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Abstract

A technique which is known as Sumudu Transform Method (STM) is studied for the construction of solutions of a most
general form of delay differential equations of pantograph type. This is a pioneer study on using the STM to construct
the solutions of delay differential equations of pantograph type with variable coefficients. We obtain the exact and
approximate solutions of nonlinear problems with multiproportional delays and variable coefficients. The strength
of STM is illustrated in reducing the complex computational work as compared to the well-known methods. This
paper shows how to succinctly identify the Lagrange multipliers for nonlinear delay differential equations with variable
coefficients, using the STM. The potency and suitability of the STM are exhibited by giving expository examples. The
solutions of nonlinear Volterra integro-differential equations of pantograph type are also obtained.
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1 Introduction

The important roles which Delay Differential Equations (DDEs) play in explaining many occurrences in physical
and biological systems are enormous. Delays are introduced in models to enhance their vitality and to allow an
accurate narration of actual problems which involve the use of DDEs. Modeling of the spread of infectious diseases,
population dynamics or electrodynamics problems are governed by DDEs. DDEs contain terms whose value depends
on the solution at prior times. Time delays can be a constant, time-dependent, or state-dependent. Several events in
nature are not instantaneous in their occurrences and can therefore be modeled by DDEs. The study of DDEs has
attracted much attention. There are reports on the conditions for the solutions and qualitative behaviour of solutions of
considered differential equations [19, 1, 9, 18, 17]. Several approximation and numerical methods have been developed
for solving DDEs. Perturbation methods top the list in the approximate methods which are being used for solving
differential equations, algebraic equations, integrodifferential equations and difference equations (See e.g, [22]). The
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impediment to these methods is the indispensability of a small parameter which might be indistinguishable from the
original physical parameter of the given equations. Several research efforts were made to overcome this drawback.
Diverse methods were introduced which include variational iteration method [10, 11, 12, 13, 14], Laplace transform
[37, 38].

In this work, an innovative approach of variational iteration method via the Sumudu transform is studied for the
construction of solutions of a most general form of DDEs of pantograph type. We consider the DDEs of pantograph
type with variable coefficients of the form,

g (x, y(q0x), y
′(q1x), y

′′(q2x)) = 0, x0 ∈ [x0, T ]

y(x0) = a, y′(x0) = b, (1.1)

where qi ∈ (0, 1), for i = 1, 2, introduced in 1971 [24]. The efficacy of the Sumudu Transform Method (STM) is shown
in obtaining the exact and approximate solutions of nonlinear problems with multi-proportional delays and variable
coefficients. The flexibility, consistency and effectiveness of the STM for solving DDEs with variable coefficients and
nonlinear Volterra integro-differential equations are demonstrated. Expository examples are presented to show that
there is no need for linearization, perturbations or large computational works.

2 Variational iteration method and Sumudu transform

Variational iteration method (VIM) was instituted by He (See e.g, [13] and references there in). The flexibility,
consistency, and effectiveness of the VIM as compared to other well-known methods have been demostrated (See e.g,
[37, 38] and references there in). Moreover, efforts have been made on the development of the VIM with a blend of
Laplace transform (See e.g, Wu [37, 38]), and Sumudu transform for obtaing the solutions of DDEs with constant
coefficients (See e.g, [33]). Applications of Sumudu transform for obtaining the solutions of several forms of differential
equations are also found in [3, 8, 4, 21]. The Sumudu transform is a simple modified form of Laplace transfom.
A corresponding property of the Sumudu transform can be derived from every property which is true for Laplace
transform and vice versa (See e.g, [35? ? ]). The technique of Sumudu transform is a simple, effective and universal
way for identifying the Lagrange multiplier. Sumudu transform is applicable provided the given function g(x) satisfies
the following Dirichlet conditions:

(i) it is single valued function which may have a finite number of finite isolated discontinuies for x > 0.

(ii) it remains less than be−a0x as x approaches ∞, where b is a positive constant and a0 is a real positive number.

2.1 Presentation of Sumudu transform

The concept of Sumudu Transform (ST) was proposed in 1993 for solving differential equations and control engi-
neering problems by Watugala [35]. ST is an integral transform. The ST of a function g(x) is denoted as G(u) and is
defined for all real numbers x ≥ 0 by

G(u) = S [g(x)] =

∫ ∞

0

g(ux)e−xdx. (2.1)

For the integer order derivatives, the ST is given as

S

[
dg(x)

dx

]
=

1

u
[G(u)− g(0)] . (2.2)

The ST for the n-order derivative is

S

[
dng(x)

dxn

]
=

1

un

[
G(u)−

n−1∑
k=0

uk d
kg(x)

dxk
|x=0

]
. (2.3)

The ST is linear and it preserves linear functions. Also the ST is credited for its units preserving property, which
makes it applicable for solving problems without the need to resort to a new frequency domain (See e.g, Watugala [35],
Belgacem et al. [? ]). The fundamental properties of ST are elucidated in Belgacem & Karaballi [? ]. The highlight
of the ST is presented by considering the universal nonlinear equation,

dny(x)

dxn
+R [y(x)] +N [y(x)] = f(x), (2.4)
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subject to the initial conditions
y(k)(0) = ak, (2.5)

where y(k)(0) = dky(0)
dxk , k = 0, 1, ..., n− 1, R is a linear operator, N is a nonlinear operator, f(x) is a given continuous

function and the highest order derivative is dny(x)
dxn .

Let Y (u) = S[y(x)], taking the ST of (2.4) transforms its linear part into an algebraic equation of the form

1

un
Y (u)−

n−1∑
k=0

1

un−k
y(k)(0) = S [f(x)−R [y]−N [y]] . (2.6)

Thus, the corresponding iteration procedure is given by

Yn+1(u) = Yn(u) + φ(u)

(
1

un
Yn(u)−

n−1∑
k=0

1

un−k
y(k)(0)− S [f(x)−R [y]−N [y]]

)
, (2.7)

where φ(u) is the Lagrange multiplier. Take the classical variation operator on both sides of (2.7) and consider
S [R [y] +N [y]] as restricted terms. It is obtained that

δYn+1(u) = δYn(u) + φ(u)
1

un
δYn(u), (2.8)

which gives
φ(u) = −un. (2.9)

Substituting (2.9) into (2.7) and taking the inverse-Sumudu transform S−1 of (2.7) yields the explicit iterative proce-
dure,

yn+1(x) = yn(x) + S−1

[
−un

(
1

un
Y (u)−

n−1∑
k=0

1

un−k
y(k)(0)− S [f(x)−R [y]−N [y]]

)]
,

= y1(x) + S−1 [un (S [f(x)−R [y(x)]−N [y(x)]])] , (2.10)

where

y1(x) = S−1

[
n−1∑
k=0

uky(k)(0)

]

= y(0) + y′(0)x+ ...+
yn−1(0)xn−1

(n− 1)!
. (2.11)

2.2 Variable coefficient nonlinear equation

Suppose the universal nonlinear equation (2.4) is endowed with variable coefficients such that it reads

dny(x)

dxn
+ αR1[y(x)] + β(x)R2[y(x)] +N [y(x)] = f(x), (2.12)

where α is a constant and β(x) is a variable coefficient, R1 and R2 are linear operators and other terms remain as
defined in (2.4). Taking the ST of (2.12) generates the iteration procedure

Yn+1(u) = Yn(u) + φ(u)(
1

un
Yn(u)−

n−1∑
k=0

1

un−k
y(k)(0)

−S [f(x)− αR1[y]− β(x)R2[y]−N [y]]). (2.13)

Then the Lagrange multiplier φ(u) is derived with S [β(x)R2[y] +N [y]] as the restricted terms. The rest of the
computation follows the same process.
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3 Solution of pantograph type equations

Pantograph Type Equations (PTEs) are functional differential equations with proportional delays. An example of
a generalized multi-pantograph type equation is given by (1.1). The name pantograph was derived in 1971 from the
work of Ockendon and Tayler [24]. PTEs are pragmatic in modeling of several problems which occur in diverse fields
such as biology, electrodynamics, economy, cell growth, quantum mechanics, astrophysics, number theory, probability
theory, nonlinear dynamical systems and other industrial applications. Interested readers are referred to the following
references for more notes on the applications of pantograph type equations [24, 2, 7]. PTEs are kind of DDEs and many
authors have made research efforts for obtaining their solutions, both numerically and analytically [6, 39, 32, 31, 27].

3.1 Delay differential equations

Three examples are given to illustrate the iteration of STM for solving DDEs of multi-pantograph type with
variable coefficients. After the first iteration, each subsequent iteration is used to obtain each succeeding term while
the Higher Other Terms (HOT) are truncated. The Matlab is used to compare the graphs of the exact solutions with
the solutions obtained by using the STM.

Example 3.1. Consider the nonlinear second-order pantograph equation

y′′(x) − 8y
(x
2

)
+ xy′(x) = 2,

y(0) = 0, (3.1)

y′(0) = 0.

Solution: Taking the ST of (3.1) gives

Y (u)

u2
− y(0)

u2
− y′(0)

u
= S

[
8y
(x
2

)
− xy′(x) + 2

]
. (3.2)

Since y(0) = 0 and y′(0) = 0, equation (3.2) gives

Y (u)

u2
= S

[
8y
(x
2

)
− xy′(x) + 2

]
. (3.3)

Thus, the variational iteration formula is given by

Yn+1(u) = Yn(u) + φ(u)

(
Yn(u)

u2
− S

[
8yn

(x
2

)
− xy′n(x) + 2

])
, n ∈ N. (3.4)

Take the classical variation operator on both sides of (3.4) and consider the terms S
[
8y
(
x
2

)]
and S [xy′(x)] as the

restricted variations. The Lagrange multiplier is obtained as

φ(u) = −u2. (3.5)

Taking the inverse-Sumudu transform S−1, of (3.4) gives the explicit iteration formula as

yn+1(x) = yn(x) + S−1

[
−u2

(
Yn(u)

u2
− S

[
8yn

(x
2

)
− xy′n(x) + 2

])]
= y1(x) + S−1

[
u2
(
S
[
8yn

(x
2

)
− xy′n(x) + 2

])]
, (3.6)

where y1(x) is an initial approximation of (3.6) and which is obtained as y1(x) = 0. Then,

y2(x) = S−1
[
u2
(
S
[
8y1

(x
2

)
− xy′1(x) + 2

])]
= S−1

[
u2 (S [2])

]
= S−1

[
2u2
]

= x2. (3.7)

The exact solution is y(x) = x2. Figure 1 displays the exact and approximate solutions for Example 3.1.
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Example 3.2. Consider the nonlinear pantograph equation of second order

y′′(x) − 8

3
y′
(x
2

)
y(x)− 8x2y

(x
2

)
= −4

3
− 22

3
x− 7x2 − 5

3
x3, t ∈ [0, 1],

y(0) = 1, (3.8)

y′(0) = 1.

Solution: By taking the ST of (3.8), we obtain

Y (u)

u2
− y(0)

u2
− y′(0)

u
= S

[
8

3
y′
(x
2

)
y(x) + 8x2y

(x
2

)
− 4

3
− 22

3
x− 7x2 − 5

3
x3

]
. (3.9)

Since y(0) = 1 and y′(0) = 1, it is obtained that

Y (u)

u2
− 1

u2
− 1

u
= S

[
8

3
y′
(x
2

)
y(x) + 8x2y

(x
2

)
− 4

3
− 22

3
x− 7x2 − 5

3
x3

]
. (3.10)

Thus for n ∈ N, the variational iteration formula is given by

Yn+1(u) = Yn(u)

+ φ(u)

(
Yn(u)

u2
− 1

u2
− 1

u
− S

[
8

3
y′n

(x
2

)
yn(x) + 8x2yn

(x
2

)
− 4

3
− 22

3
x− 7x2 − 5

3
x3

])
. (3.11)

The classical variation operator on both sides of (3.11) is taken and the terms S
[
8
3y

′
n

(
x
2

)
yn(x)

]
and

[
8x2yn

(
x
2

)]
are

being considered as the restricted variations. The Lagrange multiplier is obtained as

φ(u) = −u2. (3.12)

The inverse-Sumudu transform S−1, of (3.11) is taken to get the explicit iteration formula

yn+1(x) = yn(x)

+ S−1

[
−u2

(
Yn(u)

u2
− 1

u2
− 1

u
− S

[
8

3
y′n

(x
2

)
yn(x) + 8x2yn

(x
2

)
− 4

3
− 22

3
x− 7x2 − 5

3
x3

])]
= y1(x) + S−1

[
u2

(
S

[
8

3
y′n

(x
2

)
yn(x) + 8x2yn

(x
2

)
− 4

3
− 22

3
x− 7x2 − 5

3
x3

])]
, (3.13)

where the initial approximation of (3.13) is given by y1(x) = S−1[1 + u] = 1 + x and

y2(x) = y1(x)

+ S−1

[
u2

(
S

[
8

3
y′1

(x
2

)
y1(x) + 8x2y1

(x
2

)
− 4

3
− 22

3
x− 7x2 − 5

3
x3

])]
. (3.14)

Notice that y1
(
x
2

)
= 1 + x

2 and y′1
(
x
2

)
= 1

2 . Recall that the task is to get the next term only. Therefore

y2(x) = 1 + x+ S−1

[
u2

(
S

[
8

3

(
1

2

)
(1 + x)− 4

3
− 22

3
x

])]
(Truncate HOT)

= 1 + x+ S−1
[
u2 (S [−6x])

]
= 1 + x+ S−1

[
u2(−6u)

]
= 1 + x+ S−1

[
−6u3

]
= 1 + x− x3. (3.15)

The exact solution is known to be y(x) = 1 + x − x3. Figure 2 displays the exact and approximate solutions for
Example 3.2.
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Figure 1: Graph of y(x) = x2.

Figure 2: Graph of y(x) = 1 + x− x3.
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Example 3.3. Consider the first order nonlinear DDE

y′(x)− 2xy4
(x
2

)
= 0, y(0) = 1. (3.16)

Solution: The ST of (3.16) gives
Y (u)

u
− y(0)

u
= S

[
2xy4

(x
2

)]
. (3.17)

Since y(0) = 1, it is realized that
Y (u)

u
− 1

u
= S

[
2xy4

(x
2

)]
. (3.18)

Then the variational iteration formula is given by

Yn+1(u) = Yn(u) + φ(u)

(
Yn(u)

u
− 1

u
− S

[
2xy4n

(x
2

)])
. (3.19)

Consider S
[
2xy4n

(
x
2

)]
as the restricted variation and take the classical variation operator on both sides of (3.19). This

gives the Lagrange multiplier to be
φ(u) = −u. (3.20)

By taking the inverse-Sumudu transform S−1 of (3.19), it gives the explicit iteration formula as

yn+1(x) = yn(x) + S−1

[
−u

(
Y (u)

u
− 1

u
− S

[
2xy4n

(x
2

)])]
= y1(x) + S−1

[
u
(
S
[
2xy4n

(x
2

)])]
, (3.21)

with the initial approximation which is given by

y1(x) = S−1

[
−u(

−1

u
)

]
= S−1[1] = 1.

y2(x) = y1(x) + S−1
[
u
(
S
[
2xy41

(x
2

)])]
= 1 + S−1 [u (S [2x])]

= 1 + S−1 [u(2u)]

= 1 + S−1
[
2u2
]

= 1 + x2.

Next is to evaluate y3(x) to obtain the next term only.

y3(x) = y1(x) + S−1
[
u
(
S
[
2xy42

(x
2

)])]
= 1 + S−1

[
u

(
S

[
2x

(
1 +

x2

4

)4
])]

= 1 + S−1
[
u
(
S
[
2x
(
1 + x2

)])]
(Truncate HOT)

= 1 + S−1
[
u
(
S
[
2x+ 2x3

])]
= 1 + S−1

[
u
(
S
[
2x+ 2x3

])]
= 1 + S−1

[
u
(
2u+ 12u3

)]
= 1 + S−1

[
2u2 + 12u4

]
= 1 + x2 +

x4

2
.
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Figure 3: Graph of y(x) = ex
2
.

Next is to evaluate y4(x) to obtain the next term only.

y4(x) = y1(x) + S−1
[
u
(
S
[
2xy43

(x
2

)])]
= 1 + S−1

[
u

(
S

[
2x

(
1 +

x2

4
+

x4

32

)4
])]

= 1 + S−1

[
u

(
S

[
2x

(
1 + x2 +

x4

2

)])]
(Truncate HOT)

= 1 + S−1
[
u
(
S
[
2x+ 2x3 + x5

])]
= 1 + S−1

[
u
(
2u+ 12u3 + 120u5

)]
= 1 + S−1

[
2u2 + 12u4 + 120u6

]
= 1 + x2 +

x4

2
+

x6

6

= 1 +
1

1!
x2 +

1

2!

(
x2
)2

+
1

3!

(
x2
)3

=

3∑
i=0

1

i!

(
x2
)i
.

Consequently, it can be inferred that

yn(x) =

n∑
i=0

1

i!

(
x2
)i
, n ∈ N, (3.22)

which tends to ex
2

as n → ∞.

The exact solution is known to be y(x) = ex
2

. Figure 3 displays the exact and approximate solutions for Example
3.3.
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3.2 Volterra integro-differential equation

Physics, engineering and biology books illustrate the application of the Volterra integro-differential equations
(VIDEs) in mathematical modeling of various processes such as diffusion, glassforming, heat transfer, biological species
coexisting and nanohydrodynamics. The approximate or numerical solutions of VIDEs have been obtained by using
some methods which include adomian decomposition method [20], collocation method [26, 15], fractional differential
transform method [5], variational iteration method [23, 25, 30], reproducing kernel method [36] and wavelet method
[29, 28, 40, 41, 16, 34]. The efficiency of the STM method for obtaining the solutions of VIDEs is presented in this
paper. An example is given to illustrate the procedures. Each succeeding term after the first iteration is derived by
truncating the HOT while computing each subsequent iteration. The graph is shown by using Matlab to compare the
exact solution with the solution obtained via the STM.

Example 3.4. Consider first order nonlinear VIDE,

y′(x)−
∫ x

0

y2
(
t

2

)
dt = 0, (3.23)

for x ≥ 0 and which is subject to the initial condition y(0) = 1.

Solution: Taking the derivative of (3.23) gives

y′′(x)− y2
(x
2

)
= 0. (3.24)

Substituting x = 0 in VIDE (3.23) gives y′(0) = 1. Then the VIDE (3.23) subject to initial condition y(0) = 1 is
reduced to pantograph-type equation (3.24) subject to initial conditions

y(0) = 1

y′(0) = 1. (3.25)

Taking the ST of (3.24) gives
Y (u)

u2
− y(0)

u2
− y′(0)

u
= S

[
y2
(x
2

)]
. (3.26)

Since y(0) = y′(0) = 1, it yields that
Y (u)

u2
− 1

u2
− 1

u
= S

[
y2
(x
2

)]
. (3.27)

Then the variational iteration formula emerges as

Yn+1(u) = Yn(u) + φ(u)

(
Yn(u)

u2
− 1

u2
− 1

u
− S

[
y2n

(x
2

)])
. (3.28)

S
[
y2n
(
x
2

)]
is the restricted variation and taking the classical variation operator on both sides of (3.28) gives the

Lagrange multiplier as
φ(u) = −u2. (3.29)

Substitute for φ(u) in (3.28) and take its inverse-Sumudu transform S−1. It brings forth the explicit iteration formula

yn+1(x) = yn(x) + S−1

[
−u2

(
Yn(u)

u2
− 1

u2
− 1

u
− S

[
y2n

(x
2

)])]
= y1(x) + S−1

[
u2
(
S
[
y2n

(x
2

)])]
, (3.30)

with the initial approximation which is given by

y1(x) = S−1

[
−u2(

−1

u2
− −1

u
)

]
= S−1[1 + u] = 1 + x.
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y2(x) = y1(x) + S−1
[
u2
(
S
[
y21

(x
2

)])]
= 1 + x+ S−1

[
u2

(
S

[(
1 +

x

2

)2])]
= 1 + x+ S−1

[
u2 (S [1])

]
(Truncate HOT)

= 1 + x+ S−1
[
u2
]

= 1 + x+
x2

2!
.

Next is to evaluate y3(x) to obtain the next term.

y3(x) = y1(x) + S−1
[
u2
(
S
[
y22

(x
2

)])]
= 1 + x+ S−1

[
u2

(
S

[(
1 +

x

2
+

x2

8

)2
])]

= 1 + x+ S−1
[
u2 (S [1 + x])

]
(Truncate HOT)

= 1 + x+ S−1
[
u2 (1 + u)

]
= 1 + x+ S−1

[
u2 + u3

]
= 1 + x+

x2

2!
+

x3

3!
.

Next is to evaluate y4(x) to obtain the next term.

y4(x) = y1(x) + S−1
[
u2
(
S
[
y22

(x
2

)])]
= 1 + S−1

[
u2

(
S

[(
1 +

x

2
+

x2

8
+

x3

48

)2
])]

= 1 + x+ S−1

[
u2

(
S

[(
1 + x+

x2

2

)])]
(Truncate HOT)

= 1 + x+ S−1
[
u2
(
1 + u+ u2

)]
= 1 + x+ S−1

[
u2 + u3 + u4

]
= 1 + x+

x2

2!
+

x3

3!
+

x4

4!

=

4∑
i=0

1

i!
xi.

Accordingly, it can be deduced that

yn(x) =

n∑
i=0

1

i!
xi, n ∈ N, (3.31)

which inclines to ex as n → ∞.

The exact solution is known to be y(x) = ex. Figure 4 displays the exact and approximate solutions for Example
3.4.

Conclusion: This paper shows how the Sumudu Transform Method is used to identify the Lagrange multipliers for
nonlinear DDEs with variable coefficients. It displays the craft of Sumudu Transform Method in reducing the complex
computational work as compared to the popular methods. The Sumudu Transform Method is used to find the
exact and approximate solutions of DDEs of pantograph type with variable coefficients and nonlinear Volterra integro-
differential equations of pantograph type. This study generalises and extends the previous works in the literature where
pantograph type equations with constant coefficients were considered (See e.g, [33]). The graphs of the expository
examples which were given, show that the solutions obtained via the STM are in good agreement with the exact
solutions.
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Figure 4: Graph of y(x) = ex.
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VIDEs: Volterra integro-differential equations
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