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Abstract

In recent years, the issue of power consumption in parallel and distributed systems has attracted a great deal of
attention. Regarding the ever-increasing development data and computing centers due to the contribution of cloud
computing systems in such sectors, power consumption has always been of the concerns due to Carbon dioxide
emissions and consequently the Negative impact on the environment. In recent years, the notion of power and also
”Green Computing” has found a crucial spot in the tasks scheduling in cloud data centers. The clustering technique, as
well as Dynamic Voltage and Frequency Scaling (DVFS) techniques, have focused on the reduction of the consumption
of power particularly, and the optimization of the performance parameters. Concerning scheduling Directed Acyclic
Graph (DAG) of a data center processors equipped with the technique of DVFS, this paper proposes a power and time
aware algorithm called PATCDD, to apply the combination of the strategies for clustering along with the distribution
of slack-time among the tasks of a cluster. The first phase studies the slack time for non-critical tasks of DAG, extends
their execution time and reduces the energy consumption without increasing the task’s execution time as a whole.
The main idea of the proposed algorithm involves the achievement of a maximum reduction in power consumption in
the second phase. To this end, the slack time is distributed among non-critical dependent tasks. Eventually, a set of
data established for conducting the examinations and also different parameters of the constructed random DAG were
assessed to identify the efficiency of our proposed algorithm.
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1 Introduction

In recent years, the high price and cost of energy/power and a variety of environmental issues have forced the
high performance computing sector to reconsider some of its old practices with an aim to create more sustainable
HPC systems [2]. It has been estimated the total power and energy consumption in ICT industry over 868 billion
kWh which accounts for 5.3% of the total electricity use across the globe in 2008, according to the reports [11]. The
everincreasing technological advancement nowadays offers the expectation of up to four times the total power demand
until 2025. Carbon emissions related to the energy uses may potentially increase the cooling cost. Any boosts in
the usage of efficient computing systems will end in a very hot temperature caused by the increased generated power
for fueling them. It has proven that some failures can be observed up to two times with the heat of rising of 10 C,
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that consequently affects the system reliability and availability which may result in severe damages [9]. As such, the
power consumption for parallel task scheduling has heightened concerns in the last years. The specific approaches to
the subject of energy conservation include dynamic power management (DPM) [16] and dynamic voltage frequency
scaling (DVFS) already incorporated into many new processors [19]. The former usually aim to deactivate idle nodes
due to the long durations of them. DPM approach shows no participation in short idle durations events due to a quick
runtime between each task. Regarding the reduction of power consumption, however, the tasks receive a specified
frequency in employing DVFS approach. Due to the power consumption and other efficient parameters, scheduling
parallel tasks with limited prioritizing, i.e., directed acyclic graph is of concern in homogenous and heterogeneous
computing environments such as cloud data centers. This issue is NP hard problems [15]. Clustering strategies, as
well as DVFS, have confirmed to reduce energy consumption. The remainder of this paper is organized as follows.
Section 2 introduces related work. In Section 3, we introduce the system model. In Section 4, we describe the proposed
algorithm. Section 5 gives the experimental setup and simulation results. Finally, Section 6 presents the conclusion.

2 Related Work

In recent years there has been a significant research on task scheduling for embedded systems using various forms of
DVFS enabled techniques. The main idea in most of the existing algorithms is to efficiently use processors’ slack times
to satisfy time requirements of all tasks such as execution times. The advancement in information and communication
technology in recent years has caused to continuous growth cloud data centers and computing centers, accordingly
increases in power consumption and negative impact on the environment through generation of greenhouse gases and
excessive emission of CO2. In recent years, great efforts have been made on parallel task scheduling algorithms for
distributed platforms such as clusters, girds and clouds, these studies achieved good results in power and performance
improvements using DVFS techniques [2, 7], List scheduling [17], Clustering-based scheduling [2, 17] and heuristic
algorithm [12, 1, 3]. This section gives a brief review about the various existing task scheduling algorithms which
mainly consider the energy efficiency and optimizing performance parameters in distributed computing.

DVFS technique is one of the most efficient ways of providing significant power saving for processors through
simultaneous minimization of frequency and supply voltage for slack time slot of tasks as well as communication and
idle phases [4, 6].

The authors in [17] employed a power-aware scheduling heuristic algorithm called PALS and PATC to simultane-
ously reduce total execution time and power consumption for scheduling parallel tasks in a cluster computing through
DVFS technique. After determining the critical path and non-critical paths and critical job and non-critical jobss, the
proposed algorithm assigns jobs in the critical paths to processors with the highest voltage/frequency. Then, the slack
time of each job is calculated in the non-critical paths, and the voltage/frequency of the assigned processors is scaled
down to process the non-critical jobs. This strategy mitigates energy consumption without increasing makespan.

Another approach to scheduling tasks has been proposed to reduce power consumption using the DVFS technique
[18]. This technique has been adopted to dynamically control the frequency and voltage of cloud computing servers.
The scheduling algorithm takes into account the maximum job (Fmax) and minimum job (Fmin) frequencies given
to each job and multiple server Si running at maximum Si (Fmax) and minimum Si (Fmin) frequencies. For specific
jobs, the scheduling algorithm efficiently assigns proper servers that run between (Fmin, Fmax) to jobs according to
requirements of job frequencies.

Juarez et al. [8] proposed a real-time dynamic scheduling method called Multi-heuristic Resource Allocation
(MHRA) for efficient execution of task-based applications on a distributed computing platform of cloud computing.
This served to mitigate energy consumption and makespan. This method involved a polynomial time algorithm
combining a set of heuristic rules and resource allocation techniques. In order to balance the two-objective function,
a weight factor was introduced α, by which the user can specify the significance of each objective.

Yikun Hu et al. [9] developed an EASLA algorithm for scheduling parallel applications through DVFS technique,
while maintaining the SLA on a cluster platform. The main idea behind EASLA algorithm is to allocate each slack
to a maximum set of independent tasks for each task using a compatible task matrix and scale frequencies down
to minimize energy consumption within certain extension rate of makespan mutually accepted by user and service
provider.

3 System Model

This section describes the target system and application models and introduces the relevant energy models.



Task scheduling optimization based on heuristic algorithm for heterogeneous cloud computing platforms 2745

3.1 DVFS Model

New Processors equipped the DVFS technique to reduce the power and energy consumption in data center. It
allows processors to operate, using a discrete set of voltage and frequency pairs that is (vj , fj). The system enables
us to deal with the heavy load of tasks with a useful performance by adjusting the voltage and frequency at the same
time. Due to specifically needed increase in both the voltage and frequency, a possible lowest rate in each one in terms
of saving energy, through Equation (3.1), where k indicates a total number of operating points in a processor, thus:

(vj , fj) = {(vmin j , fmax j) = (v1j , f1j < (v2j , f2j < · · · < (vkj , fkj) = (vmax j , fmax j)} (3.1)

where (vkj , fkj) is either the voltage or the frequency of a processor j that exists in a level k.

3.2 Estimating Makespan

Makespan (Cmax) is defined as the amount of time, from start to end for completing a set of sequences. The most
appropriate effort of a scheduling algorithm obtains the minimization of makespan. Equation (3.2) indicates how to
obtain makespan.

Cmax =
[
max(taski.tend) − min(taskj.tst)

]
, 1 ≤ i, j ≤ n (3.2)

The critical path in a DAG constitutes the longest path from an entry to exit point of a node in a graph. In the
case of dependency of tasks a directed edge of a parent task will pursuit the other task. It then should determine all
possible paths. Against the others, the path that includes a longer duration will indicate an appropriate run time of
the efficient application. As such, the tasks will indeed stick to the defined execution time. Furthermore, it can be
assumed that the tasks of the critical path may assign to the processing resources with high voltage and frequency;
on the other hand, the processing elements with lower voltage and frequency may choose to allocate to those that
exist in the DAG G but not the critical path. This will decrease consuming the energy/power of computation for the
processors of a data center. Accordingly, Equation (3.3) can be expressed as follow. Where makespan can be equal to
the Critical Path Length (G).

Cmax(G) = CPL(G) (3.3)

3.3 Energy Model

Scheduling of dependency tasks for computational systems needs consumption of energy that is equal to the total
energy consumption of the processors in both tasks execution and data communication to another processor in a
communication network.

3.3.1 Energy for Computation

Nowadays, CMOS technology design is commonly used to build processors in which power is consumed in one way,
either static or dynamic consumption of energy that is obtained by Equation (3.4):

P = Pdynamic + Pstatic. (3.4)

Static power consumption, i.e. the main source of static current, is leakage current and reverse based PN junction
when there is no circuit activity, whereas dynamic power consumption involves charging and discharging of capacitances
when inputs are active. Pstatic Can be eliminated from the equation, regarding the energy consumption for the
execution of the parallel tasks based on the energy for computation in processors and the energy in communications
among processors. Thus, Equation (3.5) is for the calculation of dynamic energy consumption in a processor:

Pdynamic = ACv2f (3.5)

where A indicates the percentages of active logic gates with the capacity of dynamic charging, where C denotes a full
load of a capacitor, where v is voltage and f is the frequency of the processor.

DVFS based processors meet the maximization of Power consumption (Pproc.highest) when the operation is carried
out with the highest possible voltage (vhighest) and frequency (fhighest). Therefore, one can calculate the active power
consumption of a processor based on a set of voltage and frequency (vj , fj) by Equation (3.6):

Pproc j = Pproc.highest ×
v2j × fj

v2highest × fhighest
(3.6)
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Pproc.highest = ACv2highestfhighest.

Since the proposed algorithm adopts the task duplication strategy for scheduling a DAG with n tasks on DVFS-
enabled processors, the total energy consumption can be calculated through Equation (3.7).

Pprocessors.active =

n∑
i=1

Pproc.highest

 k∑
j=1

v2j × fj

v2highest × fhighest

 (3.7)

Eprocessors.active =

n∑
i=1

Pproc.highest

 k∑
j=1

v2j × fj

v2highest × fhighest

× et
(
ti, pm(vj , fj)

)
.

Equation (3.8) presents the obtaining of the energy consumption of the processors in idle durations in which m is
the number of processors and makespan is the maximum time for completion of tasks by processors, also known as
scheduling length.

Eprocessors.idle = ACv2lowestflowest

(
|m| ×makespan−

k∑
j=1

et(ti, pm(vj , fj)
)
. (3.8)

Finally, the total energy consumed by processors to execute the task dependency graph can be obtained through
sum of Equation (3.7) and (3.8) as follow:

Eprocessors = Eprocessors.active + Eprocessors.idle (3.9)

3.3.2 Energy for Communications

Since the processors in each datacenter have been assumed to be homogeneous, the data transfer speed and power
consumption are identical (Equation (3.10)).

ecij = PC × ct(dij), (3.10)

where ecij indicates the consumed energy for the communications of dij ∈ D and where PC expresses the power
of interconnect value. Therefore, the total communication energy for the entire network can be calculated through
Equation (3.11).

ECommunications =

n∑
i=1

∑
vj∈Succ(vi)

(xij × ecij), (3.11)

where xij is expressed with Equation (3.12) as follow:

xij =

{
0 if (tendi , pm) = (tstj , pm)
1 O.W

(3.12)

3.3.3 Total Energy for Datacenter

This can be expressed by Equation (3.13) for a cloud data center can be obtained through sum of Equation (3.9)
and Equation (3.11), thus:

ETotal = Edynamic(processors.active) + Edynamic(processors.idle) + Ecommunication. (3.13)

4 The PATCDD algorithm

This section presents an energy aware task scheduling with combination of Clustering and DVFS slack alloca-
tion distribution algorithm in cloud datacenters named as PATCDD, which aims reducing the makespan and energy
consumptions.
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4.1 Power-Aware Task Clustering - Dynamic Voltage/Frequency Scaling Distribution (PATCDD) al-
gorithm

After applying clustering technique on the input DAG, which leads to lower energy consumption and makespan, we
intend to further mitigate the energy consumed by processors by determining the critical path and non-critical paths.
We also specify the slack time of non-critical tasks, and calculate the voltage and frequency of processors allocated
to processing of tasks in non-critical paths as well as idle and communication phases through scaling down DVFS.
For this reason, it is essential to first explore the important parameters used in applying DVFS techniques to reduce
energy consumption.

4.1.1 Calculation of Slack Time

The parameters are used to calculate the slack time of tasks and determine the critical path. Calculation of Earliest
Start Time (EST) is a top-down method, which starts with the first task and ends with the last task, calculated by
Equation (4.1).

EST (ti) =

{
0 if pred(ti) = φ

MAX
(
EFT (tj),MAX(EFT (tk) + dki)

)
tk∈pred(ti),dij∈D

o.w (4.1)

After calculating EST, the Earliest Finish Time (EFT) can be calculated for task ti by Equation (4.2).

EFT (ti) = EST (ti) + et(ti, pm). (4.2)

Moreover, the calculation of Last Finish Time (LFT) is a bottom-up method, which starts with the last task and
ends with the first task, calculated by Equation (4.3).

LFT (ti) =

{
EFT (ti)ormakespan ifsucc(ti) = φ

Min
(
LST (tj),Min(LST (tk) − dik)

)
tk∈succ(ti),dij∈D

O.W (4.3)

The Latest Start Time (LST) for task ti is also calculated by Equation (4.4).

LST (ti) = LFT (ti) − et(ti, pm). (4.4)

The non-critical tasks in a DAG are distinguished by the presence of slack. Critical tasks have zero slack, while
non-critical tasks have slack value this is known as slack time. For each task ith, slack time is calculated through
Equation (4.5).

Slack time for taskti = LST (ti) − EST (ti) or LFT (ti) − EFT (ti). (4.5)

5 Experimental results with simulation

This section presents the experimental evaluation of our proposed heuristic algorithm, ‘Power-Aware Task Schedul-
ing with Clustering Dynamic Voltage/Frequency Distribution (PATCDD) algorithm. Moreover, we present the com-
parison of the proposed PATCDD algorithm with the previous works including Power-Aware Task Clustering (PATC)
[17], Power-Aware List-based Scheduling (PALS) [17] and Energy Aware Duplication Scheduling (EADUS) & TEBUS
[20], in terms of saving energy. Also, we highlight the contrast of PATCDD algorithm with HEFT [14] and RASD
[13], underlying the reduction on the execution time or makespan.

5.1 Experimental setup

First of all, we give the settings required for our experiments, including the information of target platform and the
power and makespan constraint settings used for the following performance evaluation.
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5.1.1 Settings for Constraints of Power and Makespan

To avoid some unreasonable constraint settings that are impossible for an input DAG to meet, we define and
specify a lower bound of the power constraint, denoted as Powmin and a lower bound of the makespan or critical path
constraint, denoted as CPmin. The maximum amount of reduction in power consumption by processors to execute
tasks can be achieved by eliminating all communication overheads. To that end, it is essential to execute all tasks on
a single processor. Therefore, the minimum power consumption can be calculated as shown in Equation (5.1).

Powmin(G) =
∑

∀Ci∈C

et(Ci). (5.1)

The minimum makespan or critical path is represented as CPmin(G) of which the realization depends on the
execution of all the tasks on one processor. It causes the makespan constraint due to neglecting the transfer costs.
One can obtain this with Equation (5.2) as follow:

CPmin(G) = EFT (texit). (5.2)

5.1.2 Randomly generated task graphs

There are many random graph generator tools to generate weighted application DAG, such as STG (standard
task graph) [10]. Standard Task Graph Set (STG) is a kind of benchmark for evaluation of multiprocessor scheduling
algorithms. STG is proposed for every researcher to evaluate their algorithms under the same conditions covering
various task-graph (TG) generation methods including task graphs generated from actual application programs.

In our simulation experiments, Graphs are generated for all combinations of the above parameters with the number
of tasks range between 40 and 200, in steps of 40, besides the tasks of 100, 200, 400, and 800 in graphs as the costs of
nodes and edges are randomly selected. CCR values are considered as 0.1, 1, 5, and 10, The following Equation (5.3)
indicates how CCR is calculated in a DAG.

CCR =

∑
1≤i,j≤n ct(dij∑

1≤i≤n wi
. (5.3)

5.2 Simulation Results

CloudSim goal is to provide a generalized and extensible simulation framework that enables modeling, simulation,
and experimentation of emerging Cloud computing infrastructures and application services, allowing its users to focus
on specific system design issues that they want to investigate, without getting concerned about the low level details
related to Cloud-based infrastructures and services [5]. We installed CloudSim in an Asus Notebook with Intel core
i7-A540UP CPU 2.4 GHz with 8 cores and 4GB memory. We create five datacenters in our simulation, and set 200
virtual machines, each involving three processor. Table 1 shows the details of the three processor types.

Table 1: power consumption for different voltage/frequency of processors [2]

Processors AMD Opteron 2218 AMD Turion MT-34 Intel Core i3-540

Voltage (V)
1.1, 1.15, 1.15, 0.9, 1.0, 1.05, 1.125, 1.125, 1.2, 1.2,
1.20, 1.25, 1.30 1.1, 1.15, 1.2 1.3, 1.3, 1.375

Frequency (GHz)
1.0, 1.8, 2.0, 0.8, 1.0, 1.2, 3.07, 3.2, 3.4, 3.6,
2.2, 2.4, 2.6 1.4, 1.6, 1.8 3.8, 4.0, 4.2

Highest power (W) 95 25 108
Lowest power (W) 26.16 6.25 53

The first set of experiments compares the power saving of algorithms with respect to various DAG size. We compare
the PATCDD algorithm with four other algorithms, named PALS and PATC algorithm, Energy Aware Duplication
Scheduling (EADUS) algorithm & TEBUS. PALS and PATC are a critical path based scheduling algorithm, which
attempts to shortest schedule length through clustering tasks in critical path and employ DVFS technique as regard
to a decrease in the consumption of energy and makespan. EADUS & TEBUS use the tasks duplication strategies
for scheduling DAG based parallel tasks in a cluster computing to reduce power consumption. Results show the high
impact of the parameters involved with the size of DAG and CCR on significantly saving the power. The DAG highly
focus on computations and communications in the condition of CCR=10 and CCR=0.1. PATCDD achieves better
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power saving among the others. The reason behind lies in that in our proposed method, we try to distribute and
allocate a slack time to the tasks belonging to a maximum independent set of tasks in cluster. Table 2 compares the
proposed method with the other power-aware scheduling algorithms, in terms of the capability of each to save the
energy more efficiently.

Table 2: Saving of Power between PATCDD and four other Algorithms

Algorithms Methods Power Saving
PATC [17] DVFS & Clustering 39.7
PALS [17] DVFS & ETF scheduling 44.3

EADUS & TEBUS Clustering & Duplication 16.8
PATCDD Clustering & DVFS Slack Distribution 45.9

Figure 5.2 show the second set of experiments compares the makespan of algorithms with respect to different
number of tasks of 40 and 200, in step of 40 and CCR (0.1, 1, 5). We compare the first phase of our proposed method
(PATCDD) with two other algorithms, Reliability Aware Scheduling (RASD) and Heterogeneous Earliest Finish Time
(HEFT).

Figure 1: Makespan PATCDD, RASD, and HEFT algorithms for different CCR

6 Conclusion

A power aware scheduling algorithmon DVFS-enabled datacenters can reduce power consumption. In this paper, we
proposes power-performance tradeoff scheduling algorithm PATCDD. The proposed algorithms employs the clustering
and distribute the slack time for set of non critical tasks in each cluster under a lower voltage and frequency. Eventually,
a set of data established for conducting the examinations and also different parameters of the constructed random
DAG were assessed to identify the efficiency of our proposed algorithm against with the cluster and duplication
based algorithm as well as those with the DVFS technique. The results indicated that the proposed algorithm more
significant efficiency of saving power rather PALS, PATC and RASD, HEFT algorithms, respectively, in terms of the
power consumption and makespan.
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