joint) using patients M.R.I and
labeled by authors, the collected dataset 1123 images to train. 700 images training and get accuracy 83 percent, with
D.L. architecture faster C.N.N..

Lassau N et al. (2019) [31] worked to find meniscus tear using M.R.I. datasets (collected from web not standard
and labeled by team of researchers) depended on C.N.N.(AlexNet architecture); the study training 252 images then
reported the best tested case 700 images and validation is 871 cases. The study accuracy 86 percent for A.C.L.(anterior
cruciate ligament) tear and 72 percent for meniscus tear, the A.U.C. was 91 percent for meniscus tear.
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Pedoia et al. (2019) [39] refer in their study to trained C.N.N.s(DenseNet architecture) to diagnose OA from T2
voxel based relaxometry data, analyzed for 4384 images from OAI dataset. D.L. outperformed shallow classifier. D.L.
have A.U.C. 83.44 percent with accuracy 75 percent, shallow is A.U.C. 77.77 percent.

Pranata et al. (2019) [41] utilized C.N.N. base on Resnet and VGG architecture and attained Accuracy 98 percent
in automated classification and detection of fractures using CT images; the method used speeded-up robust features
(SURF), Canny edge detection and contour tracing. The datasets took from two sets of patient calcaneus bone of CT
images, the first dataset have 987 images, the second dataset contain 944 images.

Urakawa et al. (2019) [59] used C.N.N. (VGG 16 architecture) to pre-trained model and transfer learning for
outperformed orthopedic surgeons at detecting intertrochanteric fractures, obtained accuracy 95 percent using surgical
registry database(dataset) have 1773 CT-images for patients.

Ho et al. (2019) [11] localization and find of hip fractures on PXRs (plain-frontal-pelvic-radiographs) by DC.N.N.
(deep convolutional neural network), the dataset collected from 25,505 different limb radiograph views from 12,583
patients and they got accuracy 91 percent, A.U.C. 98 percent, sensitivity 98 percent, false negatives 2 percent.

Chang et al. (2019) [10] provides study aim on a simple C.N.N. (ResNet architecture) classifier for determining
exist or not exist A.C.L. tear, the success validation accuracy is 76 percent from dataset contain 260 patients were
included in the analysis, 130 of which had an A.C.L. tear and 130 of which were without A.C.L. tear.

Lu et al. (2018) [34] using C.N.N. (U-Net architecture) and NLP (natural language processing) (Deep Spine) to
detected lumbar vertebral segmentation, spinal stenosis automatically; they used a large dataset of 22796 non-contrast
M.R.I. from 4075 patients’ examinations by Massachusetts General Hospital (MGH) Department of Radiology. Spinal
canal stenosis accuracy 80.4 percent.

Table 1: D.L. methods in medical images field.

Dataset Algorithm Aim Success ratio
Roblot et al.
(2019) [46]

1123 images. Collected
by authors

D.L. architecture faster
C.N.N.

knee diagnosis 83%

Lassau N et al.
(2019) [31]

MRNet dataset
C.N.N. (AlexNet
architecture)

Meniscus tear 72%
A.C.L. tear 86%

Pedoia et al.
(2019) [39]

OAI dataset C.N.N.s (DenseNet ar-
chitecture)

Diagnose OA from
T2 voxel

75%

Pranata et al.
(2019) [41]

Two set of CT images.
Collected by authors

C.N.N. (Resnet and
VGG architecture)

detection of frac-
tures

98%

Urakawa et al.
(2019) [59]

surgical registry
database

C.N.N. (VGG 16 archi-
tecture)

intertrochanteric
fractures

95%

Ho et al. (2019)
[11]

25,505 different limb ra-
diographs. Collected by
authors

DC.N.N. localization and
find of hip fractures
on PXRs

91%

Chang et al.
(2019) [10]

260 M.R.I. Collected by
authors

C.N.N. (ResNet architec-
ture)

A.C.L. tear 76%

Lu et al. (2018)
[34]

22796 non-contrast
M.R.I. Collected by
MGH

C.N.N. (U-Net architec-
ture) and NLP

lumbar vertebral
segmentation,
spinal stenosis

80.4%

4.2 Using M.R.I. in Meniscus Study

The fibrocartilaginous meniscus is frequently damaged, and the injury can lead to accelerated cartilage deteriora-
tion. With the growth in popularity of meniscus-preserving operations, the fibrocartilaginous meniscus is regularly
addressed surgically [45, 64]. The recommended noninvasive approach for identifying meniscus tears with aberrant
meniscus morphology and/or signal intensity (24). Diagnostic performance of M.R.I when interpreted by radiologists
in terms of sensitivity and specificity is 93 percent and 88 percent for medial meniscus (MM) tears and 79 percent and
96 percent for the lateral meniscus (L.M.) [36]. many computer-aided revealed approaches employing tissue analyti-
cal and/or supervised image classifiers have been described in the literatures, indicating a longstanding attention in
auto-segmentation and diagnosis of meniscus tears [7, 19, 30, 44, 50, 60]. Table 2 lists and describes many innovative
C.N.N.s for detecting and localizing meniscus disease.
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Podolia et al. used the Whole-organ-Magnetic-Imaging-Score (WORMs) criteria to develop a 2-stage technique
for bilateral identification of a meniscus ”lesion” (current / truant) and severity assessment of that lesion (moderate
vs highly) (31). For bilateral meniscus lesion unravel, C.N.N. reached a sensitivity of 80 percent and a privacy of 88
percent with area under the curve (A.U.C.) [26, 40] of 0.95, 0.84, and 0.89 on training, validation, and testing datasets
consecutive.

Meniscus (crescent-shaped tissues between the tibia and femur bones) were classified as unharmed or tear using
MRNet-dataset by Bien et al. [4], and C.N.N. performance was compared to that of radiologists. A radiologist
harmony read on an interior authentication set of 120 examinations from the MRNet (1,370-examination items)
became a standard reference.

Table 2: Surveys the performance of C.N.N.s in the unravel of meniscus torn [21].

Lesion Researcher Reference
standard

Sequence Outcomes Comments

WORMs score
meniscus lesions

Pedoia et a1.
[39]

MSK radiolo-
gist read

Three-
dimensional
FSE CUBE

Sens: 81.98%
spec: 89.81%
A.U.C. 0.89

WORMS categorizes
intrasubstance degen-
eration as a lesion

No tear (degen-
erative signal,
postoperative,
normal) vs tear

Bien et a1. [4] MSK radiol-
ogy consensus
read on a
subset

Sagittal T2
Coronal Tl
Axial PD

A.U.C.: 0.847
Specificity:
0.741

Algorithm specificity
for meniscus tear lower
when compared with
readers

Normal vs tear Couteaux et
al. [13]

Annotated
data set

Sagittal T2
single image

Weighted
A.U.C.: 0.906

Weighted A.U.C.
included pres-
ence/absence of
tear, orientation, and
location

Normal vs tear Roblot et al.
[46]

Annotated
data set

Sagittal T2
single image

A.U.C.: 0.94 Presence/absence of
tear, orientation, and
location were assessed

Couteaux et al. utilized a C.N.N.-based technique to categorized meniscus as ”healthy” or ”torn,” as well as the
direction and location of any tears that existed. This was done with the use of an annotated dataset of single sagittal
M.R.I. that had been cropped to include the meniscus. For all three tasks, this method yielded a weighted A.U.C. of
90.6 percent (tear detection, orientation, and anatomical location) [13].

Roblot et al. [46] used the same C.N.N.-based approach to accomplish all three tasks on a bigger dataset and got
a weighted A.U.C. of 90 percent.

4.3 Meniscus Segmentation Studies

In 1999, a first research in this field was completed [4]. In this research, segmentation was performed in two steps
using fuzzy approaches on a relatively limited dataset (5 M.R.I.s), and the system’s segmentation accuracy was not
evaluated.

Fripp et al. [18] got the first remarkable outcome in segmentation terms, This study’s beneficial elements include
the success rates reached and the examination of both meniscus kinds (LM, MM). Although this study analyzed only
healthy people, this circumstance is insignificant for studies aimed at providing help to radiology specialists.

Swanson et al. [56] segmented the lateral meniscus in M.R.I. images of the knee (OAI database) at both normal
and negative levels. Average rates of success exceeding 80 percent for healthy images, 75 percent for level 0 images,
67 percent for level 1 images, and 64 percent for level 2 images were obtained in this investigation. The study’s path
should be determined by the poor success rate on sick photos. This was a study using semi-automated segmentation
with a relatively tiny dataset (24 M.R.I.).

Swamy et al. [55] used thresholding and canny-edge-detection algorithms to sagittal segmentation, coronal, and
planes axial on images of the meniscus collected by Scanners with a high field of view (3-Tesla) [55]. They manually
commented on the segmented photographs, regardless of whether the images were torn or not. The study’s segmenta-
tion on many planes might be seen as an advantage; the study not give number of M.R.I. used (size of dataset) and
the number of healthy and torn and no success rate.
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Zhang et al. [62] attained an 82 percent success rate despite the participants unknown health state [62]. The
study’s short comings include a lack of validation and a lack of information about the amount of M.R.I.(11 images
as dataset) and Extreme learning machine, discriminative random fields methods was used. They performed four
operations in separate serial excitation instead of assessment a single serial excitation in this investigation.

Table 3: Meniscus Segmentation Studies

Authors Meniscus
Kind

Dataset Health case Algorithms Success ratio
(%)

Fripp et al.
(1999) [18]

M.M.
5 M.R.I.

Healthy
Active shape model.

77.10± 10.00
L.M. 75.10± 10.00

Swanson et al.
(2010) [56]

L.M. 24 M.R.I.
10 Healthy

Image filters,
thresholding, region and
shape limitations

80 (Control)

75 (Level-0)
14 Injured 67 (Level-1)

64 (Level-2)
Swamy et al.
(2012) [55]

M.M. Not
Reported

Mixed
Thresholding, Canny edge
detection

Not Reported
L.M.

Zhang et al.
(2013) [62]

M.M.
11 M.R.I. Not Reported

Discriminative random fields,
extreme learning machine

82± 3
L.M.

Paproki et al.
(2014) [37]

M.M.
88 M.R.I. Mixed

Deformable model, template
matching

75± 3

L.M. 81± 2
Dam et al.
(2015) [16]

M.M. 1907 M.R.I.
Mixed Atlas-based method 76± 8

L.M. 83± 5
Saygili et al.
(2016) [51]

M.M. 88 M.R.I. Mixed HOG, tree bagging 91.009

Paproki et al.
(2017) [38]

M.M.
80 M.R.I. Mixed

Statistical shape model, template
matching

76.4%
76.4%

L.M. 84.3%
85.1%
75.2%
76.1%

Tack et al.
(2018) [54]

M.M. 88 M.R.I.
Mixed

Convolutional neural network,
statistical shape model

80.87±
3.92L.M.

Paproki et al. [37] successfully segmented both types of meniscuses [37].the success rate 75 percent in MM and 82
percent in LM. The dataset used from OAI (88 M.R.I.) and used deformable model approach to segmentation. The
study’s weakness can be attributed to the approximately 30 minutes required for segmentation(very long time).

One of the most noteworthy studies is that of Dam et al. [16] at three distinct sets of data with varied excitation
serialization consisted of 1907 different M.R.I.s from OAI dataset and Atlas-based method to segmented meniscuses,
they attained successful segmentation rate with 76 percent in M.M. and 83 percent in L.M., consecutive. Low- and
high-resolution images were compared. The study was not assigned the number of healthy and injured in meniscuses
M.R.I..

In 2016, Saygili et al. employed 88 M.R.I. (OAI dataset) to determine the best frames for meniscus [51]. They had
a 91 percent success rate. Saygili et al. conducted study [49] that proposed a novel method for fully auto-detection of
meniscus. Histogram of Oriented Gradients (H.O.G.) and Local Binary Pattern (L.B.P.) feature extraction techniques,
Extreme Learning Machines (E.L.M.) and Random Forests (R.F.) classification techniques utilized in this study, that
utilized morphological handles for the determination of the R.O.I.. This study attains successful segmentation rate
82.73 percent. The study’s shortcoming is that the work is limited to the M.M. Additionally, this study’s shortcomings
include the fact that just the meniscus frames were collected, and not determined the boundaries of meniscus.

Paproki et al. [38] conducted segment of meniscus examine with statistical surface models (S.M.M.) compared auto
analysis with manual analysis. Three different Patterns of image were utilized in this research. The average D.S.I.
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valuable were 76 percent to Two-Dimensional Turbo Spin-Echo (2D-TSE) M.R.I., 84 percent for Three-Dimensional
Turbo Spin-Echo (3D-TSE) M.R. images, 75 percent for T2 Maps, consecutive. The study’s strengths include the
utilization of M.R.Is acquired in many planes and the comparison of manual and automatic analysis. The study was
said ”All datasets used for analyses were anonymized”!, the number of healthy and injured in meniscuses M.R.I. are
not given.

Tack et al. presented the first paper to segment meniscus structures using knee M.R.I.s in 2018 [54]. When the
results of this study are analyzed, it is clear that the essential work done in this field will continue in the same path.
With a total success rate of 80.87 percent, Tack’s work used C.N.N.s. There are no assigned the number of healthy
and injured in meniscuses M.R.I.. In this study.

4.4 Meniscus Tear Detection Studies

Meniscus segmentation research are used to detect tears in segmented images automatically. The detection of tears
will assist radiology specialists in their work and decision-making.

Hata et al. Finished the initial study on the identification of meniscus torn in 2001 [27], which is an enhanced
edition of the study [48] carried out in 1999. Although the torn has been identified in this task, the verification
procedure has not been carried out. As a result, the system’s efficiency cannot be guaranteed. There is a lack of
information about the amount of M.R.I. and health case; and used multi-methods without success rate declared.

Boniatis et al. noted in their 2008 study they wished for establish a differentiation between healthy and injured
meniscus [7]. Although the study appears to assess 55 separate M.R.I. from clinical observation, classification is based
on 55 slice images involving the posterior meniscus horns, Although the success rate 89 percent appears to be powerful
in Boniatis’s work, reaching this successful rate with 55 slice images raises concerns about the study’s generalizability.

Köse et al. designed an auto-approach for detecting meniscus tears on 500 M.R.I. dataset from Karadeniz Technical
University [30]. The success rate for torn meniscus images is 88.3 percent, whereas the success rate for healthy images
is 95.7 percent. However, the study contains numerous uncertainties. To begin, as in Boniatis’s study, the study was
conducted using by selected slices manually from M.R.I. [7]. In other words, instead of using 3D M.R. images, the
study used 2D slices. It’s also stated that 500 photos were taken from 30 different patients, however they are not used
to their maximum potential. It’s also been observed that diagnosing a torn meniscus requires more than 30 photos,
whilst diagnosing a healthy one requires more than 70 images. Furthermore, there is no assessment of how M.R.I.
slices are selected.

Ramakrishna et al. designed auto-computer-assisted diagnostic approach for M.R.I.s obtained using T1 excitation
sequences from low field scanners. [44]. As an outcome of their work, they acquired a sensitivity amount is 83.87
percent and a specificity amount is 75.19 percent, 40 from archived database participants with varying levels of
meniscus torn and Computer aided diagnosis (CAD) as a method, Their method has become highly reliant on their
dataset. As a result, it is doubtful that this approach will be used to another dataset, the success rate not given.

Fu et al. employed active contour with level sets method for segmentation, then feature extraction with co-
occurrence matrices, and lastly classification with SVM [19]. The huge set of data size of the study (166 M.R.I.
unknown dataset) is a positive aspect. The capacity to find torn in a single image in 5.5 sec is most notable benefit
of this work. The initial user-defined frames indicate that it is a semi-automatic approach, the success rate not given;
only sensitivity is 72.7 percent.

The perfect outcome in meniscus tear detection experiments were reported by Zarandi et al. [60]. They used
fuzzy-clustering algorithms for segmentation and used sensor neural networks for classification. A precision value of
88.82− 92.13 percent was found based on the meniscus type and region in this investigation, which was conducted on
50 patients M.R.I. (dataset) from clinical observation in MohebMehr Hospital have healthy and non-healthy meniscus.
Using proton-weighted images, researchers were able to detect meniscus tears more accurately than with previous (T1
and T2) excitation sequences. About the detect more accurate came when study’s used neural networks, the dataset
very small was a lack.

Roblot et al. [46] presented D.L. assisted method to meniscus tear detection using patients M.R.I. and labeled
by authors, the collected dataset 1123 images to train. 700 images training and get accuracy 83 percent, with faster
C.N.N. architecture. The dataset used in this study not evaluated from other studies and not standard, the highly
accuracy with faster C.N.N. needed to audit.

Lassau N et al. [53] worked to find meniscus tear using different M.R.I. datasets (collected from web not standard
and labeled by team of researchers was leaked the study) depended on C.N.N.(AlexNet architecture); the study training
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252 images then reported the best tested case 700 images and validation is 871 cases. The study accuracy 72 percent
for meniscus tear, the A.U.C. was 91 percent for meniscus tear.

The C.N.N. (MRNet; 1130 M.R.I. training and 120 M.R.I. validation exams), Bien et al. described an area under
curve (A.U.C.) of 84.7 percent and accuracy 72.5 percent for finding meniscus tears [4]. The study can increase the
accuracy if change C.N.N. architecture not.

Meniscus tears have previously been researched to see if the meniscus is torn. Meniscus are categorized based on
the type of tear that occurs (horizontal tears, vertical tears, etc.). Meniscus tear kinds will be studied further in the
future, and this field will benefit much from it. Such conclusions produced with D.L. based methods, in particular,
will make a significant contribution to the literature.

Table 4: meniscus tear studies
Author(s) Meniscus kind Data Size Health

Status
Algorithm Success Rate (%)

Hata et al. [27] Not Reported NA Mixed multi-methods NA

Boniatis et al.

[7]

MM-Posterior Horn 55 M.R.I. Mixed multi-methods 89.1

Köse et al. [30] Not Reported 500 M.R.I. Mixed designed an auto-

approach

For wounded participants,

accuracy was 88.3%. For

healthy participants, the

accuracy was 95.7 percent.

Ramakrishna

et al. [44]

MM- Anterior and Pos-

terior Horn

LM- Anterior and Pos-

terior Horn

40 M.R.I. Injured auto-computer-

assisted

Sensitivity: 83.87

Specificity: 75.19

Fu et al. [19] Not Reported 166 M.R.I. Mixed SVM Sensitivity: 0.727

Zarandi et al.

[60]

MM- Anterior and Pos-

terior Horn

LM- Anterior and Pos-

terior Horn

50 M.R.I. Mixed neural networks Precision: 88.82-92.13

Roblot et al.

[46]

MM 1123 M.R.I. Mixed faster C.N.N. 83

Lassau N et al.

[53]

LM NA Mixed C.N.N. (AlexNet

architecture);

72

Bien et al [4] MM

LM

MRNet Mixed C.N.N. 72.5

5 Conclusion

Meniscus and cartilage; its most important ingredient of the knee joint. Damage to the cartilage structures caused
by a meniscus injury can lead to osteoarthritis. Furthermore, a torn meniscus limits one’s capacity to move. As a
result, early detection of meniscus tissues is critical in order to perform routine inspections quickly and with minimal
error rates. Numerous research on meniscus segmentation and tear detection have been conducted over time for these
objectives. The meniscus in the knee are complex to evaluate because they don’t have separate forms. When physically
evaluating these tissues, radiologists can make mistakes, and even if they don’t, they lose a lot of time. The studies’
objective is to build methods capable of reducing evaluation times and assisting radiology and orthopedic specialists
in making decisions. The studies conducted in this field will become even more critical in the coming years. There are
only a few studies on D.L. in this domain. Studies that identify tears based on their location will benefit this field and
assist specialists in determining the type of meniscus tear. The development of D.L. will deliver a considerable boost.
According to research, this automated detection system will be used in M.R.I. devices. There will be a significant
decrease in the rate of misdiagnosis.
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