
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,026 |
تعداد مشاهده مقاله | 67,082,756 |
تعداد دریافت فایل اصل مقاله | 7,656,168 |
Some new Hermite-Hadamard type inequalities for p−convex functions with generalized fractional integral operators | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 136، دوره 13، شماره 2، مهر 2022، صفحه 1693-1701 اصل مقاله (377.61 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2022.24900.2848 | ||
نویسندگان | ||
Miguel Vivas Cortez* 1؛ Sabir Hussain2؛ Muhammad Amer Latif3 | ||
1Escuela de Ciencias Fisicas y Matematicas, Facultad de Ciencias Naturales y Exactas, Pontificia Universidad Catolica del Ecuador, Av. 12 de Octubre 1076, Apartado: 17-01-2184, Quito 170143, Ecuador | ||
2Department of Mathematics, University of Engineering and Technology, Lahore, Pakistan | ||
3Department of Basic Sciences, King Faisal University, Hofuf 31982, Al-Hasa, Saudi Arabia | ||
تاریخ دریافت: 04 آبان 1400، تاریخ بازنگری: 01 اردیبهشت 1401، تاریخ پذیرش: 06 اردیبهشت 1401 | ||
چکیده | ||
By use of definition of a generalized fractional integral operators, proposed by Raina and Agarwal et.al, we establish a fractional Hermite-Hadamard type inequalities for p−convex functions and an identity with a parameter. We derive several parameterized integral inequalities associated with this identity, and provide two examples to illustrate the obtained results. | ||
کلیدواژهها | ||
Hermite-Hadamard inequality؛ Fractional integral operators؛ p−convex functions | ||
مراجع | ||
[1] T. Abdeljawad, P.O. Mohammed and A. Kashuri, New modified conformable fractional integral inequalities of Hermite-Hadamard type with applications, J. Funct. Space 2020 (2020), Article ID 4352357, 14 pages. [2] M. Alomari, M. Darus and S. Dragomir, Inequalities of Hermite-Hadamard’s type for functions whose derivatives absolute values are quasi-convex, RGMIA 12 (2010), 353–359. [3] G.D. Anderson, M.K. Vamanamurthy and M. Vuorinen Generalized convexity and inequalities, J. Math. Anal. Appl. 335 (2007), 1294–1308. [4] D. Bainov and P. Simeonov, Integral inequalities and applications, Kluwer Academic, Dordrecht, 1992. [5] G. Cristescu and L. Lupsa, Non-connected convexities and applications, Kluwer Academic Publishers, Dordrecht, 2002. [6] J. Hadamard, Etude sur les proprietes des fonctions enti`eres en particulier d’une fonction consid´er´ee par Riemann , [7] D. Hyers and S. Ulam, Approximately convex functions, Proc. Amer. Math. Soc. 3 (1952), 821–828. [8] D. Ion, Some estimates on the Hermite-Hadamard Inequality through quasi-convex functions, Annal. Univ. Craiova, Math. Comp. Sci. Ser. 34 (2007), 82–87. [9] O. Mangasarian, Pseudo-Convex functions, SIAM. J. Control. 3 (1965), 281–290. [10] P.O. Mohammed, New integral inequalities for preinvex functions via generalized beta function, J. Interdiscip. Math. 22 (2019), 539–549. [11] P.O. Mohammed, Hermite-Hadamard inequalities for Riemann-Liouville fractional integrals of a convex function with respect to a monotone function, Math. Meth. Appl. Sci. 44 (2021), no. 3, 2314–2324. [12] P. O. Mohammed and I. Brevik, A new version of the Hermite–Hadamard inequality for Riemann–Liouville fractional integrals, Symmetry 12 (2020), no. 4, 610. [13] P.O. Mohammed and M.Z. Sarikaya, Hermite-Hadamard type inequalities for F-convex function involving fractional integrals, J. Inequal. Appl. 2018 (2018), no. 1, 1–33. [14] P.O. Mohammed, M.Z. Sarikaya and D. Baleanu, On the generalized Hermite-Hadamard inequalities via the tempered fractional integrals, Symmetry 12 (2020), no.4, 595. [15] P.O. Mohammed, Some new Hermite-Hadamard type inequalities for MT-convex functions on differentiable coordinates, J. King Saud Univ. Sci. 30 (2018), 258–262. [16] P.O. Mohammed, M. Vivas-Cortez, T. Abdeljawad and Y. Rangel-Oliveros, Integral inequalities of HermiteHadamard type for quasi-convex functions with applications, AIMS Math. 5 (2020), 7316–7331. [17] J. Pecaric, F. Proschan and Y. Tong, Convex functions partial orderings and statistical applications, Academic Press, Boston, 1992. [18] Y. Rangel-Oliveros and M. Vivas-Cortez, Ostrowski type inequalities for functions whose second derivative are convex generalized, Appl. Math. Inf. Sci. 12 (2018), 1117–1126. [19] J. Viloria and M. Vivas-Cortez, Hermite-Hadamard type inequalities for harmonically convex functions on ncoordinates, Appl. Math. Inf. Sci. 6 (2018), 1–6. [20] M. Vivas-Cortez, J. Hern´andez and N. Merentes, New Hermite-Hadamard and Jensen type inequalities for hconvex functions on fractal sets, Rev. Colombiana Mat. 50 (2016), 145–164. [21] M. Vivas-Cortez, Relative strongly h-convex functions and integral inequalities, Appl. Math. Inf. Sci. 4 (2016), 1055–1064. [22] M. Vivas-Cortez, T. Abdeljawad, P.O. Mohammed and Y. Rangel-Oliveros, Simpson’s integral inequalities for twice diferentiable convex functions, Math. Probl. Eng. 20 (2020), Article ID 1936461. [23] A.M. Tameru, E.R. Nwaeze and S. Kermausuor, Strongly (η, ω)-convex functions with nonnegative modulus, J. Ineq. Appl. 2020 (2020), no. 1, 1–17. [24] M. Tunc and H. Yildirim, On MT-convexity, arXiv preprint, 2012. | ||
آمار تعداد مشاهده مقاله: 43,771 تعداد دریافت فایل اصل مقاله: 503 |