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Abstract

This paper presents an iterative analytic algorithm for the approximate solution of nonlinear fractional-order oscillators.
The He fractional transform was applied to convert the fractional-order model, defined by a modified Riemann-Liouville
derivative, to a model in continuous spacetime. Then, the approximate solution of the continuous model was applied
to obtain an approximate solution for the fractional-order oscillator. The solution was obtained using the continuous
piecewise linearization method (CPLM), which is a simple, accurate and efficient analytic algorithm. The applicability
of the CPLM was demonstrated using representative examples in science and engineering and the maximum relative
error of the approximate solution was found to be less than 0.2 per cent. This paper provides an analytical tool
that can be applied in the study of fractional-order oscillations arising in various physical systems and technological
processes.
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1 Introduction

The concept of fractional derivative was invented about the same time with integer-order derivative but while the
latter witnessed significant mathematically developments due to the understanding of its immediate physical relevance,
the former had to wait until several decades due to its lack of apparent physical application. In recent times, many
applications of fractional derivatives have been found and this has sparked renewed interest in the subject. Examples
of application of fractional derivatives include flow in porous media [14], quantum mechanics [19, 17], heat conduction
[33], solitary motion in shallow water [31], anomalous diffusion [26], relaxation systems [12], visco-elastic materials with
memory effect [11], biological material transport [29] and fractional oscillators [13, 30]. A lucid and comprehensive
account of the historical developments in the definition and characterization of fractional derivatives can be found in
ref. [32]. Of the several definitions of fractional derivatives, the most common definitions are the Riemann-Liouville
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(R-L) and Caputo fractional derivatives given by equations (1) and (2) respectively,

RL
0D

α
t =

1

Γ (n− α)

dn

dτn

∫ t

0

(t− τ)
n−α−1

x(τ)dτ (1.1)

C
0D

α
t =

1

Γ (n− α)

∫ t

0

(t− τ)
n−α−1

xn(τ)dτ (1.2)

where n− 1 < α < n, α > 0, n >= 1, xn(τ) = dnx/dτn and Γ(x) is the gamma function of x. These definitions have
their limitations. For instance, the R-L derivative requires initial conditions in terms of non-integer derivatives which
lack any physical interpretation. Also, when the R-L derivative is applied to a constant, it produces another constant
instead of zero as with integer-order derivative. The Caputo derivative overcomes both of these challenges and is
mostly used to analyze physical problems [1]. However, the Caputo derivative requires that the function to which
it is applied must be continuous and differentiable. Hence, it cannot be applied to discontinuous spacetime systems
such as porous media and hierarchical structures. Furthermore, the Caputo derivative does not have an antiderivative
associate in the same manner as the R-L derivative [1].

Recent definitions of fractional derivatives seek to generalize existing definitions [20, 21], capture more of the
traditional properties of integer-order derivatives [22], modify existing definitions to remove restrictions [19] and
provide other physically relevant applications based on nonsingular kernels [1, 10, 2]. Although these definitions are
mathematically elegant, the main issue in applying them to study physical phenomena and systems lies in the solution
of the resulting fractional differential equation (FDE). For linear FDEs, the solution can be readily obtained in closed-
form based on the Mittag-Leffler function [13], but the same cannot be said of nonlinear FDEs. In the latter case,
numerical methods or other approximate analytical methods are generally required. Atangana and Gomez-Aguilar
[1] proposed a numerical scheme for the solution of FDEs based on power law, exponential decay and Mittag-Leffler
kernels in the R-L sense. The numerical scheme was applied to solve the diffusion-convection equation. Atangana and
Gomez-Aguilar [2] used a traditional predictor-corrector numerical scheme to investigate the solution of FDEs based
on Riemann-Liouville, Caputo-Fabrizio and Atangana-Baleanu kernels. They illustrated their numerical method by
solving the fractional logistic model of the Verhulst type, the fractional-order Arneodo system and the fractional-order
convection-diffusion system among other FDEs. Liu et al [24] studied the nonlinear time-fractional cable equation
using a two-grid finite element approximation, which is a numerical scheme. Morales-Delgado et al [29] studied
oxygen transport in tissue based on Caputo and Caputo-Fabrizio fractional operators. The FDEs for the tissue
oxygen transport were solved using a Laplace homotopy method, which is a combination of the Laplace transform
and homotopy analysis method. He [14] studied seepage flow with fractional derivatives in porous media using the
variational iteration method. The R-L fractional derivative was used to model the seepage flow in porous media.
Momani and Odibat [20] used the homotopy perturbation method to solve partial differential equations of fractional
order. Wang and An [30] investigated a fractional Duffing oscillator defined by He fractional derivative and has
application in microphysics and tsunami motion. They applied the He fractional transform (HFT) and the amplitude-
frequency method to determine the noise in the system. The HFT converts the FDE to an ODE with integer-order
derivatives. In order words, the fractional complex transform converts the problem from a discontinuous (fractal)
spacetime to a continuous spacetime [18]. More on the He fractional derivative and the corresponding HFT can be
found in the following references [17, 18, 16].

Important features of the HFT are its physical foundation and practical relevance for investigating initial and
boundary value problems [18]. This implies that the HFT can be applied to fractional oscillators with nonlinear
restoring force. The purpose of this paper is to present an accurate approximate solution for solving nonlinear
fractional-order oscillators using the continuous piecewise linearization method (CPLM). The fractional oscillator
model was defined based on the Jumarie or modified R-L derivative and the resulting integer-order ODE obtained
using the HFT was solved using the CPLM. The CPLM solution of the integer-order ODE was then applied to obtain
an approximate solution for the original fractional-order model. The CPLM is an iterative algorithm that can be
used to determine the periodic solution of conservative systems modeled by integer-order ODEs [3, 9]. Its attractive
features are simplicity and accuracy irrespective of the complex nature of the nonlinear restoring force.

2 Modified Riemann-Liouville Derivative and He Fractional Transform

The simplest kernel used in the definition of fractional derivatives is the power-law kernel and the R-L derivative is
based on this kernel. However, the use of R-L derivative to define initial value problems is limited by the fact that it is
characterized by fractional-order initial conditions that make no physical sense, and that it gives a non-zero constant
instead of zero when used to differentiate a constant. In order to deal with the problem of differentiation of constant,



Algorithm for nonlinear fractional-order oscillators 501

Jumarie [19] proposed a modified R-L derivative that gives zero when it is applied to differentiate a constant and still,
can be used to define systems with discontinuous spacetime. The modified R-L derivative can be derived also using
the variational iteration method [17]. The modified R-L derivative or Jumarie derivative is defined as:

MRL
0D

α
t =

1

Γ (n− α)

dn

dτn

∫ t

0

(t− τ)
n−α−1

[x(τ)− x(0)]dτ (2.1)

where x(τ) is a continuous but non-differential function. Equation (2.1) obeys the following differentiation rules [17]:

∂αc

∂τα
= 0 (2.2a)

∂α(cx(t))

∂τα
= c

∂αx

∂τα
(2.2b)

∂αtβ

∂τα
=

Γ (1 + β)

Γ (1 + β − α)
(2.2c)

where c is a constant and β ≥ α > 0.

In spite of the success of the Jumarie derivative to deal with the problem of differentiation of a constant encountered
with the classical R-L derivative, there is still the problem of fractional-order initial conditions. Based on geometrical
considerations, He [15] defined a new spacetime with fractional dimensions and showed that this definition can be
applied to define a fractional complex transform based on the Jumarie derivative. The fractional complex transform,
called He fractional transform (HFT), eliminates the need to use fractional-order initial conditions. Hence, we explore
the HFT in more details by considering a geometric perspective.

Figure 1: Particle moving from point A to B in a fractal space. Solid line represents a continuous trajectory while broken line represents
the actual trajectory.

Figure 1 shows a fractal space which is a discontinuous medium. The motion of a particle in the fractal space is
best described in terms of a fractional derivative. The grid in Figure 1 is rectangular and its smallest side is assumed
to have a length that is greater than or equal to L0, the smallest measure less than which any discontinuity is ignored
and no physical meaning exist. In reality, L0 can represent the nano-porous size of a porous flow medium or the
diameter of a carbon nanotube. Therefore, the distance between two points A and B on the fractal space is the length
of the broken zigzag line which can be defined as [18]:

LAB = kLα
0 (2.3)

where α is the fractional dimension of the fractal space and k = k(α) is a constant that is dependent on the fractional
dimension. The estimated fractal distance LAB can be viewed as a continuous variable (X) while L0 represents the
corresponding fractal variable (x). Therefore, the HFT for conversion of a fractional derivative to an integer-order
derivative can be defined as [18]:

X =
xα

Γ (1 + α)
(2.4)
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where k(α) = 1/Γ (1 + α). Equation (2.4) implies that X = x when α = 1, as would be expected. This geometry-based
definition of a fractal space is also applicable to a fractal time dimension. Now, using equation (2.4), we can define a
local fractal gradient between points A and B as shown:

∇αy =
yB − yA
LAB

= Γ (1 + α) lim
(xB−xA)→L0

[
yB − yA

(xB − xA)α

]
=

dy

dxα
(2.5)

where y is a variable that depends on the fractal space. Equation (2.5) is a special case of a local fractional derivative
that has the same properties (i.e. equations (2.2a-c)) as the Jumarie derivative and obeys simple chain rules of
differentiation [17]. In order words, the HFT is a transformative approach that can convert fractional-order derivatives
based on the Jumarie definition to the corresponding integer-order derivatives. This transformation process is useful
for solving fractional-order oscillators because integer-order initial conditions, which have physical meaning, can be
applied in the solution process. The application of the HFT and CPLM to study fractional-order nonlinear oscillators
is the main objective of this article.

3 Solution methodology

We consider a general nonlinear fractional-order oscillator of the form:

d2u

dt2α
+ f(u(t), Dα

t u(t)) = 0 (3.1)

with initial conditions u(0) = A and Dαu(0) = 0; where Dα
t u(t) = du

dtα and f(u(t), Dα
t u(t)) is a general nonlinear

fractional-order restoring force. The fractional derivatives in equation (3.1) are defined by equation (2.1). The HFT
for equation (3.1) is given as:

T =
tα

Γ (1 + α)
(3.2)

Transforming equation (3.1) using the HFT gives the equivalent integer-order model as [17, 30]:

d2u

dT 2
+ f(u(T ), u′(T )) = 0 (3.3)

with initial conditions u(0) = A and u′(0) = 0. Although the force in equation (3.3) is a function of u′(T ), dissipative
forces are not considered; but rather, only even powers of u′(T ) (e.g. non-natural oscillators [4]) that add to the
conservative restoring force are considered. Therefore, the nonlinear restoring force f(u(T ), u′(T )) can be expressed
as f(u(T )) using the technique in ref [4]. So, equation (3.3) can be written as:

d2u

dT 2
+ f(u) = 0 (3.4)

For simplicity u(T ) has been written as u. Now, equation (3.4) can be solved using the CPLM.

The CPLM is based on piecewise discretization and linearization of the nonlinear restoring force. The technique of
the CPLM involves n equal discretization of the nonlinear force (i.e. f(u) in this case) and formulating a linear restoring
force for each discretization. Consequently, a linear ODE can be derived for each discretization. The solution to the
linear ODE gives an approximate solution to the original nonlinear ODE for a range of the independent variable that
is based on the range of the dependent variable (u-range) of each discretization. The range of the independent variable
and the integration constants are automatically determined by the CPLM algorithm and are updated continuously
from one discretization to the next. The u-range over which the discretization is done depends on the nature of the
restoring force. If the restoring force is odd and symmetric, i.e. f(±u) = ±f(u), then the discretization is done over a
quarter cycle (0 ≤ u ≤ A) otherwise it is done over a half cycle (−A ≤ u ≤ A). A detailed formulation of the CPLM
algorithm can be found in the following studies [3, 9, 7] while application of the CPLM to study complex nonlinear
oscillators can be found in ref [8, 6, 4].

According to the CPLM, the linearized force for each discretization can be expressed as [9]:

Frs(u) = ±|Krs|(u− ur) + Fr (3.5)

where Krs = [f(us)− f(ur)]/(us − ur) is the linear slope of Frs(u) between points r and s, Fr = f(ur), r is the start
point and s is the endpoint of each discretization. Substituting equation (3.5) in (3.4) gives the linearized equation
for each discretization as follows:

u′′ ± |Krs|u = ±|Krs|ur − Fr (3.6)

where the prime denotes differentiation with respect to T . The solution to equation (3.6) depends on whether the sign
is positive or negative.
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3.1 Solution for positive linearized stiffness

When the sign in equation (3.6) is positive the solution is:

u(T ) = Rrs sin(ωrs(T − Tr) + Φrs) + Crs (3.7)

which can be expressed in the fractional time as:

u(t) = Rrs sin

(
ωrs

Γ (1 + α)
(tα − tαr ) + Φrs

)
+ Crs (3.8)

where tr = (TrΓ(1 + α))
1/α

, ωrs =
√
Krs, Crs = ur − Fr/Krs and Rrs = [(ur − Crs)

2 + (u′
r/ωrs)

2]1/2. The initial
conditions and other parameters for each discretization are determined based on the oscillation stage. For the oscillation
stage that moves from +A to −A the initial conditions for each discretization are ur = ur(0) = A − r∆u and

u′
r = u′

r(0) = −
√

|2
∫ ur

A
−f(u)du|; where ∆u = A/n and the other parameters are calculated as:

Φrs =

{
0.5π if u′

r = 0

π + tan−1[ωrs(ur − Crs)/u
′
r] if u′

r < 0
(3.9)

and

∆T =

{
(0.5π − Φrs)/ωrs if (us − Crs) ≥ Rrs

(0.5π + cos−1[(us − Crs)/Rrs]− Φrs)/ωrs if (us − Crs) < Rrs

(3.10)

For the oscillation stage that moves from −A to +A the initial conditions are ur = ur(0) = −A + r∆u and u′
r =

u′
r(0) =

√
|2
∫ ur

A
−f(u)du|; the other parameters are calculated as:

Φrs =

{
−0.5π if u′

r = 0

tan−1[ωrs(ur − Crs)/u
′
r] if u′

r < 0
(3.11)

and

∆T =

{
(0.5π − Φrs)/ωrs if (us − Crs) ≥ Rrs

(0.5π − cos−1[(us − Crs)/Rrs]− Φrs)/ωrs if (us − Crs) < Rrs

(3.12)

At the end of each discretization, we have Ts = Tr +∆T , and the end conditions us and u′
s are calculated by replacing

r with s in the formulae for initial conditions.

3.2 Solution for negative linearized stiffness

When the sign in equation (12) is negative, the solution is:

u(T ) = Ars exp (ωrs(T − Tr)) +Brs exp (−ωrs(T − Tr)) + Crs (3.13)

which can be expressed in the fractional time as:

u(t) = Ars exp

(
ωrs

Γ (1 + α)
(tα − tαr )

)
+Brs exp

(
− ωrs

Γ (1 + α)
(tα − tαr )

)
+ Crs (3.14)

where ωrs =
√
Krs and Crs = ur − Fr/Krs. The initial and end conditions are determined in the same as in Section

3.1. The integration constants are obtained by applying the initial conditions to get: Ars =
1
2 (ur +u′

r/ωrs −Crs) and
Brs =

1
2 (ur − u′

r/ωrs − Crs). Then, using the end conditions in equation (3.13), we get:

∆T =


1

ωrs
loge

[
(us−Crs)±

√
(us−Crs)2−4ArsBrs

2Ars

]
if (us − Crs) >

√
2ArsBrs

1
ωrs

loge

(
us−Crs

2Ars

)
if (us − Crs) ≤

√
2ArsBrs

(3.15)

The sign before the square root in equation (3.15) is negative for the oscillation stage that moves from +A to −A and
vice versa. Note that if u′

r = 0, then Ars = Brs =
1
2 (ur − Crs) and

u(t) = (us − Crs) cosh

(
ωrs

Γ (1 + α)
(tα − tαr )

)
+ Crs (3.16)
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3.3 Solution for zero linearized stiffness

In rare occurrence, we may have Krs = 0 for a couple of discretization. This may happen for very large n and can
be eliminated by increasing or decreasing n slightly. However, to account for Krs = 0 we have:

u(T ) = Hrs +Grs(T − Tr)−
1

2
Fr(T − Tr)

2 (3.17)

which can be expressed in fractional time as:

u(t) = Hrs +
Grs

Γ (1 + α)
(tα − tαr )−

Fr

2[Γ (1 + α)]2
(tα − tαr )

2 (3.18)

where Grs = u′
r + FrTr; Hrs = ur − u′

rTr − 1
2FrT

2
r and

∆T =
Grs +

√
G2

rs + 2Fr(Hrs − us)

Fr
(3.19)

3.4 Implementation of CPLM solution for fractional oscillators

A pseudocode algorithm that summarizes the CPLM solution for fractional-order oscillators and that can be used
to develop a computer code to implement the CPLM is provided in the appendix. For any fractional-order oscillator,
the main CPLM parameters are Krs, u

′
r and Crs. The other parameters depend on these three parameters and the

initial/end conditions. The solution can be implemented for n ≥ 1 but the accuracy of the solution depends on the
number of discretization. This implies an apparent question as to how many discretization is needed to give the
required accuracy. There is no known quantitative method to determine this but experience from previous studies
[3, 9] shows that n = 25 gives a relative error that is less than 0.1% in most cases while for some oscillators with
complex nonlinear restoring force [9], n ≥ 100 would be needed to get the required accuracy.

4 Results and discussions

To demonstrate the effectiveness and accuracy of the CPLM algorithm to estimate the response of nonlinear
fractional-order oscillators, typical instances of fractional-order oscillators that are relevant in engineering and physics
were investigated in this section. The CPLM solutions for these oscillators were obtained for n ≥ 10 and verified using
exact solutions. The investigations presented in this section are for 0 < α ≤ 1.0.

4.1 Fractional Duffing oscillator

The fractional Duffing oscillator arises in microphysics and tsunami motion [30]. Also, it has been used to study a
jump phenomenon that is not possible with the classical Duffing oscillator [25]. The model for the fractional Duffing
oscillator is given as [30]:

d2u

dt2α
+ k1u+ k3u

3 = 0 (4.1)

The initial conditions are u(0) = A and Dαu(0) = 0. Application of the HFT results in:

d2u

dT 2
+ k1u+ k3u

3 = 0 (4.2)

with initial conditions u(0) = A and u′(0) = 0. Therefore, f(u) = k1u + k3u
3. The CPLM parameters necessary to

obtain an approximate solution were derived as:

Krs = k1 + k3(u
2
s + usur + u2

r) (4.3a)

u′
r = ±

[
k1(A

2 − u2
r) +

1

2
k3(A

4 − u4
r)

]
(4.3b)

Crs = ur

[
1− k1 + k3u

2
r

k1 + k3(u2
s + usur + u2

r)

]
(4.3c)

All the other parameters can be calculated based on these three parameters.
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On the other hand, the exact solution to the classical Duffing oscillator in equation (4.2) is given in terms of the
Jacobi cosine function as shown [5]:

u(T ) = Acn(ΨT ;m) (4.4)

where Ψ =
√
k1 + k3A2 and m = (k3A

2)/[2(k1 + k3A
2)]. Consequently, the exact solution to the fractional Duffing

oscillator is:

u(t) = Acn

(√
k1 + k3A2

Γ(1 + α)
tα;

k3A
2

2(k1 + k3A2)

)
(4.5)

Results of the CPLM solution and exact solution (equation (4.5)) for the fractional Duffing oscillator are shown in
Figures 2 to 5. The agreement between the both solutions is excellent and the maximum error of the CPLM solution
was found to be less than 0.05 % for n = 10. In contrast, the solution derived in ref. [30] using the amplitude-frequency
formulation was found to produce up to 7.0 % error at large amplitudes. Each of the figures show solutions for α = 0.5
and α = 1 and it was observed that the fractional-order parameter introduces aperiodicity and an-harmonicity to
the oscillations, with each successive cycle taking a longer time to complete. However, the ratio of the time taken to
complete the (j + 1)th cycle to the time taken to complete the jth cycle decreases as time progresses and approaches
unity as j → ∞ where j ∈ N. In contrast, the integer-order oscillator (α = 1) completes each cycle at a fixed time
which is known as the time period. In order words, the fractional-order oscillator has no time period.

Figure 2: Small-amplitude oscillations (A = 0.10) of a fractional Duffing oscillator for k1/k3 < 1. Color representation: blue (α = 1.0) and
brown (α = 0.50). Line (CPLM solution) and circle marker (Exact solution).

Figure 3: Large-amplitude oscillations (A = 10.0) of a fractional Duffing oscillator for k1/k3 < 1. Legend is the same as Figure 2.

The small- and large-amplitude oscillations of the fractional Duffing oscillator were investigated for two cases: (a)
weak static nonlinearity (k1/k3 = 0.1 < 1) and (b) strong static nonlinearity (k1/k3 = 10 > 1). The responses for the
case of weak static nonlinearity are shown in Figures 2 and 3, while Figures 4 and 5 are for strong static nonlinearity.
The figures reveal that increasing the amplitude leads to an increase in the number of cycles that can be completed in
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Figure 4: Small-amplitude oscillations (A = 0.10) of a fractional Duffing oscillator for k1/k3 > 1. Legend is the same as Figure 2.

Figure 5: Large-amplitude oscillations (A = 10.0) of a fractional Duffing oscillator for k1/k3 > 1.

a given time. This is consistent with the behavior of the Duffing oscillator which is known to increase its frequency (or
decrease its time period) with increase in amplitude. The system with weak static nonlinearity appeared to be more
sensitivity to the amplitude compared to the system with strong static nonlinearity. This happens because the strong
static nonlinearity produces a counteracting resilience to the flexibility of the oscillator, thereby giving rise to a more
gradual change in the nonlinear response as the amplitude changes. Hence, the system with weak static nonlinearity
is more sensitive to changes in the fractional-order parameter.

4.2 Fractional pendulum

Pendulum-like motions occur in a number of systems including acoustic vibrations, molecular oscillations, optically
torqued nanorods, elliptic filters and quantum oscillators [23]. At the microscopic and quantum scale, the pendulum-
like oscillations can be better described by the fractional differential equation in equation (4.6).

d2u

dt2α
+ ω2

0 sinu = 0 (4.6)

where u is the angular displacement and ω0 is a constant that depends on the system’s properties. The initial conditions
for the fractional pendulum are given as u(0) = A and Dαu(0) = 0. Applying the HFT gives the equivalent continuous
model as:

d2u

dT 2
+ ω2

0 sinu = 0 (4.7)
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with initial conditions u(0) = A and u′(0) = 0. Then, the restoring force is f(u) = ω2
0 sinu and the main CPLM

parameters were derived as:

Krs =
ω2
0(sinus − sinur)

us − ur
(4.8a)

u′
r = ±ω2

0

√
2(cosur − cosus) (4.8b)

Crs = ur −
(us − ur) sinur

(sinus − sinur)
(4.8c)

The exact solution to equation (33) can be derived as shown [23]:

u(T ) = 2 sin−1[ksn(ω0T +K(k2); k2)] (4.9)

where sn is the Jacobi elliptic sine function, k = sin(A/2) and K(k2) is the complete elliptic integral of the first kind
given as:

K(k2) =

∫ π/2

0

1√
1− k2 sin2 ϕ

dϕ (4.10)

From equations (9) and (35), the exact solution to the fractional pendulum oscillations is:

u(t) = 2 sin−1

[
sin

(
A

2

)
sn

(
ω0

Γ(1 + α)
tα +K

(
sin2

(
A

2

))
; sin2

(
A

2

))]
. (4.11)

Figures 6 to 8 shows the response of the fractional pendulum for α = (0.5, 0.75, 1) obtained using the CPLM
and exact solution. The CPLM results are seen to match the exact result and the maximum error of the CPLM
solution was found to be less than 0.2 % for n = 100. Small-amplitude (Figure 6), moderate-amplitude (Figure 7) and
large-amplitude (Figure 8) responses were simulated. It was observed that a decrease in the value of the fractional-
order parameter increased the aperiodic and an-harmonic behavior of the response, and increased the time taken to
complete a cycle. In contrast to the fractional Duffing oscillator, the fractional pendulum response shows a decrease
in the number of cycles completed in a given time as the amplitude increases. This can be explained by the fact that
the static nonlinearity, which arises due to geometric effect, increases in strength as the amplitude increases. This
nonlinearity produces a softening effect that slows the pendulum at larger amplitudes. As the pendulum becomes
slower, it completes fewer cycles in a given time. It was observed that while the time taken to complete each cycle
is constant for α = 1, the time taken to complete a cycle increases for successive cycles when 0 < α < 1. Also, the
change in time required from one cycle to the next increases as α decreases.

Figure 6: Small-amplitude oscillations (A = 10◦) of a fractional pendulum for different values of the fractional parameter. Color represen-
tation: blue (α = 1.0), green (α = 0.75) and brown (α = 0.50). Line (CPLM solution) and circle marker (Exact solution).

4.3 Fractional Mathews-Lakshmanan oscillator

The Mathews-Lakshmanan oscillator [27] describes the motion of elementary particles in a relativistic scalar field.
It was derived from the Lagrangian of elementary particle theory of pion interactions. An interesting feature of
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Figure 7: Moderate-amplitude amplitude oscillations (A = 60◦) of a fractional pendulum for different values of the fractional parameter.
Legend is the same as Figure 6.

Figure 8: Large-amplitude oscillation (A = 170◦) of the fractional Mathews-Lakshmanan oscillator for different values of the fractional
parameter. Legend is the same as Figure 6.

the Mathews-Lakshmanan oscillator is that all its bounded periodic motions are simple harmonic even though it is
a nonlinear oscillator. It is understood from quantum mechanics that elementary particle motion is discontinuous.
Therefore, a fractional Mathews-Lakshmanan oscillator is considered to describe the pion interactions. The model for
the fractional oscillator is:

(1 + λu2)
d2u

dt2α
+ λu

(
du

dtα

)2

+ Λu = 0 (4.12)

where u(0) = A and Dαu(0) = 0 are the initial condition. Applying the HFT gives the equivalent integer-order
oscillator as:

(1 + λu2)
d2u

dT 2
+ λu

(
du

dT

)2

+ Λu = 0 (4.13)

where the initial conditions are u(0) = A and u′(0) = 0. Ref [29] showed that for an oscillator in the form:

I(u)
d2u

dT 2
+

dI

du

(
du

dT

)2

= Q(u) (4.14)

the velocity and restoring force can be derived from:

du

dT
= ±

√
2[h(A)− h(u)]

[I(u)]2k
(4.15)



Algorithm for nonlinear fractional-order oscillators 509

and

f(u) =
2k dI

du [h(A)− h(u)]

[I(u)]2k+1
− Q(u)

I(u)
(4.16)

where

h(u) = −
∫

[I(u)]2k−1Q(u)du (4.17)

From equation (39), I(u) = 1 + λu2, Q(u) = −Λu and k = −1/2. Therefore,

du

dT
= ±Λ−1/2

√
A2 − u2

1 + λA2
(4.18)

from which we get:

T =

(
Λ

1 + λA2

)1/2 ∫ A

u

dy√
A2 − y2

(4.19)

Now, using the transformation y = A cos θ, the solution to equation (4.19) can be derived as:

u(T ) = A cos

([
Λ

1 + λA2

]1/2
T

)
(4.20)

Equation (4.20) is the exact solution of the continuous Mathews-Lakshmanan oscillator and it is a simple harmonic
solution. The exact solution of the fractional Mathews-Lakshmanan oscillator is obtained from equations (3.2) and
(4.20) as:

u(T ) = A cos

(
1

Γ(1 + α)

√
Λ

1 + λA2
tα

)
(4.21)

In order to apply the CPLM solution to derive the periodic solution of the fractional Mathews-Lakshmanan oscillator,
we need to know the restoring force which was determined from equation (4.16) to be f(u) = Λu/(1 + λA2). Then,
the main CPLM constants were derived as:

Krs = Λ/(1 + λA2) (4.22a)

u′
r = ±Λ−1/2

√
A2 − u2

r

1 + λA2
(4.22b)

Crs = 0 (4.22c)

By virtue of the fact that f(u) = Λu/(1+λA2) is linear, we know that the solution must be a simple harmonic motion.
In this case, we implement the CPLM solution for n = 1 because Krs is constant for any number of discretization.
This implies that tr = 0, ur = A, us = 0, u′

r = 0, Rrs = A, ωrs =
√

Λ/(1 + λA2), and Φrs = π/2. Substituting these
results in equation (3.8) gives the CPLM solution for the fractional Mathews-Lakshmanan oscillator as:

u(t) = A sin

(
π

2
+

1

Γ(1 + α)

√
Λ

1 + λA2
tα

)
(4.23)

which is the same as the exact solution in equation (4.21). This means that a single iteration of the CPLM algorithm,
which is easily done by manual computation, gave the exact solution of the fractional Mathews-Lakshmanan oscillator.
Based on the derived restoring force, the Mathews-Lakshmanan oscillator can be expressed as an equivalent linear
oscillator as follows:

d2u

dT 2
+

Λ

1 + λA2
u = 0 (4.24)

where the amplitude-dependent frequency originates from the nonlinearity in the system. The response of the frac-
tional Mathews-Lakshmanan oscillator for small- and large-amplitude oscillations were simulated in Figures 9 and 10
respectively. The figures show the CPLM and exact solutions, both of which give the same results. The effects of the
fractional-order parameter and amplitude on the oscillation are the same as found in the fractional Duffing oscillator.
For the integer-order oscillation (i.e. α = 1), the response was found to be purely simple harmonic, but with an
amplitude-dependent frequency (see equation (4.24)).This explains why the time period for Figure 9 is different from
Figure 10 even though the periodic response of the Mathews-Lakshmanan oscillator has an equivalent linear oscilla-
tor representation. Finally, the fractional Mathews-Lakshmanan oscillator produced strong nonlinear characteristics
such as an-harmonic and aperiodic response despite the fact that the integer-order Mathews-Lakshmanan oscillator
produces linear response characteristics.
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Figure 9: Small-amplitude oscillations (A = 0.10) of the fractional Mathews-Lakshmanan oscillator for different values of the fractional
parameter. Legend is the same as Figure 6.

Figure 10: Large-amplitude oscillation (A = 10) of the fractional Mathews-Lakshmanan oscillator for different values of the fractional
parameter. Legend is the same as Figure 6.

5 Conclusions

This paper provides an accurate method for the approximate solution of nonlinear fractional oscillators. These
oscillators are characterized by a second-order fractional derivative and a nonlinear restoring force. The fractional
derivative was defined by a modified Riemann-Liouville derivative that is suitable for initial-value problems. The
fractional-order model was transformed into an equivalent continuous model by means of the He fractional transform.
The continuous model was then solved by the continuous piecewise linearization method, from which the solution
of the nonlinear fractional oscillator was obtained. In order to demonstrate the CPLM solution, typical nonlinear
fractional oscillators were investigated and the CPLM solutions were verified using exact solutions. It was observed
that the error of the CPLM algorithm was negligible and in the case of the fractional Mathews-Lakshmanan oscillator,
the CPLM algorithm produced an exact solution.

The results simulated produced some interesting observations. First, the fractional-order parameter introduces
aperiodicity and an-harmonicity to the oscillations, with each successive cycle taking a longer time to complete.
Secondly, the ratio of the time taken to complete the (j + 1)th cycle to the time taken to complete the jth cycle of
a fractional oscillator decreases as time progresses and approaches unity as j → ∞. Thirdly, a fractional oscillator
with a hardening and weak static nonlinearity is more sensitive to changes in the fractional-order parameter compared
to one with strong static nonlinearity. Fourthly, the time taken to complete a cycle increases as the fractional-order
parameter moves away from 1 towards zero. However, when the fractional-order parameter is very close to zero, the
response can be said to be static. Fifthly, the fractional oscillator is nonlinear even though its equivalent continuous or
integer-order oscillator is linear. Therefore, the fractional-order parameter provides an additional variable that can be
used to study nonlinear responses that cannot be predicted by integer-order oscillators (α = 1) e.g. noise attenuation
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in a vibrating system [30] or non-periodic oscillations. The CPLM algorithm provides an accurate tool for the study
of such nonlinear fractional oscillators.
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Appendix A Pseudocode algorithm for implementing the CPLM solution to nonlinear
fractional-order oscillators

START

∆u = A/n **Displacement increment for each discretization**

GET(A,n, α and other parameters of the oscillator) **Input values**

r = 0; PUT (0, “,”, A) **Initialize r and print initial solution**

IF (A > 0) THEN **A > 0 implies negative velocity oscillation stage**

DO UNTIL (r = 2n)

ur = A− r∆u ; u′
r = −

√
|2
∫ ur

A
−f(u)du| **Initial conditions**

s = r + 1; us = A− s∆u ; u′
s = −

√
|2
∫ us

A
−f(u)du| **End conditions**

Krs = [f(us)− f(ur)]/(us − ur); **Linearized stiffness**

IF (Krs > 0) THEN

ωrs =
√
Krs; Crs = ur − Fr/Krs; Rrs = [(ur − Crs)

2 + (u′
r/ωrs)

2]1/2;

IF (u′
r = 0) THEN

Φrs = 0.5π;

ELSEIF (u′
r < 0) THEN

Φrs = π + tan−1[ωrs(ur − Crs)/u
′
r];

END ELSEIF
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IF ((us − Crs) ≥ Rrs) THEN

∆T = (0.5π − Φrs)/ωrs;

ELSEIF ((us − Crs) < Rrs) THEN

∆T = (0.5π + cos−1[(us − Crs)/Rrs]− Φrs)/ωrs;

END ELSEIF

Ts = Tr +∆T ; ts = (TsΓ (1 + α))1/α; **Continuous and fractal time at end point**

u(t) = Rrs sin
(

ωrs

Γ(1+α) (t
α − tαr ) + Φrs

)
+ Crs;

ELSEIF (Krs < 0) THEN

ωrs =
√
Krs; Ars =

1
2 (ur + u′

r/ωrs − Crs); Brs =
1
2 (ur − u′

r/ωrs − Crs);

∆T = 1
ωrs

loge

[
(us−Crs)±

√
(us−Crs)2−4ArsBrs

2Ars

]
;

Ts = Tr +∆T ; ts = (TsΓ (1 + α))1/α;

u(t) = Ars exp
(

ωrs

Γ(1+α) (t
α − tαr )

)
+Brs exp

(
− ωrs

Γ(1+α) (t
α − tαr )

)
+ Crs;

END ELSEIF

PUT (ts, “,” us) **Prints the time and displacement at end condition**

r = s; ur = us; u
′
r = u′

s; **Update initial conditions for the next discretization**

END DO

END THEN

STOP

The pseudocode algorithm above is for the first half cycle of the continuous model (i.e. from +A to −A). A similar
algorithm is applicable for the second half and the necessary changes can be seen in Section 3. This pseudocode
algorithm was applied to develop a Mathematica program to implement the CPLM solution. Note that the solution
u(t) is only used if data points are extracted from each discretization to get sufficient points to make a smooth plot.
However, for n ≥ 25, extracting data points from each discretization is unnecessary, and the end conditions give
sufficient points to produce a smooth plot.
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